Refresher on Probability Theory

Brandon Malone

Much of this material is adapted from Chapters 2 and 3 of Darwiche's book

$$
\text { January 16, } 2014
$$

(1) Preliminaries
(2) Degrees of Belief
(3) Independence

4 Other Important Properties
(5) Wrap-up

Primitives

The following assumes we have variables Earthquake (E), Burglary (B) and Alarm (A). All variables are binary.

Atoms. $E=e_{1}, E=e_{2}, A=a_{2}, \ldots$
Operators. $\neg, \wedge, \vee(\Longrightarrow, \Longleftrightarrow)$
Sentences or Events. An atom is an event.
If α and β are events, then the following are also events.

- $\neg \alpha$
- $\alpha \wedge \beta$
- $\alpha \vee \beta$

Definitions

Instantiations. An assignment of (unique) values to some variables. $E=e_{1}, A=a_{2}$.

Worlds, ω_{i}. An instantiation which includes all variables. $E=e_{1}$, $B=b_{1}, A=a_{2}$.

The set of all worlds (i.e., the set of complete, unique instantiations) is denoted by Ω.

If event α is true in ω_{i}, then $\omega_{i} \models \alpha$.
$\operatorname{Models}(\alpha):=\left\{\omega_{i}: \omega_{i} \models \alpha\right\}$

Definitions and Identities

Consistent. Models $(\alpha) \neq \emptyset$
Valid. Models $(\alpha)=\Omega$
$\operatorname{Models}(\alpha \wedge \beta)=\operatorname{Models}(\alpha) \cap \operatorname{Models}(\beta)$
$\operatorname{Models}(\alpha \vee \beta)=\operatorname{Models}(\alpha) \cup \operatorname{Models}(\beta)$
$\operatorname{Models}(\neg \alpha)=\overline{\operatorname{Models}(\alpha)}$

Degrees of belief

We attach a probability to each ω_{i} such that

$$
\sum_{\omega_{i} \in \Omega} \operatorname{Pr}\left(\omega_{i}\right)=1
$$

Then, our belief in event α is

$$
\operatorname{Pr}(\alpha):=\sum_{\omega_{i} \models \alpha} \operatorname{Pr}\left(\omega_{i}\right) .
$$

Degrees of belief - Simple example

world	Earthquake	Burglary	Alarm	$\operatorname{Pr}(\cdot)$
ω_{1}	T	T	T	0.0190
ω_{2}	T	T	F	0.0010
ω_{3}	T	F	T	0.0560
ω_{4}	T	F	F	0.0240
ω_{5}	F	T	T	0.1620
ω_{6}	F	T	F	0.0180
ω_{7}	F	F	T	0.0072
ω_{8}	F	F	F	0.7128

What is $\operatorname{Pr}($ Alarm $=\mathrm{T})$?
What is $\operatorname{Pr}($ Earthquake $=\mathrm{T}$, Alarm $=\mathrm{F})$?
This is called a joint probability distribution.

Updating beliefs

Belief updates give a natural method for handling evidence. This is called conditional probability.

Say we know that β is true.
Then we say $\operatorname{Pr}(\beta \mid \beta)=1$ and $\operatorname{Pr}(\neg \beta \mid \beta)=0$.
The "|" means "given that". The notation $\operatorname{Pr}(\alpha \mid \beta)$ means "The probability that α is true given that we know β is true."

Updating beliefs

Since we know $\operatorname{Pr}(\neg \beta \mid \beta)=0$, we will also insist that

$$
\operatorname{Pr}\left(\omega_{i} \mid \beta\right)=0 \quad \text { for all } \omega_{i} \models \neg \beta .
$$

Furthermore, all probability distributions must sum to one, so we know

$$
\sum_{\omega_{i}=\beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right) .
$$

So for a given $\omega_{i}=\beta$, what is $\operatorname{Pr}\left(\omega_{i} \mid \beta\right)$?

Updating beliefs

Since we know $\operatorname{Pr}(\neg \beta \mid \beta)=0$, we will also insist that

$$
\operatorname{Pr}\left(\omega_{i} \mid \beta\right)=0 \quad \text { for all } \omega_{i} \models \neg \beta .
$$

Furthermore, all probability distributions must sum to one, so we know

$$
\sum_{\omega_{i}=\beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right) .
$$

So for a given $\omega_{i}=\beta$, what is $\operatorname{Pr}\left(\omega_{i} \mid \beta\right)$?
How about $\operatorname{Pr}\left(\omega_{i} \mid \beta\right):=\frac{\operatorname{Pr}\left(\omega_{i}\right)}{\operatorname{Pr}(\beta)}$?

Bayes' conditioning

Given some evidence β, must we explicitly compute $\operatorname{Pr}\left(\omega_{i} \mid \beta\right)$ for every ω_{i} to say something about $\operatorname{Pr}(\alpha \mid \beta)$?

$$
\operatorname{Pr}(\alpha \mid \beta)=\sum_{\omega_{i} \models \alpha} \operatorname{Pr}\left(\omega_{i} \mid \beta\right)
$$

Bayes' conditioning

Given some evidence β, must we explicitly compute $\operatorname{Pr}\left(\omega_{i} \mid \beta\right)$ for every ω_{i} to say something about $\operatorname{Pr}(\alpha \mid \beta)$?

$$
\begin{aligned}
\operatorname{Pr}(\alpha \mid \beta) & =\sum_{\omega_{i} \models \alpha} \operatorname{Pr}\left(\omega_{i} \mid \beta\right) \\
& =\sum_{\omega_{i} \models \alpha, \beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right)+\sum_{\omega_{i} \models \alpha, \neg \beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right)
\end{aligned}
$$

Bayes' conditioning

Given some evidence β, must we explicitly compute $\operatorname{Pr}\left(\omega_{i} \mid \beta\right)$ for every ω_{i} to say something about $\operatorname{Pr}(\alpha \mid \beta)$?

$$
\begin{aligned}
\operatorname{Pr}(\alpha \mid \beta) & =\sum_{\omega_{i} \models \alpha} \operatorname{Pr}\left(\omega_{i} \mid \beta\right) \\
& =\sum_{\omega_{i} \models \alpha, \beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right)+\sum_{\omega_{i} \models \alpha, \neg \beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right) \\
& =\sum_{\omega_{i} \models \alpha, \beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right)
\end{aligned}
$$

Bayes' conditioning

Given some evidence β, must we explicitly compute $\operatorname{Pr}\left(\omega_{i} \mid \beta\right)$ for every ω_{i} to say something about $\operatorname{Pr}(\alpha \mid \beta)$?

$$
\begin{aligned}
\operatorname{Pr}(\alpha \mid \beta) & =\sum_{\omega_{i} \models \alpha} \operatorname{Pr}\left(\omega_{i} \mid \beta\right) \\
& =\sum_{\omega_{i} \models \alpha, \beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right)+\sum_{\omega_{i} \models \alpha, \neg \beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right) \\
& =\sum_{\omega_{i} \models \alpha, \beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right) \\
& =\sum_{\omega_{i} \models \alpha, \beta} \operatorname{Pr}\left(\omega_{i}\right) / \operatorname{Pr}(\beta)
\end{aligned}
$$

Bayes' conditioning

Given some evidence β, must we explicitly compute $\operatorname{Pr}\left(\omega_{i} \mid \beta\right)$ for every ω_{i} to say something about $\operatorname{Pr}(\alpha \mid \beta)$?

$$
\begin{aligned}
\operatorname{Pr}(\alpha \mid \beta) & =\sum_{\omega_{i} \models \alpha} \operatorname{Pr}\left(\omega_{i} \mid \beta\right) \\
& =\sum_{\omega_{i} \models \alpha, \beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right)+\sum_{\omega_{i} \models \alpha, \neg \beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right) \\
& =\sum_{\omega_{i} \models \alpha, \beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right) \\
& =\sum_{\omega_{i} \models \alpha, \beta} \operatorname{Pr}\left(\omega_{i}\right) / \operatorname{Pr}(\beta) \\
& =\frac{1}{\operatorname{Pr}(\beta)} \sum_{\omega_{i} \models \alpha, \beta} \operatorname{Pr}\left(\omega_{i}\right)
\end{aligned}
$$

Bayes' conditioning

Given some evidence β, must we explicitly compute $\operatorname{Pr}\left(\omega_{i} \mid \beta\right)$ for every ω_{i} to say something about $\operatorname{Pr}(\alpha \mid \beta)$?

$$
\begin{aligned}
\operatorname{Pr}(\alpha \mid \beta) & =\sum_{\omega_{i} \models \alpha} \operatorname{Pr}\left(\omega_{i} \mid \beta\right) \\
& =\sum_{\omega_{i} \models \alpha, \beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right)+\sum_{\omega_{i} \models \alpha, \neg \beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right) \\
& =\sum_{\omega_{i} \models \alpha, \beta} \operatorname{Pr}\left(\omega_{i} \mid \beta\right) \\
& =\sum_{\omega_{i} \models \alpha, \beta} \operatorname{Pr}\left(\omega_{i}\right) / \operatorname{Pr}(\beta) \\
& =\frac{1}{\operatorname{Pr}(\beta)} \sum_{\omega_{i} \models \alpha, \beta} \operatorname{Pr}\left(\omega_{i}\right) \\
\operatorname{Pr}(\alpha \mid \beta) & =\frac{\operatorname{Pr}(\alpha, \beta)}{\operatorname{Pr}(\beta)}
\end{aligned}
$$

Bayes' conditioning class work

world	Earthquake	Burglary	Alarm	$\operatorname{Pr}(\cdot)$
ω_{1}	T	T	T	0.0190
ω_{2}	T	T	F	0.0010
ω_{3}	T	F	T	0.0560
ω_{4}	T	F	F	0.0240
ω_{5}	F	T	T	0.1620
ω_{6}	F	T	F	0.0180
ω_{7}	F	F	T	0.0072
ω_{8}	F	F	F	0.7128

Calculate the following probabilities.

- $\operatorname{Pr}($ Alarm $=\mathrm{T})$
- $\operatorname{Pr}($ Earthquake $=\mathrm{T})$
- $\operatorname{Pr}($ Burglary $=\mathrm{T})$
- $\operatorname{Pr}($ Burglary $=\mathrm{T}$, Earthquake $=\mathrm{T})$
- $\operatorname{Pr}($ Burglary $=\mathrm{T}$, Alarm $=\mathrm{T})$
- $\operatorname{Pr}($ Alarm $=\mathrm{T}$, Earthquake $=\mathrm{T})$
- $\operatorname{Pr}($ Alarm $=\mathrm{T} \mid$ Earthquake $=\mathrm{T})$
- $\operatorname{Pr}($ Alarm $=\mathrm{T} \mid$ Burglary $=\mathrm{T})$
- $\operatorname{Pr}($ Earthquake $=\mathrm{T} \mid$ Burglary $=\mathrm{T})$
- $\operatorname{Pr}($ Earthquake $=\mathrm{T} \mid$ Alarm $=\mathrm{T})$
- $\operatorname{Pr}($ Burglary $=\mathrm{T} \mid$ Alarm $=\mathrm{T})$
- $\operatorname{Pr}($ Burglary $=\mathrm{T} \mid$ Earthquake $=\mathrm{T})$
- $\operatorname{Pr}($ Burglary $=\mathrm{T} \mid$ Alarm $=\mathrm{T}$, Earthquake $=\mathrm{T})$
- $\operatorname{Pr}($ Burglary $=\mathrm{T} \mid$ Alarm $=\mathrm{T}$, Earthquake $=\mathrm{F})$

Independence

What did knowing that Burglary $=\mathrm{T}$ tell us about Earthquake?

Independence

What did knowing that Burglary $=\mathrm{T}$ tell us about Earthquake?
Nothing.
$\operatorname{Pr}($ Earthquake $=\mathrm{T})=\operatorname{Pr}($ Earthquake $=\mathrm{T} \mid$ Burglary $=\mathrm{T})=0.1$

So we say that Earthquake and Burglary are independent.

Independence defined

Events α and β are independent if

$$
\operatorname{Pr}(\alpha \wedge \beta)=\operatorname{Pr}(\alpha) \cdot \operatorname{Pr}(\beta) .
$$

Equivalently, α and β are independent if

$$
\operatorname{Pr}(\alpha \mid \beta)=\operatorname{Pr}(\alpha) .
$$

Conditional independence

Are independent events always independent?

Conditional independence

Are independent events always independent?

$$
\begin{array}{r}
\operatorname{Pr}(\text { Burglary }=\mathrm{T})=? \\
\operatorname{Pr}(\text { Burglary }=\mathrm{T} \mid \text { Earthquake }=\mathrm{T})=? \\
\operatorname{Pr}(\text { Burglary }=\mathrm{T} \mid \text { Alarm }=\mathrm{T})=? \\
\operatorname{Pr}(\text { Burglary }=\mathrm{T} \mid \text { Earthquake }=\mathrm{T}, \text { Alarm }=\mathrm{T})=?
\end{array}
$$

Conditional independence

Are independent events always independent?

$$
\begin{array}{r}
\operatorname{Pr}(\text { Burglary }=\mathrm{T})=? \\
\operatorname{Pr}(\text { Burglary }=\mathrm{T} \mid \text { Earthquake }=\mathrm{T})=? \\
\operatorname{Pr}(\text { Burglary }=\mathrm{T} \mid \text { Alarm }=\mathrm{T})=? \\
\operatorname{Pr}(\text { Burglary }=\mathrm{T} \mid \text { Earthquake }=\mathrm{T}, \text { Alarm }=\mathrm{T})=?
\end{array}
$$

So, no.
Note how this naturally handles the non-monotonicity problem.

Conditional independence - simple example

world	Temp	Sensor1	Sensor2	$\operatorname{Pr}(\cdot)$
ω_{1}	normal	normal	normal	0.576
ω_{2}	normal	normal	extreme	0.144
ω_{3}	normal	extreme	normal	0.064
ω_{4}	normal	extreme	extreme	0.016
ω_{5}	extreme	normal	normal	0.008
ω_{6}	extreme	normal	extreme	0.032
ω_{7}	extreme	extreme	normal	0.032
ω_{8}	extreme	extreme	extreme	0.128

Calculate the following probabilities.

- $\operatorname{Pr}($ Sensor $2=$ normal $)$
- $\operatorname{Pr}($ Sensor $2=$ normal \mid Sensor $1=$ normal $)$
- $\operatorname{Pr}($ Sensor $2=$ normal \mid Temp $=$ normal $)$
- $\operatorname{Pr}($ Sensor $2=$ normal \mid Temp $=$ normal, Sensor $1=$ normal $)$

Conditional independence - simple example

world	Temp	Sensor1	Sensor2	$\operatorname{Pr}(\cdot)$
ω_{1}	normal	normal	normal	0.576
ω_{2}	normal	normal	extreme	0.144
ω_{3}	normal	extreme	normal	0.064
ω_{4}	normal	extreme	extreme	0.016
ω_{5}	extreme	normal	normal	0.008
ω_{6}	extreme	normal	extreme	0.032
ω_{7}	extreme	extreme	normal	0.032
ω_{8}	extreme	extreme	extreme	0.128

Calculate the following probabilities.

- $\operatorname{Pr}($ Sensor $2=$ normal $)$
- $\operatorname{Pr}($ Sensor2 $=$ normal \mid Sensor $1=$ normal $)$
- $\operatorname{Pr}($ Sensor $2=$ normal \mid Temp $=$ normal $)$
- $\operatorname{Pr}($ Sensor $2=$ normal \mid Temp $=$ normal, Sensor $1=$ normal $)$

Sensor1 and Sensor2 began dependent.
Once we conditioned on Temp, they became independent.

Conditional independence defined

Events α and β are conditionally independent given evidence γ if

$$
\operatorname{Pr}(\alpha, \beta \mid \gamma)=\operatorname{Pr}(\alpha \mid \gamma) \cdot \operatorname{Pr}(\beta \mid \gamma)
$$

Equivalently, α and β are conditionally independent given γ if

$$
\operatorname{Pr}(\alpha \mid \beta, \gamma)=\operatorname{Pr}(\alpha \mid \gamma)
$$

We always assume the evidence γ has non-zero probability.

Conditional independence notation

Suppose we have disjoint variable sets \mathbf{X}, \mathbf{Y} and \mathbf{Z}.
The notation $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ means that \mathbf{x} is independent of \mathbf{y} given \mathbf{z} for all instantiations of \mathbf{x}, \mathbf{y} and \mathbf{z}.

The notation $\mathbf{X} \perp \mathbf{Y}$ means that \mathbf{X} is (unconditionally) independent of \mathbf{Y}.

The notation $\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$ means that \mathbf{X} is conditionally independent of \mathbf{Y} given \mathbf{Z}.

Chain rule

Suppose we have a large joint probability distribution, $\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

Can we rewrite this in some more manageable way?

Chain rule

Suppose we have a large joint probability distribution, $\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

Can we rewrite this in some more manageable way?
$\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2}, \ldots, \alpha_{n}\right)$

Chain rule

Suppose we have a large joint probability distribution, $\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

Can we rewrite this in some more manageable way?

$$
\begin{aligned}
\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) & =\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2}, \ldots, \alpha_{n}\right) \\
& =\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2} \mid \alpha_{3}, \ldots, \alpha_{n}\right)
\end{aligned}
$$

Chain rule

Suppose we have a large joint probability distribution, $\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

Can we rewrite this in some more manageable way?

$$
\begin{aligned}
\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) & =\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2}, \ldots, \alpha_{n}\right) \\
& =\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2} \mid \alpha_{3}, \ldots, \alpha_{n}\right) \\
& =\ldots \\
\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) & =\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2} \mid \alpha_{3} \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{3} \mid \alpha_{4}, \ldots, \alpha_{n}\right) \ldots \operatorname{Pr}\left(\alpha_{n-1} \mid \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{n}\right)
\end{aligned}
$$

Chain rule

Suppose we have a large joint probability distribution, $\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

Can we rewrite this in some more manageable way?

$$
\begin{aligned}
\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) & =\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2}, \ldots, \alpha_{n}\right) \\
& =\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2} \mid \alpha_{3}, \ldots, \alpha_{n}\right) \\
& =\ldots \\
\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) & =\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2} \mid \alpha_{3} \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{3} \mid \alpha_{4}, \ldots, \alpha_{n}\right) \ldots \operatorname{Pr}\left(\alpha_{n-1} \mid \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{n}\right)
\end{aligned}
$$

This is called the chain rule.

Chain rule

Suppose we have a large joint probability distribution, $\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

Can we rewrite this in some more manageable way?

$$
\begin{aligned}
\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) & =\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2}, \ldots, \alpha_{n}\right) \\
& =\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2} \mid \alpha_{3}, \ldots, \alpha_{n}\right) \\
& =\ldots \\
\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) & =\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2} \mid \alpha_{3} \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{3} \mid \alpha_{4}, \ldots, \alpha_{n}\right) \ldots \operatorname{Pr}\left(\alpha_{n-1} \mid \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{n}\right)
\end{aligned}
$$

This is called the chain rule.

What if $I\left(\alpha_{1},\left\{\alpha_{2}\right\},\left\{\alpha_{3}, \ldots \alpha_{n}\right\}\right)$?
Can we rearrange the order of the αs ?

Chain rule

Suppose we have a large joint probability distribution, $\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.
Can we rewrite this in some more manageable way?

$$
\begin{aligned}
\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) & =\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2}, \ldots, \alpha_{n}\right) \\
& =\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2} \mid \alpha_{3}, \ldots, \alpha_{n}\right) \\
& =\ldots \\
\operatorname{Pr}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) & =\operatorname{Pr}\left(\alpha_{1} \mid \alpha_{2}, \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{2} \mid \alpha_{3} \ldots, \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{3} \mid \alpha_{4}, \ldots, \alpha_{n}\right) \ldots \operatorname{Pr}\left(\alpha_{n-1} \mid \alpha_{n}\right) \operatorname{Pr}\left(\alpha_{n}\right)
\end{aligned}
$$

This is called the chain rule.

What if $I\left(\alpha_{1},\left\{\alpha_{2}\right\},\left\{\alpha_{3}, \ldots \alpha_{n}\right\}\right)$?
Can we rearrange the order of the $\alpha \mathrm{s}$?
Efficient inference in Bayesian networks stems from these operations.

Marginalization

How did we calculate $\operatorname{Pr}($ Alarm $=\mathrm{T})$?

Marginalization

How did we calculate $\operatorname{Pr}($ Alarm $=\mathrm{T})$?
Implicitly, we summed over all instantiations of the other variables.
This is called marginalization.
$\operatorname{Pr}(\alpha)=\sum_{i=1}^{n} \operatorname{Pr}\left(\alpha \mid \beta_{i}\right) \operatorname{Pr}\left(\beta_{i}\right)$, where β has n distinct instantiations

Marginalization

How did we calculate $\operatorname{Pr}($ Alarm $=\mathrm{T})$?
Implicitly, we summed over all instantiations of the other variables.
This is called marginalization.
$\operatorname{Pr}(\alpha)=\sum_{i=1}^{n} \operatorname{Pr}\left(\alpha \mid \beta_{i}\right) \operatorname{Pr}\left(\beta_{i}\right)$, where β has n distinct instantiations

Among other things, this will be useful for handling hidden variables.
If β is a continuous variable, we can replace the sum with an integral.

Bayes' rule

Suppose α is a disease and β is the result of a test. Given the result of the test, what is the probability a person has the disease?

Bayes' rule

Suppose α is a disease and β is the result of a test. Given the result of the test, what is the probability a person has the disease?

$$
\begin{aligned}
& \operatorname{Pr}(\alpha \mid \beta)=\operatorname{Pr}(\alpha, \beta) / \operatorname{Pr}(\beta) \\
& \operatorname{Pr}(\alpha \mid \beta)=\operatorname{Pr}(\beta \mid \alpha) \operatorname{Pr}(\alpha) / \operatorname{Pr}(\beta)
\end{aligned}
$$

This is called Bayes' rule. It forms the basis for reasoning about causes given their effects.

Class work

Suppose we have a patient who was just tested for a particular disease and the test came out positive. We know that one in every thousand people has this disease. We also know that the test is not perfect. It has a false positive rate of 2% and a false negative rate of 5%. That is, the test result is positive when the patient does not have the disease 2% of the time, and the result is negative when the patient has the disease 5% of the time. What is the probability that the patient with the positive test result actually has the disease?

Let D stand for "the patient has the disease," and T stand for "the test result." That is, what is $P(D=\mathrm{T} \mid T=\mathrm{T})$?

Recap

During this class, we discussed

- Basic terminology and definitions for discussing propositional events and reasoning about them probabilistically
- Fundamental properties of joint probability distributions
- Rigorous methods to incorporate evidence and construct conditional probability distributions
- Independence and conditional independence
- Chain rule, marginalization and Bayes' rule

Next time, in probabilistic models...

- A formal introduction to Bayesian networks
- Graphical structures comprising Bayesian networks
- Independence assertions based on the BN structure
- Equivalence among BN structures
- Factorized joint probability distributions

