Mixture Models

Expectation-Maximization

・ 同 ト ・ ヨ ト ・

## Poisson Mixture Models

## Brandon Malone

Much of this material is adapted from Bilmes 1998 and Tomasi 2004. Many of the images were taken from the Internet

## February 20, 2014

| The Poisson Distribution<br>00 | Mixture Models<br>0000 | Expectation-Maximization | Wrap-up |
|--------------------------------|------------------------|--------------------------|---------|
| Poisson Mixture N              | lodels                 |                          |         |

Suppose we have a dataset  $\mathcal{D}$  which consists of DNA sequences observed from a mixture of k bacteria. We do not know which sequence belongs to which species.

| Sequence | Species | Count |
|----------|---------|-------|
| CAGAGGAT | ?       | 5     |
| TCAGTGTC | ?       | 13    |
| CTCTGTGA | ?       | 2     |
| AACTGTCG | ?       | 7     |
| CGCGTGGA | ?       | 15    |
| GGATGAGA | ?       | 1     |

Which DNA sequences belong to the same species?

| The Poisson Distribution<br>00 | Mixture Models<br>0000 | Expectation-Maximization | Wrap-up |
|--------------------------------|------------------------|--------------------------|---------|
| Poisson Mixture N              | lodels                 |                          |         |

Suppose we have a dataset  $\mathcal{D}$  which consists of DNA sequences observed from a mixture of k bacteria. We do not know which sequence belongs to which species.

| Sequence | Species | Count |               | $(\lambda_{i})$                                            | (P)      |
|----------|---------|-------|---------------|------------------------------------------------------------|----------|
| CAGAGGAT | ?       | 5     | -             | $\left  \left\langle \gamma_{k} \right\rangle_{K} \right $ |          |
| TCAGTGTC | ?       | 13    |               |                                                            | $\top$   |
| CTCTGTGA | ?       | 2     | 、<br>、        | <b> </b>                                                   |          |
| AACTGTCG | ?       | 7     | $\Rightarrow$ | •                                                          | •        |
| CGCGTGGA | ?       | 15    |               |                                                            |          |
| GGATGAGA | ?       | 1     |               | $(D_1)$                                                    | $-(z_l)$ |
|          |         |       |               |                                                            |          |
|          |         |       |               |                                                            |          |

Which DNA sequences belong to the same species?

This can be described by a Poisson mixture model.

| The Poisson Distribution | Mixture Models | Expectation-Maximization |
|--------------------------|----------------|--------------------------|
|                          |                |                          |



- 2 Mixture Models
- Sepectation-Maximization



| The Poisson Distribution<br>●○ | Mixture Models<br>0000 | Expectation-Maximization | Wrap-up |
|--------------------------------|------------------------|--------------------------|---------|
| Multiple Bernoulli             | trials                 |                          |         |

Suppose we have a **Bernoulli**-distributed variable (a weighted coin flip with parameter  $\theta$ ).

If we flip two coins, what is our probability of seeing *exactly* one *H*?

| The Poisson Distribution<br>●○ | Mixture Models<br>0000 | Expectation-Maximization | Wrap-up |
|--------------------------------|------------------------|--------------------------|---------|
| Multiple Bernoulli             | trials                 |                          |         |

Suppose we have a **Bernoulli**-distributed variable (a weighted coin flip with parameter  $\theta$ ).

If we flip two coins, what is our probability of seeing *exactly* one H?

$$\begin{array}{c|ccc} C_1 & C_2 & P(C_1, C_2) \\ \hline H & H & \theta \cdot \theta \\ H & T & \theta \cdot (1-\theta) \\ T & H & (1-\theta) \cdot \theta \\ T & T & (1-\theta) \cdot (1-\theta) \end{array}$$

So,  $P(\text{exactly one H}) = 2 \cdot \theta \cdot (1 - \theta)$ .

| The Poisson Distribution<br>●○ | Mixture Models<br>0000 | Expectation-Maximization | Wrap-up |
|--------------------------------|------------------------|--------------------------|---------|
| Multiple Bernoulli             | trials                 |                          |         |

Suppose we have a **Bernoulli**-distributed variable (a weighted coin flip with parameter  $\theta$ ).

If we flip two coins, what is our probability of seeing *exactly* one H?

$$\begin{array}{c|ccc} C_1 & C_2 & P(C_1, C_2) \\ \hline H & H & \theta \cdot \theta \\ H & T & \theta \cdot (1 - \theta) \\ T & H & (1 - \theta) \cdot \theta \\ T & T & (1 - \theta) \cdot (1 - \theta) \end{array}$$

So,  $P(\text{exactly one H}) = 2 \cdot \theta \cdot (1 - \theta)$ .

In general,  $P(\text{exactly } m \text{ successes in } n \text{ trials}) = \binom{n}{m} \cdot \theta^m \cdot (1-\theta)^{n-m}$ .

伺 ト く ヨ ト く ヨ ト



What if we have an infinite number of trials and expect to see  $\lambda$  successes?

 $\lim_{n \to \infty} P(\text{exactly } m \text{ successes in } n \text{ trials}) = \frac{\lambda^m}{m!} \exp\{-\lambda\}$ 

This is called the **Poisson distribution**.

We will write  $g(m : \lambda)$  to mean  $P(\text{exactly } m \text{ successes given } \lambda)$ .

(See the videos for a detailed derivation.)

| 00                        | •000 | 000 |  |  |  |
|---------------------------|------|-----|--|--|--|
| Mixtures of distributions |      |     |  |  |  |

Suppose we have K Poisson distributions (**components**) with parameters  $\lambda_1 \dots \lambda_K$  **mixed** together with proportions  $p_1 \dots p_K$ .

We often write  $P = \{p_1 \dots p_K\}$  and  $\theta = \{\lambda_1 \dots \lambda_K, P\}$ .

**procedure** GENERATEDATASET(Poisson parameters  $\lambda_1 \dots \lambda_k$ , mixing proportions  $p_1 \dots p_k$ , samples N)  $\mathcal{D} \leftarrow \emptyset$  **for** l = 1 to N **do** component  $z_l \leftarrow \text{sample}(\text{Mult}(p_1 \dots p_K))$ observation  $D_l \leftarrow \text{sample}(\text{Poisson}(\lambda_{z_l}))$   $\mathcal{D} \leftarrow \mathcal{D} \cup D_l$  **end for return**  $\mathcal{D}$ **end procedure** 

| Mixtures of dist         |                |                          |         |
|--------------------------|----------------|--------------------------|---------|
| The Poisson Distribution | Mixture Models | Expectation-Maximization | Wrap-up |

Suppose we have *K* Poisson distributions (**components**) with parameters  $\lambda_1 \dots \lambda_K$  **mixed** together with proportions  $p_1 \dots p_K$ .

We often write  $P = \{p_1 \dots p_K\}$  and  $\theta = \{\lambda_1 \dots \lambda_K, P\}$ .

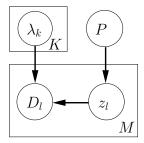


Figure: Generative model for a Poisson mixture model (PMM)

伺 と く ヨ と く ヨ と

| The Poisson Distribution<br>00 | Mixture Models<br>○●○○ | Expectation-Maximization | Wrap-up |
|--------------------------------|------------------------|--------------------------|---------|
| Likelihood of data             |                        |                          |         |

We can write the (log) probability of any mixture model as follows.

$$P(\mathcal{D}:\theta) = \sum_{k}^{K} p_{k}g(\mathcal{D}:\lambda_{k})$$
$$P(\mathcal{D}:\theta) = \prod_{l}^{N} \sum_{k}^{K} p_{k}g(D_{l}:\lambda_{k})$$
$$\ell(\mathcal{D}:\theta) = \log \prod_{l}^{N} \sum_{k}^{K} p_{k}g(D_{l}:\lambda_{k})$$
$$\ell(\mathcal{D}:\theta) = \sum_{l}^{N} \log \sum_{k}^{K} p_{k}g(D_{l}:\lambda_{k})$$

The learning problem can be formulated as follows.

$$\theta^* = \arg \max_{\theta} \ell(\mathcal{D} : \theta)$$

| The Poisson Distribution | Mixture Models | Expectation-Maximization | Wrap-up |  |  |
|--------------------------|----------------|--------------------------|---------|--|--|
| 00                       | ००●०           | 000                      |         |  |  |
| Membership probabilities |                |                          |         |  |  |

## Notation

$$q(k, l) := p_k g(D_l : \lambda_k)$$
$$P(k|l) := P(z_l = k|D_l)$$

joint probability of  $D_l$  and component k

conditional probability of component k given  $D_l$ 

The probability that  $D_l$  came from comonent k is expressed as follows.

$$P(k|l) = \frac{q(k,l)}{\sum_{m}^{K} q(m,l)}$$

Also, we know each observation came from some component.

$$\sum_{k} P(k|l) = 1$$

| The Poisson Distribution | Mixture Models | Expectation-Maximization | Wrap-up |
|--------------------------|----------------|--------------------------|---------|
| 00                       | ○○○●           | 000                      |         |
| Jensen's Inequal         | ity            |                          |         |

Recall the likelihood of the mixture model.

$$\ell(\mathcal{D}:\theta) = \sum_{l}^{N} \log \sum_{k}^{K} q(k,l)$$

Jensen's inequality shows the following.

$$\log \sum_{k}^{K} \pi_{k} \alpha_{k} \geq \sum_{k}^{K} \pi_{k} \log \alpha_{k} \qquad \text{when } \pi \text{ is a distribution}$$

We can make this work for any values.

$$\log \sum_{k}^{K} c_k = \log \sum_{k}^{K} c_k \frac{\pi_k}{\pi_k} = \log \sum_{k}^{K} \pi_k \frac{c_k}{\pi_k} \ge \sum_{k}^{K} \pi_k \log \frac{c_k}{\pi_k}$$

Our learning problem is formulated as follows.

$$heta^* = \arg \max_{ heta} \ell(\mathcal{D}: heta)$$

EM begins with a (bad) set of estimates for  $\theta$ .

- Use Jensen's inequality to estimate a bound b on l called the expectation of l
- **②** Find values of  $\theta$  which maximize b

EM is guaranteed to find  $\theta$ s which do not decrease *b*.

 The Poisson Distribution
 Mixture Models
 Expectation-Maximization
 Wrap-up

 Soo
 Soo
 Soo
 Soo
 Soo

Recall the definition of  $\ell$  and Jensen's inequality.

$$\ell(\mathcal{D}:\theta) = \sum_{l}^{N} \log \sum_{k}^{K} q(k,l)$$
$$\geq \sum_{l}^{N} \sum_{k}^{K} P(k|l) \log \frac{q(k,l)}{P(k|l)}$$

This gives the **expectation** of  $\ell$  with our current parameters  $\theta$ .

Based on this equation, we define  $Q(\theta)$  which we want to maximize.

$$Q(\theta) = \sum_{l}^{N} \sum_{k}^{K} P(k|n) \log q(k, l)$$

(See the handout for a detailed derivation of Q.)



We use the following process to maximize Q for a particular parameter  $\theta_i$ .

- **O** Differentiate Q w.r.t  $\theta_i$
- ② Set the derivative equal to 0
- **③** Solve for  $\theta_i$

(See the handout for detailed derivations.)

$$\lambda_{k} = \frac{\sum_{l}^{N} P(k|l) D_{l}}{Z(k)}$$
$$p_{k} = \frac{Z(k)}{N}$$

| The Poisson Distribution | Mixture Models | Expectation-Maximization | Wrap-up |
|--------------------------|----------------|--------------------------|---------|
| 00                       | 0000           | ○○●                      |         |
| The EM algorithm         | for PMMs       |                          |         |

 $\begin{array}{l} \textbf{procedure } \mathrm{PMMEM}(\mathsf{data} \ \mathcal{D}, \ \mathsf{inital} \ p_1 \dots p_K, \ \lambda_1 \dots \lambda_K, \ \mathsf{convergence \ criteria \ } \mathcal{C} \\ \textbf{while } \mathcal{C} \ \textbf{has not been met } \textbf{do} \end{array}$ 

 $\triangleright$  Update the expectations

$$q(k, l) \leftarrow p_k \cdot g(D_l, \lambda_k)$$
$$P(k|l) \leftarrow \frac{q(k, l)}{\sum_{m}^{K} q(m, l)}$$

▷ Maximize the parameters

$$\lambda_k \leftarrow \frac{\sum_{l}^{N} P(k|l)}{Z(k)}$$

$$p_k \leftarrow \frac{Z(k)}{N}$$
end while
end procedure



After running EM, we have several useful pieces of information about our metagenomics sample.

- P(k|I). The distribution over species for each sequence.
- $p_k$ . The relative genome sizes of the species.
- $\lambda_k$ . The abundance of the species.

Other questions...

- Do we really know how many species there are?
- Can we differentiate species with similar abundances?
- How do we pick "good" initial parameters?
- When have we converged?

| The Poisson Distribution<br>00 | Mixture Models<br>0000 | Expectation-Maximization | Wrap-up |
|--------------------------------|------------------------|--------------------------|---------|
| More on EM                     |                        |                          |         |

EM is a general framework that is useful whenever data is missing.

- If used to estimate class probabilities in naive Bayes models, it is called Bayesian clustering
- If used in HMMs, it is called the Baum-Welch algorithm
- Can be used in general Bayesian networks to calculate parameters when some data is missing
- If used with structure learning algorithms, it is called Structural EM
- Many, many others...

We maximize likelihood with EM. What if we want MAP parameters?

・ 同 ト ・ ヨ ト ・



During this part of the course, we have discussed:

- Mixture models as a probabilistic clustering method
- Expectation-maximization as a framework for estimating parameters when variables are hidden

| The Poisson Distribution<br>00 | Mixture Models<br>0000 | Expectation-Maximization | Wrap-up |  |  |  |
|--------------------------------|------------------------|--------------------------|---------|--|--|--|
| Next in probabilistic models   |                        |                          |         |  |  |  |

We will see a Bayesian version of EM.

• Estimating parameters in topic models