Probabilistic Models: Spring 2014 Structure Learning with Dynamic Programming Example Solutions

We are given the following local scores for some decomposable scoring function and dataset \mathcal{D}.

$\operatorname{Score}\left(A, P A_{A}: \mathcal{D}\right)$	$P A_{A}$	$\operatorname{Score}\left(B, P A_{B}: \mathcal{D}\right)$	$P A_{B}$	Score ($\left.C, P A_{C}: \mathcal{D}\right)$	$P A_{C}$
$\frac{\operatorname{score}\left(A, P A_{A}: \mathcal{D}\right)}{44.10}$	$\xrightarrow{P} A_{A}$	15.11	C E	8.40	B E
43.55	B E	8.40	C D	25.23	A E
46.90	E	30.90	D	8.40	B D
47.93	E	25.37	C	28.04	E
45.66	B	31.08	A	30.90	D
48.17	b	24.11	A C	40.25	B
		33.59	,	48.47	,

$\operatorname{Score}\left(D, P A_{D}: \mathcal{D}\right)$	$P A_{D}$
8.40	B E
8.40	B C
10.90	E
25.37	C
40.25	B
42.70	A
24.11	A C
42.94	\emptyset

$\operatorname{Score}\left(E, P A_{E}: \mathcal{D}\right)$	$P A_{E}$
13.81	B C
12.47	D
24.07	C
43.24	A
17.95	A C
44.51	\emptyset

1. Calculate the score of the optimal network according to these scores. Assume we want to minize the network score.

- We find the scores of the singleton subnetworks (e.g., $\mathbf{U}=\{A\}$) by trivially selecting the empty parent sets. For example, we see that $\operatorname{Score}(\{A\})=48.17$ and $\operatorname{Score}(\{B\})=33.59$.
- We calculate the scores of the two-variable subnetworks by adding each possible leaf to each of the singleton subnetworks according to either the algorithm or the recurrence. For example, we can calculate Score $(\{A, B\})$ using the recurrence as follows.

$$
\begin{aligned}
& \operatorname{Score}(\{A, B\})=\min \{\quad\{\operatorname{Score}(\{A\})+\operatorname{BestScore}(B,\{A\})\}, \\
& \{\operatorname{Score}(\{B\})+\operatorname{BestScore}(A,\{B\})\}\}
\end{aligned}
$$

We can calculate $\operatorname{BestScore}(A,\{B\})$ by simply scanning through the list of scores and looking for the smallest value for parent sets which are subsets of $\{B\}$. In this case, BestScore $(A,\{B\})=45.66$, which happens when we select the parents of A to be $\{B\}$.

We can calculate the remaining scores for two-variable subnetworks similarly. The calculations for the three-variable subnetworks continues analogously. For example, $\operatorname{Score}(\{A, B, C\})$ is calculated using the recurrence as follows.

$$
\begin{aligned}
& \operatorname{Score}(\{A, B, C\})=\min \{\quad\{\operatorname{Score}(\{A, B\})+\operatorname{BestScore}(C,\{A, B\})\}, \\
& \{\operatorname{Score}(\{A, C\})+\operatorname{BestScore}(B,\{A, C\})\}, \\
& \{\operatorname{Score}(\{B, C\})+\operatorname{BestScore}(A,\{B, C\})\}\}
\end{aligned}
$$

We repeat this process layer-by-layer until we have the score for all subnetworks. The scores $\operatorname{Score}(\mathbf{U})$ is given for all subnetworks below.

\mathbf{U}	Score (\mathbf{U})
\emptyset	0.00
$\{\mathrm{~A}\}$	48.18
$\{\mathrm{~B}\}$	33.59
$\{\mathrm{C}\}$	48.48
$\{\mathrm{D}\}$	42.95
$\{\mathrm{E}\}$	44.51
$\{\mathrm{~A}, \mathrm{~B}\}$	79.26
$\{\mathrm{~A}, \mathrm{C}\}$	96.65
$\{\mathrm{~B}, \mathrm{C}\}$	73.85
$\{\mathrm{~A}, \mathrm{D}\}$	90.88
$\{\mathrm{~B}, \mathrm{D}\}$	73.85
$\{\mathrm{C}, \mathrm{D}\}$	73.85
$\{\mathrm{~A}, \mathrm{E}\}$	91.42
$\{\mathrm{~B}, \mathrm{E}\}$	78.11
$\{\mathrm{C}, \mathrm{E}\}$	72.56
$\{\mathrm{D}, \mathrm{E}\}$	55.42

\mathbf{U}	Score (\mathbf{U})
$\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$	119.51
$\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}\}$	119.51
$\{\mathrm{~A}, \mathrm{C}, \mathrm{D}\}$	120.77
$\{\mathrm{~B}, \mathrm{C}, \mathrm{D}\}$	82.26
$\{\mathrm{~A}, \mathrm{~B}, \mathrm{E}\}$	121.67
$\{\mathrm{~A}, \mathrm{C}, \mathrm{E}\}$	114.61
$\{\mathrm{~B}, \mathrm{C}, \mathrm{E}\}$	86.52
$\{\mathrm{~A}, \mathrm{D}, \mathrm{E}\}$	102.33
$\{\mathrm{~B}, \mathrm{D}, \mathrm{E}\}$	86.33
$\{\mathrm{C}, \mathrm{D}, \mathrm{E}\}$	83.46
$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}$	127.92
$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{E}\}$	129.72
$\{\mathrm{~A}, \mathrm{~B}, \mathrm{D}, \mathrm{E}\}$	129.88
$\{\mathrm{~A}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$	125.52
$\{\mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$	91.87
$\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$	133.93

Useful Algorithms

Notation

- Score (\mathbf{U}). The score of the optimal subnetwork over variables \mathbf{U}
- BestScore (X, \mathbf{U}). The score of the best parent set for X which is a subset of \mathbf{U}
- $|\mathbf{U}|$. The number of variables in \mathbf{U}

```
procedure Expand(node U, sorted family scores BestScore)
        for each leaf in V\\mathbf{U}\mathrm{ do}
            newScore \leftarrowScore(\mathbf{U})+BestScore(leaf,\mathbf{U})
            if newScore < Score(\mathbf{U}\cupleaf) then
                Score (\mathbf{U}\cupleaf )}\leftarrow\mathrm{ newScore
            end if
        end for
end procedure
procedure Main(variables V, sorted family scores BestScore)
        Score}(\emptyset)\leftarrow
        for layer l=0 to |V| do
            for each node \mathbf{U}\mathrm{ such that }|\mathbf{U}|=l do
                expand(\mathbf{U, BestScore)}
            end for
        end for
        return Score(V)
end procedure
```

