Probabilistic Models: Spring 2014 Structure Learning with Dynamic Programming Example Solutions

We are given the following local scores for some decomposable scoring function and dataset \mathcal{D} .

$Score(A, PA_A : D)$	PA_{A}	$Score(B, PA_B : D)$	PA_B	$Score(C, PA_C : D)$	PA_C
44.10	CF	15.11	CE	8.40	B E
49.55	DE	8.40	CD	25.23	A E
45.55		30.90	D	8.40	ВD
46.90	E	25.37	С	28.04	E
47.93	D	31.08	А	30.90	D
45.66	В	24.11	AC	40.25	В
48.17	Ø	33.59	ø	48.47	Ø
		00.00	P P	10111	ν
$Score(D, PA_D : D)$	PA_D				
8.40	BE	Score(E)	$PA_E:\mathcal{D}$	$ PA_E$	
8.40	BC	13	3.81	BC	
10.90	E	12	2.47	D	
25.37	C	24	1.07	C	
40.25	В	43	3.24	A	
42.70	A	17	7.95	AC	
24.11	AC	44.51		Ø	
42.94	Ø				

- 1. Calculate the score of the optimal network according to these scores. Assume we want to minize the network score.
 - We find the scores of the singleton subnetworks (e.g., $\mathbf{U} = \{A\}$) by trivially selecting the empty parent sets. For example, we see that $Score(\{A\}) = 48.17$ and $Score(\{B\}) = 33.59$.
 - We calculate the scores of the two-variable subnetworks by adding each possible leaf to each of the singleton subnetworks according to either the algorithm or the recurrence. For example, we can calculate $Score(\{A, B\})$ using the recurrence as follows.

$$Score(\{A, B\}) = \min \left\{ \left\{ Score(\{A\}) + BestScore(B, \{A\}) \right\}, \\ \left\{ Score(\{B\}) + BestScore(A, \{B\}) \right\} \right\}$$

We can calculate $BestScore(A, \{B\})$ by simply scanning through the list of scores and looking for the smallest value for parent sets which are subsets of $\{B\}$. In this case, $BestScore(A, \{B\}) = 45.66$, which happens when we select the parents of A to be $\{B\}$.

We can calculate the remaining scores for two-variable subnetworks similarly. The calculations for the three-variable subnetworks continues analogously. For example, $Score(\{A, B, C\})$ is calculated using the recurrence as follows.

$$\begin{aligned} Score(\{A, B, C\}) &= \min \left\{ \left. \begin{array}{l} \left\{ Score(\{A, B\}) + BestScore(C, \{A, B\}) \right\}, \\ \left\{ Score(\{A, C\}) + BestScore(B, \{A, C\}) \right\}, \\ \left\{ Score(\{B, C\}) + BestScore(A, \{B, C\}) \right\} \\ \end{array} \right. \end{aligned}$$

U $Score(\mathbf{U})$ U $Score(\mathbf{U})$ Ø 0.00 $\{A, B, C\}$ 119.51 $\overline{\{A\}}$ $\{A, B, D\}$ 119.5148.18 $\{A, C, D\}$ 120.77{B} 33.59 $\{B, C, D\}$ 82.26 $\{C\}$ 48.48 $\{A, B, E\}$ 121.67{D} 42.95 $\{A, C, E\}$ 114.61{E} 44.51 $\{B, C, E\}$ 86.52 79.26 $\{A, B\}$ $\{A, D, E\}$ 102.33 $\{A, C\}$ 96.65 $\{B, D, E\}$ 86.33 $\{B, C\}$ 73.85 $\{C, D, E\}$ 83.46 $\{A, D\}$ 90.88 $\{A, B, C, D\}$ 127.92 $\{B, D\}$ 73.85 $\{C, D\}$ $\{A, B, C, E\}$ 129.7273.85 $\{A, B, D, E\}$ 129.88 $\{A, E\}$ 91.42 $\{A, C, D, E\}$ 125.52 $\{B, E\}$ 78.11 $\{B, C, D, E\}$ 91.87 $\{C, E\}$ 72.56 $\{D, E\}$ 55.42 $\overline{\{A, B, C, D, E\}}$ 133.93

We repeat this process layer-by-layer until we have the score for all subnetworks. The scores $Score(\mathbf{U})$ is given for all subnetworks below.

Useful Algorithms

Notation

- Score(U). The score of the optimal subnetwork over variables U
- $BestScore(X, \mathbf{U})$. The score of the best parent set for X which is a subset of \mathbf{U}
- $|\mathbf{U}|$. The number of variables in \mathbf{U}

```
procedure EXPAND(node U, sorted family scores BestScore)
    for each leaf in \mathbf{V} \setminus \mathbf{U} do
        newScore \leftarrow Score(\mathbf{U}) + BestScore(leaf, \mathbf{U})
        if newScore < Score(\mathbf{U} \cup leaf) then
            Score(\mathbf{U} \cup leaf) \leftarrow newScore
        end if
    end for
end procedure
procedure MAIN(variables V, sorted family scores BestScore)
    Score(\emptyset) \leftarrow 0
    for layer l = 0 to |\mathbf{V}| do
        for each node U such that |\mathbf{U}| = l do
            expand(\mathbf{U}, BestScore)
        end for
    end for
    return Score(\mathbf{V})
end procedure
```