Preliminaries	Degrees of Belief	Independence	Other Important Properties	Wrap-up

Refresher on Probability Theory

Brandon Malone

Much of this material is adapted from Chapters 2 and 3 of Darwiche's book

January 16, 2014

Preliminaries	Degrees of Belief	Independence	Other Important Properties	Wrap-up

1 Preliminaries

2 Degrees of Belief

Independence

Other Important Properties

Preliminaries ●○○	Degrees of Belief 000000	Independence 000000	Other Important Properties	Wrap-up
Primitives				

The following assumes we have variables Earthquake(E), Burglary (B) and Alarm (A). All variables are binary.

Atoms. $E = e_1, E = e_2, A = a_2, \ldots$

Operators. \neg , \land , \lor (\Longrightarrow , \iff)

Sentences or **Events**. An atom is an event. If α and β are events, then the following are also events.

- $\neg \alpha$
- $\alpha \wedge \beta$
- $\alpha \lor \beta$

Preliminaries ○●○	Degrees of Belief 000000	Independence 000000	Other Important Properties	Wrap-up
Definitions				

Instantiations. An assignment of (unique) values to some variables. $E = e_1$, $A = a_2$.

Worlds, ω_i . An instantiation which includes all variables. $E = e_1$, $B = b_1$, $A = a_2$.

The set of all worlds (*i.e.*, the set of complete, unique instantiations) is denoted by Ω .

If event α is true in ω_i , then $\omega_i \models \alpha$.

 $\mathsf{Models}(\alpha) := \{\omega_i : \omega_i \models \alpha\}$

Preliminaries ○○●	Degrees of Belief 000000	Independence 000000	Other Important Properties	Wrap-up
Definitions	and Identiti	ies		

Consistent. Models(α) $\neq \emptyset$

Valid. Models(α) = Ω

 $\mathsf{Models}(\alpha \land \beta) = \mathsf{Models}(\alpha) \cap \mathsf{Models}(\beta)$

 $\mathsf{Models}(\alpha \lor \beta) = \mathsf{Models}(\alpha) \cup \mathsf{Models}(\beta)$

 $\mathsf{Models}(\neg \alpha) = \overline{\mathsf{Models}(\alpha)}$

Preliminaries 000	Degrees of Belief ●○○○○○	Independence 000000	Other Important Properties	Wrap-up
Degrees of	belief			

We attach a probability to each ω_i such that

$$\sum_{\omega_i\in\Omega}\Pr(\omega_i)=1.$$

Then, our belief in event $\boldsymbol{\alpha}$ is

$$Pr(\alpha) := \sum_{\omega_i \models \alpha} Pr(\omega_i).$$

Preliminaries	Degrees of Belief	Independence	Other Important Properties	Wrap-up
	00000			

Degrees of belief - Simple example

world	Earthquake	Burglary	Alarm	$Pr(\cdot)$
ω_1	Т	Т	Т	0.0190
ω_2	Т	Т	F	0.0010
ω_3	Т	F	Т	0.0560
ω_4	Т	F	F	0.0240
ω_5	F	Т	Т	0.1620
ω_6	F	Т	F	0.0180
ω_7	F	F	Т	0.0072
ω_8	F	F	F	0.7128

What is Pr(Alarm = T)?

What is Pr(Earthquake = T, Alarm = F)? This is called a **joint probability distribution**.

Preliminaries 000	Degrees of Belief ○○●○○○	Independence 000000	Other Important Properties	Wrap-up
Updating	beliefs			

Belief updates give a natural method for handling evidence. This is called **conditional probability**.

Say we know that β is true.

Then we say $Pr(\beta|\beta) = 1$ and $Pr(\neg\beta|\beta) = 0$.

The "|" means "given that". The notation $Pr(\alpha|\beta)$ means "The probability that α is true given that we know β is true."

Preliminaries 000	Degrees of Belief ○○○●○○	Independence 000000	Other Important Properties	Wrap-up
Updating	g beliefs			

Since we know $Pr(\neg\beta|\beta) = 0$, we will also insist that

$$Pr(\omega_i|\beta) = 0$$
 for all $\omega_i \models \neg \beta$.

Furthermore, all probability distributions must sum to one, so we know

$$\sum_{\omega_i \models \beta} \Pr(\omega_i | \beta).$$

So for a given $\omega_i \models \beta$, what is $Pr(\omega_i | \beta)$?

< ∃ > < ∃ >

Preliminaries 000	Degrees of Belief ○○○●○○	Independence 000000	Other Important Properties	Wrap-up
Updating	g beliefs			

Since we know $Pr(\neg\beta|\beta) = 0$, we will also insist that

$$Pr(\omega_i|\beta) = 0$$
 for all $\omega_i \models \neg \beta$.

Furthermore, all probability distributions must sum to one, so we know

$$\sum_{\omega_i \models \beta} \Pr(\omega_i | \beta).$$

So for a given $\omega_i \models \beta$, what is $Pr(\omega_i | \beta)$?

How about $Pr(\omega_i|\beta) := \frac{Pr(\omega_i)}{Pr(\beta)}$?

Preliminaries	Degrees of Belief	Independence	Other Important Properties	Wrap-up
000	○○○○●○	000000	0000	
Bayes' cor	nditioning			

$$Pr(\alpha|\beta) = \sum_{\omega_i \models \alpha} Pr(\omega_i|\beta)$$

Preliminaries 000	Degrees of Belief ○○○○●○	Independence 000000	Other Important Properties	Wrap-up
Bayes' co	onditioning			

$$egin{aligned} & \mathsf{Pr}(lpha|eta) = \sum_{\omega_i \models lpha} \mathsf{Pr}(\omega_i|eta) \ & = \sum_{\omega_i \models lpha, eta} \mathsf{Pr}(\omega_i|eta) + \sum_{\omega_i \models lpha,
egin{aligned} & \mathsf{Pr}(\omega_i|eta) \ & \mathsf{ext{i}} = lpha,
egin{aligned} & \mathsf{Pr}(\omega_i|eta) \ & \mathsf{Pr$$

э

• = • • = •

Preliminaries 000	Degrees of Belief ○○○○●○	Independence 000000	Other Important Properties	Wrap-up
Bayes' co	onditioning			

$$\begin{aligned} \mathsf{Pr}(\alpha|\beta) &= \sum_{\omega_i \models \alpha} \mathsf{Pr}(\omega_i|\beta) \\ &= \sum_{\omega_i \models \alpha, \beta} \mathsf{Pr}(\omega_i|\beta) + \sum_{\omega_i \models \alpha, \neg \beta} \mathsf{Pr}(\omega_i|\beta) \\ &= \sum_{\omega_i \models \alpha, \beta} \mathsf{Pr}(\omega_i|\beta) \end{aligned}$$

Preliminaries 000	Degrees of Belief ○○○○●○	Independence 000000	Other Important Properties	Wrap-up
Bayes' co	onditioning			

$$Pr(\alpha|\beta) = \sum_{\omega_i \models \alpha} Pr(\omega_i|\beta)$$
$$= \sum_{\omega_i \models \alpha, \beta} Pr(\omega_i|\beta) + \sum_{\omega_i \models \alpha, \neg \beta} Pr(\omega_i|\beta)$$
$$= \sum_{\omega_i \models \alpha, \beta} Pr(\omega_i|\beta)$$
$$= \sum_{\omega_i \models \alpha, \beta} Pr(\omega_i) / Pr(\beta)$$

Preliminaries 000	Degrees of Belief ○○○○●○	Independence 000000	Other Important Properties	Wrap-up
Bayes' co	onditioning			

$$\begin{aligned} \Pr(\alpha|\beta) &= \sum_{\omega_i \models \alpha} \Pr(\omega_i|\beta) \\ &= \sum_{\omega_i \models \alpha, \beta} \Pr(\omega_i|\beta) + \sum_{\omega_i \models \alpha, \neg \beta} \Pr(\omega_i|\beta) \\ &= \sum_{\omega_i \models \alpha, \beta} \Pr(\omega_i|\beta) \\ &= \sum_{\omega_i \models \alpha, \beta} \Pr(\omega_i) / \Pr(\beta) \\ &= \frac{1}{\Pr(\beta)} \sum_{\omega_i \models \alpha, \beta} \Pr(\omega_i) \end{aligned}$$

Preliminaries 000	Degrees of Belief ○○○○●○	Independence 000000	Other Important Properties	Wrap-up
Bayes' co	onditioning			

$$Pr(\alpha|\beta) = \sum_{\omega_i \models \alpha} Pr(\omega_i|\beta)$$
$$= \sum_{\omega_i \models \alpha, \beta} Pr(\omega_i|\beta) + \sum_{\omega_i \models \alpha, \neg \beta} Pr(\omega_i|\beta)$$
$$= \sum_{\omega_i \models \alpha, \beta} Pr(\omega_i|\beta)$$
$$= \sum_{\omega_i \models \alpha, \beta} Pr(\omega_i) / Pr(\beta)$$
$$= \frac{1}{Pr(\beta)} \sum_{\omega_i \models \alpha, \beta} Pr(\omega_i)$$
$$Pr(\alpha|\beta) = \frac{Pr(\alpha, \beta)}{Pr(\beta)}$$

Preliminaries	Degrees of Belief ○○○○○●	Independence 000000	Other Important Properties	Wrap-up

Bayes' conditioning class work

world	Earthquake	Burglary	Alarm	$Pr(\cdot)$
ω_1	Т	Т	Т	0.0190
ω_2	Т	Т	F	0.0010
ω_3	Т	F	Т	0.0560
ω_4	Т	F	F	0.0240
ω_5	F	Т	т	0.1620
ω_6	F	Т	F	0.0180
ω_7	F	F	т	0.0072
ω_8	F	F	F	0.7128

Calculate the following probabilities.

```
Pr(Alarm = T)
```

```
Pr(Earthquake = T)
```

```
Pr(Burglary = T)
```

```
Pr(Burglary = T, Earthquake = T)
```

```
Pr(Burglary = T, Alarm = T)
```

```
Pr(Alarm = T, Earthquake = T)
```

```
Pr(Alarm = T|Earthquake = T)
```

```
Pr(Alarm = T|Burglary = T)
```

```
Pr(Earthquake = T|Burglary = T)
```

```
Pr(Earthquake = T|Alarm = T)
```

```
Pr(Burglary = T|Alarm = T)
```

```
Pr(Burglary = T|Earthquake = T)
```

```
Pr(Burglary = T|Alarm = T, Earthquake = T)
```

```
Pr(Burglary = T|Alarm = T, Earthquake = F)
```

イロト イポト イヨト イヨト

Preliminaries 000	Degrees of Belief 000000	Independence ●○○○○○	Other Important Properties	Wrap-up
Independe	nce			

What did knowing that Burglary = T tell us about Earthquake?

Preliminaries 000	Degrees of Belief 000000	Independence ●○○○○○	Other Important Properties	Wrap-up
Independe	nce			

What did knowing that *Burglary* = T tell us about *Earthquake*? Nothing.

$$Pr(Earthquake = T) = Pr(Earthquake = T|Burglary = T) = 0.1$$

So we say that *Earthquake* and *Burglary* are independent.

Preliminaries 000	Degrees of Belief 000000	Independence ⊙●○○○○	Other Important Properties	Wrap-up
Independe	nce defined			

Events α and β are independent if

$$Pr(\alpha \wedge \beta) = Pr(\alpha) \cdot Pr(\beta).$$

Equivalently, α and β are independent if

$$Pr(\alpha|\beta) = Pr(\alpha).$$

Preliminaries 000	Degrees of Belief 000000	Independence	Other Important Properties	Wrap-up
Conditio	nal independe	nce		

Are independent events always independent?

Preliminaries 000	Degrees of Belief 000000	Independence	Other Important Properties	Wrap-up
Conditiona	l independenc	ce		

Are independent events *always* independent?

$$\begin{aligned} & Pr(Burglary = T) = ?\\ & Pr(Burglary = T | Earthquake = T) = ?\\ & Pr(Burglary = T | Alarm = T) = ?\\ & Pr(Burglary = T | Earthquake = T, Alarm = T) = ?\end{aligned}$$

A ►

Are independent events always independent?

$$\begin{aligned} & Pr(Burglary = T) = ?\\ & Pr(Burglary = T | Earthquake = T) = ?\\ & Pr(Burglary = T | Alarm = T) = ?\\ & Pr(Burglary = T | Earthquake = T, Alarm = T) = ?\end{aligned}$$

So, no.

Note how this naturally handles the non-monotonicity problem.

Image: Image:

* E > < E >

Constitution	and the design of the	and the state	. .	
Preliminaries 000	Degrees of Belief 000000	Independence ○○○●○○	Other Important Properties	Wrap-up

Conditional independence - simple example

world	Temp	Sensor1	Sensor2	$Pr(\cdot)$
ω_1	normal	normal	normal	0.576
ω_2	normal	normal	extreme	0.144
ω_3	normal	extreme	normal	0.064
ω_4	normal	extreme	extreme	0.016
ω_5	extreme	normal	normal	0.008
ω_6	extreme	normal	extreme	0.032
ω_7	extreme	extreme	normal	0.032
ω_8	extreme	extreme	extreme	0.128

Calculate the following probabilities.

- Pr(Sensor2 = normal)
- Pr(Sensor2 = normal|Sensor1 = normal)
- Pr(Sensor2 = normal|Temp = normal)
- Pr(Sensor2 = normal|Temp = normal, Sensor1 = normal)

・ 同 ト ・ ヨ ト ・ ヨ ト

C	and the design of the	and the states of a	· · · · · · · · · · ·	
Preliminaries	Degrees of Belief 000000	Independence ○○○●○○	Other Important Properties	Wrap-up

Conditional independence - simple example

world	Temp	Sensor1	Sensor2	$Pr(\cdot)$
	normal	normal	normal	0.576
ω_1		normai	normai	
ω_2	normal	normal	extreme	0.144
ω_3	normal	extreme	normal	0.064
ω_4	normal	extreme	extreme	0.016
ω_5	extreme	normal	normal	0.008
ω_6	extreme	normal	extreme	0.032
ω_7	extreme	extreme	normal	0.032
ω_8	extreme	extreme	extreme	0.128

Calculate the following probabilities.

- Pr(Sensor2 = normal)
- Pr(Sensor2 = normal|Sensor1 = normal)
- Pr(Sensor2 = normal|Temp = normal)
- Pr(Sensor2 = normal|Temp = normal, Sensor1 = normal)

Sensor1 and Sensor2 began dependent.

Once we conditioned on Temp, they became independent.

글 > - < 글 >

Events α and β are conditionally independent given evidence γ if

$$Pr(\alpha, \beta|\gamma) = Pr(\alpha|\gamma) \cdot Pr(\beta|\gamma)$$

Equivalently, α and β are conditionally independent given γ if

$$Pr(\alpha|\beta,\gamma) = Pr(\alpha|\gamma)$$

We always assume the evidence γ has non-zero probability.

4 E 6 4 E 6

Suppose we have disjoint variable sets X, Y and Z.

The notation $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ means that **x** is independent of **y** given **z** for all instantiations of **x**, **y** and **z**.

The notation $\mathbf{X} \perp \mathbf{Y}$ means that \mathbf{X} is (unconditionally) independent of \mathbf{Y} .

The notation $\textbf{X} \perp \textbf{Y} | \textbf{Z}$ means that X is conditionally independent of Y given Z.

Preliminaries	Degrees of Belief	Independence	Other Important Properties	Wrap-up
000	000000	000000	●○○○	
Chain rule				

Can we rewrite this in some more manageable way?

Preliminaries	Degrees of Belief	Independence	Other Important Properties	Wrap-up
000	000000	000000	●○○○	
Chain rule				

Can we rewrite this in some more manageable way?

 $Pr(\alpha_1, \alpha_2, \ldots, \alpha_n) = Pr(\alpha_1 | \alpha_2, \ldots, \alpha_n) Pr(\alpha_2, \ldots, \alpha_n)$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Preliminaries	Degrees of Belief	Independence	Other Important Properties	Wrap-up
000	000000	000000	●○○○	
Chain rule				

Can we rewrite this in some more manageable way?

$$Pr(\alpha_1, \alpha_2, \dots, \alpha_n) = Pr(\alpha_1 | \alpha_2, \dots, \alpha_n) Pr(\alpha_2, \dots, \alpha_n)$$
$$= Pr(\alpha_1 | \alpha_2, \dots, \alpha_n) Pr(\alpha_2 | \alpha_3, \dots, \alpha_n)$$

Preliminaries	Degrees of Belief	Independence	Other Important Properties	Wrap-up
000	000000	000000	●○○○	
Chain rule				

Can we rewrite this in some more manageable way?

$$Pr(\alpha_1, \alpha_2, \dots, \alpha_n) = Pr(\alpha_1 | \alpha_2, \dots, \alpha_n) Pr(\alpha_2, \dots, \alpha_n)$$

= $Pr(\alpha_1 | \alpha_2, \dots, \alpha_n) Pr(\alpha_2 | \alpha_3, \dots, \alpha_n)$
= \dots
$$Pr(\alpha_1, \alpha_2, \dots, \alpha_n) = Pr(\alpha_1 | \alpha_2, \dots, \alpha_n) Pr(\alpha_2 | \alpha_3, \dots, \alpha_n) Pr(\alpha_3 | \alpha_4, \dots, \alpha_n) \dots Pr(\alpha_{n-1} | \alpha_n) Pr(\alpha_n)$$

Preliminaries	Degrees of Belief	Independence	Other Important Properties	Wrap-up
000	000000	000000	●○○○	
Chain rule				

Can we rewrite this in some more manageable way?

$$Pr(\alpha_1, \alpha_2, \dots, \alpha_n) = Pr(\alpha_1 | \alpha_2, \dots, \alpha_n) Pr(\alpha_2, \dots, \alpha_n)$$

= $Pr(\alpha_1 | \alpha_2, \dots, \alpha_n) Pr(\alpha_2 | \alpha_3, \dots, \alpha_n)$
= \dots
 $Pr(\alpha_1, \alpha_2, \dots, \alpha_n) = Pr(\alpha_1 | \alpha_2, \dots, \alpha_n) Pr(\alpha_2 | \alpha_3, \dots, \alpha_n) Pr(\alpha_3 | \alpha_4, \dots, \alpha_n) \dots Pr(\alpha_{n-1} | \alpha_n) Pr(\alpha_n)$

This is called the **chain rule**.

Preliminaries	Degrees of Belief	Independence	Other Important Properties	Wrap-up
000	000000	000000	●○○○	
Chain rule				

Can we rewrite this in some more manageable way?

$$Pr(\alpha_1, \alpha_2, \dots, \alpha_n) = Pr(\alpha_1 | \alpha_2, \dots, \alpha_n) Pr(\alpha_2, \dots, \alpha_n)$$

= $Pr(\alpha_1 | \alpha_2, \dots, \alpha_n) Pr(\alpha_2 | \alpha_3, \dots, \alpha_n)$
= \dots
 $Pr(\alpha_1, \alpha_2, \dots, \alpha_n) = Pr(\alpha_1 | \alpha_2, \dots, \alpha_n) Pr(\alpha_2 | \alpha_3, \dots, \alpha_n) Pr(\alpha_3 | \alpha_4, \dots, \alpha_n) \dots Pr(\alpha_{n-1} | \alpha_n) Pr(\alpha_n)$

This is called the **chain rule**.

What if $I(\alpha_1, \{\alpha_2\}, \{\alpha_3, \dots, \alpha_n\})$?

Can we rearrange the order of the α s?

Preliminaries	Degrees of Belief	Independence	Other Important Properties	Wrap-up
000	000000	000000	●○○○	
Chain rule				

Can we rewrite this in some more manageable way?

$$Pr(\alpha_1, \alpha_2, \dots, \alpha_n) = Pr(\alpha_1 | \alpha_2, \dots, \alpha_n) Pr(\alpha_2, \dots, \alpha_n)$$

= $Pr(\alpha_1 | \alpha_2, \dots, \alpha_n) Pr(\alpha_2 | \alpha_3, \dots, \alpha_n)$
= \dots
 $Pr(\alpha_1, \alpha_2, \dots, \alpha_n) = Pr(\alpha_1 | \alpha_2, \dots, \alpha_n) Pr(\alpha_2 | \alpha_3, \dots, \alpha_n) Pr(\alpha_3 | \alpha_4, \dots, \alpha_n) \dots Pr(\alpha_{n-1} | \alpha_n) Pr(\alpha_n)$

This is called the **chain rule**.

What if $I(\alpha_1, \{\alpha_2\}, \{\alpha_3, \dots, \alpha_n\})$?

Can we rearrange the order of the α s?

Efficient inference in Bayesian networks stems from these operations.

Preliminaries	Degrees of Belief	Independence	Other Important Properties	Wrap-up
000	000000	000000	○●○○	
Marginali	zation			

How did we calculate Pr(Alarm = T)?

2

- ∢ ≣ →

A ►

Preliminaries	Degrees of Belief	Independence	Other Important Properties	Wrap-up
000	000000	000000	○●○○	
Marginaliz	zation			

How did we calculate Pr(Alarm = T)?

Implicitly, we summed over all instantiations of the other variables.

This is called marginalization.

 $Pr(\alpha) = \sum_{i=1}^{n} Pr(\alpha|\beta_i) Pr(\beta_i)$, where β has *n* distinct instantiations

Preliminaries	Degrees of Belief	Independence	Other Important Properties	Wrap-up
000	000000	000000	○●○○	
Marginalization				

How did we calculate Pr(Alarm = T)?

Implicitly, we summed over all instantiations of the other variables. This is called **marginalization**.

$$Pr(\alpha) = \sum_{i=1}^{n} Pr(\alpha|\beta_i) Pr(\beta_i)$$
, where β has *n* distinct instantiations

Among other things, this will be useful for handling hidden variables. If β is a continuous variable, we can replace the sum with an integral.

Preliminaries 000	Degrees of Belief 000000	Independence 000000	Other Important Properties	Wrap-up
Bayes' rule	2			

Suppose α is a disease and β is the result of a test. Given the result of the test, what is the probability a person has the disease?

Suppose α is a disease and β is the result of a test. Given the result of the test, what is the probability a person has the disease?

$$Pr(\alpha|\beta) = Pr(\alpha,\beta)/Pr(\beta)$$
$$Pr(\alpha|\beta) = Pr(\beta|\alpha)Pr(\alpha)/Pr(\beta)$$

This is called **Bayes' rule**. It forms the basis for reasoning about causes given their effects.

(4月) (4日) (4日)

Preliminaries 000	Degrees of Belief 000000	Independence 000000	Other Important Properties	Wrap-up
Class work	X .			

Suppose we have a patient who was just tested for a particular disease and the test came out positive. We know that one in every thousand people has this disease. We also know that the test is not perfect. It has a false positive rate of 2% and a false negative rate of 5%. That is, the test result is positive when the patient does not have the disease 2% of the time, and the result is negative when the patient has the disease 5% of the time. What is the probability that the patient with the positive test result actually has the disease?

Let *D* stand for "the patient has the disease," and *T* stand for "the test result." That is, what is P(D = T | T = T)?

Preliminaries 000	Degrees of Belief 000000	Independence 000000	Other Important Properties	Wrap-up
Recap				

During this class, we discussed

- Basic terminology and definitions for discussing propositional events and reasoning about them probabilistically
- Fundamental properties of joint probability distributions
- Rigorous methods to incorporate evidence and construct conditional probability distributions
- Independence and conditional independence
- Chain rule, marginalization and Bayes' rule

Preliminaries 000	Degrees of Belief 000000	Independence 000000	Other Important Properties	Wrap-up		
Next time, in probabilistic models						

- A formal introduction to Bayesian networks
- Graphical structures comprising Bayesian networks
- Independence assertions based on the BN structure
- Equivalence among BN structures
- Factorized joint probability distributions

