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Poisson Mixture Models

Suppose we have a dataset D which consists of DNA sequences observed

from a mixture of k bacteria. We do not know which sequence belongs

to which species.

Sequence Species Count
CAGAGGAT ? 5
TCAGTGTC ? 13
CTCTGTGA ? 2
AACTGTCG ? 7
CGCGTGGA ? 15
GGATGAGA ? 1

⇒

λk

Dl zl

P

M

K

Which DNA sequences belong to the same species?

This can be described by a Poisson mixture model.

Brandon Malone Poisson Mixture Models



The Poisson Distribution Mixture Models Expectation-Maximization Wrap-up

Poisson Mixture Models

Suppose we have a dataset D which consists of DNA sequences observed

from a mixture of k bacteria. We do not know which sequence belongs

to which species.

Sequence Species Count
CAGAGGAT ? 5
TCAGTGTC ? 13
CTCTGTGA ? 2
AACTGTCG ? 7
CGCGTGGA ? 15
GGATGAGA ? 1

⇒

λk

Dl zl

P

M

K

Which DNA sequences belong to the same species?

This can be described by a Poisson mixture model.

Brandon Malone Poisson Mixture Models



The Poisson Distribution Mixture Models Expectation-Maximization Wrap-up

1 The Poisson Distribution

2 Mixture Models

3 Expectation-Maximization

4 Wrap-up

Brandon Malone Poisson Mixture Models



The Poisson Distribution Mixture Models Expectation-Maximization Wrap-up

Multiple Bernoulli trials

Suppose we have a Bernoulli-distributed variable (a weighted coin
flip with parameter θ).

If we flip two coins, what is our probability of seeing exactly one H?

C1 C2 P(C1,C2)

H H θ · θ
H T θ · (1− θ)
T H (1− θ) · θ
T T (1− θ) · (1− θ)

So, P(exactly one H) = 2 · θ · (1− θ).

In general, P(exactly m successes in n trials) =
(
n
m

)
· θm · (1− θ)n−m.
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Take it, to the limit, one more time

What if we have an infinite number of trials and expect to see λ
successes?

lim
n→∞

P(exactly m successes in n trials) =
λm

m!
exp {−λ}

This is called the Poisson distribution.

We will write g(m : λ) to mean P(exactly m successes given λ).

(See the videos for a detailed derivation.)
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Mixtures of distributions

Suppose we have K Poisson distributions (components) with
parameters λ1 . . . λK mixed together with proportions p1 . . . pK .

We often write P = {p1 . . . pK} and θ = {λ1 . . . λK ,P}.

procedure GenerateDataset(Poisson parameters λ1 . . . λk , mixing proportions

p1 . . . pk , samples N)
D ← ∅
for l = 1 to N do

component zl ←sample(Mult(p1 . . . pK ))
observation Dl ←sample(Poisson(λzl ))
D ← D ∪ Dl

end for
return D

end procedure
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Mixtures of distributions

Suppose we have K Poisson distributions (components) with
parameters λ1 . . . λK mixed together with proportions p1 . . . pK .

We often write P = {p1 . . . pK} and θ = {λ1 . . . λK ,P}.
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Dl zl
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K

Figure: Generative model for a Poisson mixture model (PMM)
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Likelihood of data

We can write the (log) probability of any mixture model as follows.

P(D : θ) =
K∑
k

pkg(D : λk )

P(D : θ) =
N∏
l

K∑
k

pkg(Dl : λk )

`(D : θ) = log
N∏
l

K∑
k

pkg(Dl : λk )

`(D : θ) =
N∑
l

log
K∑
k

pkg(Dl : λk )

The learning problem can be formulated as follows.

θ∗ = arg max
θ
`(D : θ)
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Membership probabilities

Notation

q(k, l) ..= pkg(Dl : λk) joint probability of Dl and component k

P(k|l) ..= P(zl = k |Dl) conditional probability of component k given Dl

The probability that Dl came from comonent k is expressed as
follows.

P(k |l) =
q(k , l)∑K
m q(m, l)

Also, we know each observation came from some component.∑
k

P(k|l) = 1
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Jensen’s Inequality

Recall the likelihood of the mixture model.

`(D : θ) =
N∑
l

log
K∑
k

q(k, l)

Jensen’s inequality shows the following.

log
K∑
k

πkαk ≥
K∑
k

πk logαk when π is a distribution

We can make this work for any values.

log
K∑
k

ck = log
K∑
k

ck
πk
πk

= log
K∑
k

πk
ck
πk
≥

K∑
k

πk log
ck
πk
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Expectation-Maximization (EM)

Our learning problem is formulated as follows.

θ∗ = arg max
θ
`(D : θ)

EM begins with a (bad) set of estimates for θ.

1 Use Jensen’s inequality to estimate a bound b on `
called the expectation of `

2 Find values of θ which maximize b

EM is guaranteed to find θs which do not decrease b.
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Expectation and the Q function

Recall the definition of ` and Jensen’s inequality.

`(D : θ) =
N∑
l

log
K∑
k

q(k, l)

≥
N∑
l

K∑
k

P(k |l) log
q(k , l)

P(k |l)

This gives the expectation of ` with our current parameters θ.

Based on this equation, we define Q(θ) which we want to maximize.

Q(θ) =
N∑
l

K∑
k

P(k|n) log q(k , l)

(See the handout for a detailed derivation of Q.)
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Maximization and the Q function

We use the following process to maximize Q for a particular
parameter θi .

1 Differentiate Q w.r.t θi
2 Set the derivative equal to 0

3 Solve for θi

(See the handout for detailed derivations.)

λk =

∑N
l P(k|l)Dl

Z(k)

pk =
Z(k)

N
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The EM algorithm for PMMs

procedure pmmEM(data D, inital p1 . . . pK , λ1 . . . λK , convergence criteria C)
while C has not been met do

. Update the expectations
q(k, l)← pk · g(Dl , λk)

P(k|l)← q(k,l)∑K
m q(m,l)

. Maximize the parameters

λk ←
∑N

l P(k|l)Dl

Z(k)

pk ← Z(k)
N

end while
end procedure
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Grouping the DNA sequences into clusters

After running EM, we have several useful pieces of information
about our metagenomics sample.

P(k |l). The distribution over species for each sequence.

pk . The relative genome sizes of the species.

λk . The abundance of the species.

Other questions...

Do we really know how many species there are?

Can we differentiate species with similar abundances?

How do we pick “good” initial parameters?

When have we converged?
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More on EM

EM is a general framework that is useful whenever data is missing.

If used to estimate class probabilities in naive Bayes models, it
is called Bayesian clustering

If used in HMMs, it is called the Baum-Welch algorithm

Can be used in general Bayesian networks to calculate
parameters when some data is missing

If used with structure learning algorthms, it is called
Structural EM

Many, many others...

We maximize likelihood with EM. What if we want MAP
parameters?
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Recap

During this part of the course, we have discussed:

Mixture models as a probabilistic clustering method

Expectation-maximization as a framework for estimating
parameters when variables are hidden
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Next in probabilistic models

We will see a Bayesian version of EM.

Estimating parameters in topic models
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