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Primitives

The following assumes we have variables Earthquake(E ), Burglary
(B) and Alarm (A). All variables are binary.

Atoms. E = e1, E = e2, A = a2, . . . .

Operators. ¬, ∧, ∨ ( =⇒ , ⇐⇒ )

Sentences or Events. An atom is an event.
If α and β are events, then the following are also events.

¬α
α ∧ β
α ∨ β
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Definitions

Instantiations. An assignment of (unique) values to some
variables. E = e1, A = a2.

Worlds, ωi . An instantiation which includes all variables. E = e1,
B = b1, A = a2.

The set of all worlds (i.e., the set of complete, unique
instantiations) is denoted by Ω.

If event α is true in ωi , then ωi |= α.

Models(α) ..= {ωi : ωi |= α}

Brandon Malone Refresher on Probability Theory



Preliminaries Degrees of Belief Independence Other Important Properties Wrap-up

Definitions and Identities

Consistent. Models(α) 6= ∅

Valid. Models(α) = Ω

Models(α ∧ β) = Models(α) ∩Models(β)

Models(α ∨ β) = Models(α) ∪Models(β)

Models(¬α) = Models(α)

Brandon Malone Refresher on Probability Theory



Preliminaries Degrees of Belief Independence Other Important Properties Wrap-up

Degrees of belief

We attach a probability to each ωi such that

∑
ωi∈Ω

Pr(ωi ) = 1.

Then, our belief in event α is

Pr(α) ..=
∑
ωi |=α

Pr(ωi ).
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Degrees of belief - Simple example

world Earthquake Burglary Alarm Pr(·)
ω1 T T T 0.0190
ω2 T T F 0.0010
ω3 T F T 0.0560
ω4 T F F 0.0240
ω5 F T T 0.1620
ω6 F T F 0.0180
ω7 F F T 0.0072
ω8 F F F 0.7128

What is Pr(Alarm =T)?

What is Pr(Earthquake =T,Alarm =F)?
This is called a joint probability distribution.
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Updating beliefs

Belief updates give a natural method for handling evidence.
This is called conditional probability.

Say we know that β is true.

Then we say Pr(β|β) = 1 and Pr(¬β|β) = 0.

The “|” means “given that”. The notation Pr(α|β) means “The
probability that α is true given that we know β is true.”
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Updating beliefs

Since we know Pr(¬β|β) = 0, we will also insist that

Pr(ωi |β) = 0 for all ωi |= ¬β.

Furthermore, all probability distributions must sum to one, so we
know

∑
ωi |=β

Pr(ωi |β).

So for a given ωi |= β, what is Pr(ωi |β)?

How about Pr(ωi |β) ..= Pr(ωi )
Pr(β) ?

Brandon Malone Refresher on Probability Theory
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Bayes’ conditioning

Given some evidence β, must we explicitly compute Pr(ωi |β) for
every ωi to say something about Pr(α|β)?

Pr(α|β) =
∑
ωi |=α

Pr(ωi |β)

=
∑

ωi |=α,β
Pr(ωi |β) +

∑
ωi |=α,¬β

Pr(ωi |β)

=
∑

ωi |=α,β
Pr(ωi |β)

=
∑

ωi |=α,β
Pr(ωi )/Pr(β)

=
1

Pr(β)

∑
ωi |=α,β

Pr(ωi )

Pr(α|β) =
Pr(α, β)

Pr(β)
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Bayes’ conditioning class work

world Earthquake Burglary Alarm Pr(·)
ω1 T T T 0.0190
ω2 T T F 0.0010
ω3 T F T 0.0560
ω4 T F F 0.0240
ω5 F T T 0.1620
ω6 F T F 0.0180
ω7 F F T 0.0072
ω8 F F F 0.7128

Calculate the following probabilities.

Pr(Alarm = T)

Pr(Earthquake = T)

Pr(Burglary = T)

Pr(Burglary = T, Earthquake = T)

Pr(Burglary = T, Alarm = T)

Pr(Alarm = T, Earthquake = T)

Pr(Alarm = T|Earthquake = T)

Pr(Alarm = T|Burglary = T)

Pr(Earthquake = T|Burglary = T)

Pr(Earthquake = T|Alarm = T)

Pr(Burglary = T|Alarm = T)

Pr(Burglary = T|Earthquake = T)

Pr(Burglary = T|Alarm = T, Earthquake = T)

Pr(Burglary = T|Alarm = T, Earthquake = F)
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Independence

What did knowing that Burglary = T tell us about Earthquake?

Nothing.

Pr(Earthquake = T) = Pr(Earthquake = T|Burglary = T) = 0.1

So we say that Earthquake and Burglary are independent.
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Independence defined

Events α and β are independent if

Pr(α ∧ β) = Pr(α) · Pr(β).

Equivalently, α and β are independent if

Pr(α|β) = Pr(α).
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Conditional independence

Are independent events always independent?

Pr(Burglary = T) =?

Pr(Burglary = T|Earthquake = T) =?

Pr(Burglary = T|Alarm = T) =?

Pr(Burglary = T|Earthquake = T,Alarm = T) =?

So, no.

Note how this naturally handles the non-monotonicity problem.

Brandon Malone Refresher on Probability Theory



Preliminaries Degrees of Belief Independence Other Important Properties Wrap-up

Conditional independence

Are independent events always independent?

Pr(Burglary = T) =?

Pr(Burglary = T|Earthquake = T) =?

Pr(Burglary = T|Alarm = T) =?

Pr(Burglary = T|Earthquake = T,Alarm = T) =?

So, no.

Note how this naturally handles the non-monotonicity problem.

Brandon Malone Refresher on Probability Theory



Preliminaries Degrees of Belief Independence Other Important Properties Wrap-up

Conditional independence

Are independent events always independent?

Pr(Burglary = T) =?

Pr(Burglary = T|Earthquake = T) =?

Pr(Burglary = T|Alarm = T) =?

Pr(Burglary = T|Earthquake = T,Alarm = T) =?

So, no.

Note how this naturally handles the non-monotonicity problem.

Brandon Malone Refresher on Probability Theory



Preliminaries Degrees of Belief Independence Other Important Properties Wrap-up

Conditional independence - simple example

world Temp Sensor1 Sensor2 Pr(·)
ω1 normal normal normal 0.576
ω2 normal normal extreme 0.144
ω3 normal extreme normal 0.064
ω4 normal extreme extreme 0.016
ω5 extreme normal normal 0.008
ω6 extreme normal extreme 0.032
ω7 extreme extreme normal 0.032
ω8 extreme extreme extreme 0.128

Calculate the following probabilities.

Pr(Sensor2 = normal)

Pr(Sensor2 = normal|Sensor1 = normal)

Pr(Sensor2 = normal|Temp = normal)

Pr(Sensor2 = normal|Temp = normal, Sensor1 = normal)

Sensor1 and Sensor2 began dependent.

Once we conditioned on Temp, they became independent.

Brandon Malone Refresher on Probability Theory
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Conditional independence defined

Events α and β are conditionally independent given evidence γ if

Pr(α, β|γ) = Pr(α|γ) · Pr(β|γ)

Equivalently, α and β are conditionally independent given γ if

Pr(α|β, γ) = Pr(α|γ)

We always assume the evidence γ has non-zero probability.
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Conditional independence notation

Suppose we have disjoint variable sets X, Y and Z.

The notation I (X,Z,Y) means that x is independent of y given z
for all instantiations of x, y and z.

The notation X ⊥ Y means that X is (unconditionally)
independent of Y.

The notation X ⊥ Y|Z means that X is conditionally independent
of Y given Z.
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Chain rule

Suppose we have a large joint probability distribution,
Pr(α1, α2, . . . , αn).

Can we rewrite this in some more manageable way?

Pr(α1, α2, . . . , αn) = Pr(α1|α2, . . . , αn)Pr(α2, . . . , αn)

= Pr(α1|α2, . . . , αn)Pr(α2|α3, . . . , αn)

= . . .

Pr(α1, α2, . . . , αn) = Pr(α1|α2, . . . , αn)Pr(α2|α3 . . . , αn)Pr(α3|α4, . . . , αn) . . . Pr(αn−1|αn)Pr(αn)

This is called the chain rule.

What if I (α1, {α2}, {α3, . . . αn})?

Can we rearrange the order of the αs?

Efficient inference in Bayesian networks stems from these operations.

Brandon Malone Refresher on Probability Theory
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Marginalization

How did we calculate Pr(Alarm = T)?

Implicitly, we summed over all instantiations of the other variables.

This is called marginalization.

Pr(α) =
n∑

i=1

Pr(α|βi )Pr(βi ), where β has n distinct instantiations

Among other things, this will be useful for handling hidden variables.

If β is a continuous variable, we can replace the sum with an integral.

Brandon Malone Refresher on Probability Theory
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Bayes’ rule

Suppose α is a disease and β is the result of a test. Given the
result of the test, what is the probability a person has the disease?

Pr(α|β) = Pr(α, β)/Pr(β)

Pr(α|β) = Pr(β|α)Pr(α)/Pr(β)

This is called Bayes’ rule. It forms the basis for reasoning about
causes given their effects.

Brandon Malone Refresher on Probability Theory
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Class work

Suppose we have a patient who was just tested for a particular
disease and the test came out positive. We know that one in every
thousand people has this disease. We also know that the test is
not perfect. It has a false positive rate of 2% and a false negative
rate of 5%. That is, the test result is positive when the patient
does not have the disease 2% of the time, and the result is
negative when the patient has the disease 5% of the time. What is
the probability that the patient with the positive test result
actually has the disease?

Let D stand for “the patient has the disease,” and T stand for
“the test result.” That is, what is P(D = T|T = T)?

Brandon Malone Refresher on Probability Theory
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Recap

During this class, we discussed

Basic terminology and definitions for discussing propositional
events and reasoning about them probabilistically

Fundamental properties of joint probability distributions

Rigorous methods to incorporate evidence and construct
conditional probability distributions

Independence and conditional independence

Chain rule, marginalization and Bayes’ rule
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Next time, in probabilistic models...

A formal introduction to Bayesian networks

Graphical structures comprising Bayesian networks

Independence assertions based on the BN structure

Equivalence among BN structures

Factorized joint probability distributions

Earthquake?
(B)(E)

Radio?
(R)

Alarm?
(A)

(C)
Call?

Burglary?

Brandon Malone Refresher on Probability Theory
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