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Abstract

This document derives, in excrutiating detail at some points, the EM
update rules for a simple mixture of Poisson distributions. This document
is largely based on [1] and [2].

1 Introduction

This work assumes a dataset is distributed according to a mixture of Poisson
distributions. The goal is to learn the mixing distributions and Poisson param-
eters. Broadly, this can be considered the density estimation problem.

2 Density Estimation

The density estimation problem is a common problem in machine learning.
Broadly, the problem is formulated as: given a set of N observations, D, in
some space, and a family Θ of probability density functions, find θ ∈ Θ which
most likely generated the data.

In this work, we will assume that Θ is a family of mixture models, so the
likelihood of its members are defined as:

L(D : θ) =

K∑
k

pkgk(D : λk), (1)

where θ = {p1 . . . pk, λ1 . . . λk} is a set of parameters, K is the number of mixture
components, pk are the mixing probabilities (P (zl = k)), gk is the density
function of the kth component, and λk are the set of parameters for gk. The
pks define a probability distribution, so we also have that 0 ≤ pk ≤ 1 and∑
k pk = 1.

If we further assume that each component has the same density function (but
different parameters) and that the observations are exchangeable, then we can
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write:

L(D : θ) =

N∏
l

K∑
k

pkg(Dl : λk). (2)

Typically, we will work in log-space because it is more amenable to analysis and
computation. Consequently, we define the log-likelihood of θ as:

`(D : θ) = log

N∏
l

K∑
k

pkg(Dl;λk) =

N∑
l

log

K∑
k

pkg(Dl : λk). (3)

The density function of the Poisson distribution is:

g(x : λ) =
λx

x!
exp {−λ} (4)

With definitions, we can define our version of the density estimation problem
as:

θ∗ = arg max
θ∈Θ

`(D : θ) (5)

The goal is to find θ∗.

3 Notation

In order to express ideas succinctly, we use the following notation.

q(k, l) = pkg(Dl : λk) (6)

This is the joint probability of selecting component (pk) and selecting an obser-
vation from that component (g(Dl : λk)). This makes explicit the assumption
that selecting a component is independent of selecting an observation from a
component.

We now define the conditional probability of selecting component k, given the
observation Dl. First, recall one definition of conditional probability:

P (A|B) =
P (A,B)

P (B)
(7)

Additionally, recall that we can find prior probabilities for B by taking the
joint probability of all variables, and then summing (for discrete variables) or
integrating (for continuous variables) the others out. Supposing A is the only
other variable and that it is discrete, then:

P (B) =
∑
A

P (A,B) (8)



With these basic ideas of probability in mind, then, we can write the conditional
probability of selecting component k given the observation Dl as:

p(k|l) =
q(k, l)∑K
m q(m, l)

(9)

We call these the membership probabilities because they give the probability
that Dl is a member of component k.

One other useful observation is that
∑
k p(k|l) = 1. That is to say, some com-

ponent generated each observation.

4 Jensen’s Inequality

A potential difficulty in evaluating the log-likelihood (Equation 3) is that it
contains the logarithm of a sum. Jensen’s inequality shows that:

log

K∑
k

πkαk ≥
K∑
k

πk logαk, (10)

when the πks define a probability distribution (i.e., 0 ≤ πk ≤ 1 and
∑
k πk = 1).

With this inequality, we can define a probability distribution π and rearrange
terms to see that for any values of ck:

log

K∑
k

ck = log

K∑
k

ck
πk
πk

= log

K∑
k

πk
ck
πk
≥

K∑
k

πk log
ck
πk
. (11)

5 The EM Algorithm

With these tools, we can now derive the expection-maximization algorithm for
finding the parameters of the Poisson mixture model. The EM algorithm begins
with a (bad) set of estimates for the pks and λks and then alternates between
two steps. In the first “E” step, we use our parameter estimates to construct a
bound b on ` using Jensen’s inequality. Then, in the “M” step, we find parameter
estimates which maximize the bound.

Concretely, during the “E” step, we compute the expectation that each obser-
vation came from each component. That is, we use the existing estimates to
calculate the new membership probabilities:

p(k|l) =
pkg(Dl : λk)∑K
m pkg(Dl : λk)

(12)

As mentioned in Section 3, and explicit because of the normalization in Equa-
tion 12, the p(k|l)s sum to 1. Therefore, we can use Jensen’s inequality to bound
the likelihood:

`(D : θ) =

N∑
l

log

K∑
k

q(k, l) ≥
N∑
l

K∑
k

p(k|l) log
q(k, l)

p(k|l)
= b(θ) (13)



by plugging in p(k|l) for πk and q(k, l) for ck.

We can then expand the logarithm, distribute p(k|l), and split the sum to see
that:

b(θ) =

N∑
l

K∑
k

p(k|l) log q(k, l)−
N∑
l

K∑
k

p(k|l) log p(k|l). (14)

The p(k|l) values are fixed, so we can maximize the bound by focusing only on
the first term of the summation. We call this function Q:

Q(θ) =

N∑
l

K∑
k

p(k|l) log q(k, l) (15)

We calculate the new parameters by differentiating Q with respect to each pa-
rameter, setting the derivative equal to 0, and solving for the parameters. We
now derive these results in quite a bit of detail.

5.1 Updating the Poisson parameters

∂Q

∂λk
=

∂

∂λk

N∑
l

K∑
m

p(m|l) log q(m, l) (16)

The derivative of a sum is the sum of derivatives, and p(k|l) is a constant here.
Also, the derivative of every term which does not involve k is 0, so we can ignore
those.

∂Q

∂λk
=

N∑
l

p(k|l) ∂

∂λk
log q(k, l) (17)

Replace q with its definition, Equation 6.

∂Q

∂λk
=

N∑
l

p(k|l) ∂

∂λk
log pkg(Dl : λk) (18)

Replace g with its definition (the Poisson density function).

∂Q

∂λk
=

N∑
l

p(k|l) ∂

∂λk
log pk

λDl

k

Dl!
exp {−λk} (19)

Expand the logarithm.

∂Q

∂λk
=

N∑
l

p(k|l) ∂

∂λk
log pk + log λDl

k − logDl! + log exp {−λk} (20)

Simplify the logarithm of exponential, and the exponentiation in the logarithm.

∂Q

∂λk
=

N∑
l

p(k|l) ∂

∂λk
log pk +Dl · log λk − logDl!− λk (21)



Evaluate the derivative.

∂Q

∂λk
=

N∑
l

p(k|l)(Dl

λk
− 1) (22)

Set the derivative to 0. We now simply have some arithmetic to do.

0 =

N∑
l

p(k|l)(Dl

λk
− 1) (23)

Distribute p(k|l) and expand the sum.

0 =

N∑
n

p(k|l)(Dl

λk
)−

N∑
l

p(k|l) (24)

For convenience, we will define Z(k) ..=
∑N
l p(k|l). Add it to both sides.

Z(k) =

N∑
l

p(k|l)(Dl

λk
) (25)

λk is constant in the sum, so pull it out.

Z(k) =
1

λk

N∑
l

p(k|l)Dl (26)

Multipy both sides by λk, and divide both sides by Z(k).

λk =

∑N
l p(k|l)Dl

Z(k)
(27)

Thus, we have our new estimate of λk.

5.2 Updating the mixing probabilities

There derivation for updating the pks is similar to that of λk, but one key
difference is the constraint that the pks are a probability distribution. To address
this constraint, we use a Lagrange multiplier δ to constrain the pk values.

∂Q

∂pk
=

∂

∂pk

N∑
l

K∑
m

p(m|l) log q(m, l) + δ(
∑
k

pk − 1) (28)

The derivative of sums is the sum of derivatives. The derivative of every term
which does not involve k is 0.

∂Q

∂pk
=

N∑
l

∂

∂pk
p(k|l) log q(k, l) +

∂

∂pk
δ(pk − 1) (29)

Evaluate the derivative.

∂Q

∂pk
=

N∑
l

p(k|l)
pk

+ δ (30)



Set the derivative equal to 0 and solve for pk.

0 =

N∑
l

p(k|l)
pk

+ δ (31)

First, we need to find the value of δ. By summing over k, we see that δ is −N .

N =

N∑
l

p(k|l)
pk

(32)

Since 1
pk

is constant, we can pull it out of the sum and move it to the other size.
Then, we divide both sizes by N .

pk =

∑N
l p(k|l)
N

(33)

Recall that we defined Z(k) ..=
∑N
l p(k|l), so rewrite the equation using Z(k).

pk =
Z(k)

N
(34)

Thus, we have our new estimate of pk.
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