
Probability and expected document
frequency of discontinued word sequences

An efficient method for their exact computation

Antoine Doucet — Helena Ahonen-Myka

Department of Computer Science
P.O. Box 68 (Gustaf Hällströmin katu 2b)
FI-00014 University of Helsinki, Finland

{Antoine.Doucet, Helena.Ahonen-Myka}@cs.Helsinki.fi

ABSTRACT. We present an efficient technique for calculating the probability of occurrence of a
discontinued sequence of words, i.e., the probability that those words occur, and that they occur
in a given order, regardless of which and how many other words may occur between them. The
procedure we introduce for words and documents may be generalized to any type of sequential
data, e.g., item sequences and transactions. Our method relies on the formalization into a
particular Markov chain model, whose specificities are combined with techniques of probability
and linear algebra to offer competitive computational complexity. This work is further extended
to permit the efficient calculation of the expected document frequency of a sequence. We finally
present an application, a fast, automatic, and direct method to evaluate the interestingness of
word sequences, by comparing their expected and observed frequencies.

RÉSUMÉ. Nous présentons une technique efficace pour calculer la probabilité d’une séquence
de mots éventuellement discontigus, c’est-à-dire la probabilité que ces mots apparaissent dans
un ordre donné, quel que soit le nombre d’autres mots pouvant apparaître entre eux. Notons
qu’en lieu et place de mots et de documents, nous pouvons utiliser tout type de données séquen-
tielles. Notre approche est basée sur une formalisation du problème en une chaîne de Markov
particulière, dont nous présentons et exploitons les spécificités afin d’obtenir une complexité
compétitive. Nous développons notre approche plus avant afin de calculer la fréquence docu-
mentaire attendue d’une séquence donnée. Cet article présente finalement une application de
ces travaux : une méthode automatique pour l’évaluation directe de l’intérêt d’une séquence de
mots, par le biais de comparaisons statistiques entre leurs fréquences attendues et observées.

KEYWORDS: word sequences, n-grams, lexical cohesion, information retrieval.

MOTS-CLÉS : séquences de mots, n-grams, cohésion lexicale, recherche d’information.

TAL. Volume 46 – n˚2/2005, pages 13 to 37

14 TAL. Volume 46 – n˚2/2005

1. Introduction

Due to the higher information content and specificity of phrases versus words, in-
formation retrieval researchers have always been interested in multi-word units. How-
ever, the definition of what makes a few words form a unit has varied with time, and
notably through the evolution of computational capacities.

The first models, introduced until the late 1980’s, came with numerous restric-
tions. Mitra et al. (Mitra et al., 1987), for example, defined phrases as adjacent pairs
of words occurring in at least 25 documents of the TREC-1 collection. Choueka et
al. (Choueka et al., 1983) extracted adjacent word sequences of length up to 6. The
extraction of sequences of longer size was then intractable. The adjacency constraint is
regrettable, as natural language often permits to express similar concepts by introduc-
ing one or more words between two others. For example, the phrases “President John
Kennedy” and “President Kennedy” are likely to refer to the same person. Church
and Hanks (Church et al., 1990) proposed a technique based on the notion of mu-
tual information, which permits to produce word pairs occurring in the same window,
regardless of their relative positions.

A new trend started in the 1990’s, as linguistic information started to be used to
filter out “undesirable” patterns. The idea consists in using parts-of-speech (POS)
analysis to automatically select (or skip) the phrases matching a given set of linguistic
patterns. Most recent extraction techniques still rely on a combination of statistical
and syntactical methods (Smadja, 1993, Frantzi et al., 1998).

However, at a time when multilingual information retrieval is in full expansion, we
think it is of crucial importance to propose language-independent techniques. There is
very few research in this direction, as was suggested by a recent workshop on multi-
word expressions (Tanaka et al., 2004) where most of the 11 accepted papers presented
monolingual techniques, in a total of 6 distinct languages.

Dias (Dias et al., 2000) introduced an elegant generalization of conditional proba-
bilities to n-grams extraction. The normalized expectation of an n-words sequence is
the average expectation to see one of the words occur in a position, given the position
of occurrence of all the others. Their main metric, the mutual expectation, is a vari-
ation of the normalized expectation that rewards n-grams occurring more frequently.
While the method is language-independent and does not require word adjacency, it
still recognizes phrases as a very rigid concept. The relative word positions are fixed,
and to recall our previous example, no relationship is taken into account between
“President John Kennedy” and “President Kennedy”.

We present a technique that permits to efficiently calculate the exact probability
(respectively, the expected document frequency) of a given sequence of n words to
occur in a document of size l, (respectively, in a document collection D) with an
unlimited number of other words eventually occurring between them. We assume that
words occur independently, i.e., the probability of occurrence of a word in a given
position does not depend on its context.

Discontinued word sequences 15

The main challenges we had to handle in this work were to avoid the computational
issue of using a potentially unlimited distance between each two words, while not
making those distances rigid (we do see an occurrence of “President Kennedy” in the
text fragment “President John Kennedy”). Achieving language-independence (neither
stoplists nor POS analysis are used) and dealing with document frequencies rather
than term frequencies are further specificics of this work.

An application of this result is a fast and automatic technique to directly evaluate
the interestingness of word sequences. Phrase extraction techniques often output a
number of uninteresting sequences and it is desirable to have means to sort them by
their level of interestingness. One main advantage of a ranked list over a set of phrasal
descriptors is that it permits to the end-user to save time by reading through the most
important findings first. This is especially important in real-life applications, where
time is a limited resource. To rank a list of phrasal descriptors is not trivial, especially
when it comes to comparing phrases of different lengths.

By exploiting statistical techniques, of hypothesis testing, our method provides
the ability to do exactly that. The main idea is to account for the fact that word
sequences are bound to happen by chance, and to compare how often a given word
sequence should occur to how often it truly does. That is, the more the actual number
of occurrences of a phrase is higher than its expected frequency, the stronger the lexical
cohesion of that phrase. This evaluation technique is entirely language-independent,
as well as domain- and application-independent. It permits to efficiently rank a set
of candidate multi-word units, based on statistical evidence, without requiring manual
assessment of a human expert.

In the next section, we will introduce the problem, present an approximation of the
probability of an n-words sequence to occur in a document, and present a technique
to reach for the exact results. We will then introduce our technique in full detail,
including a complexity analysis that shows how it outperforms naive approaches. In
Section 3, we will show how the probability of occurrence of an n-words sequence
in a document can be generalized to compute its expected document frequency in
a document collection, with a very reasonable computational complexity. Section 4
explains and experiments the use of statistical testing as an automatic way to rank
general-purpose non-contiguous lexical cohesive relations. Section 5 concludes this
paper.

2. The probability of discontinued occurrence of an n-words sequence

2.1. Problem Definition

Let A1, A2, . . . , An be n words, and d a document of length l (i.e., d contains l word
occurrences). Each word Ai is assumed to occur independently with probability pAi

.

16 TAL. Volume 46 – n˚2/2005

Problem: In d, we want to calculate the probability P (A1 → A2 → · · · → An, l) of
the words A1, A2, . . . , An to occur at least once in this order, an unlimited number of
interruptions of any size being permitted between each Ai and Ai+1, 1 ≤ i ≤ (n+1).

More definitions. Let D be the document collection, and W the set of all distinct
words occurring in D. The calculation of the probability pw of occurrence of a word
w is a vast problem. In this work, we assume these probabilities to be given. In our
experiments and along the examples, we use the term frequency of w in the whole
document collection, divided by the total number of word occurrences in the col-
lection. One reason to choose this approach is that the set of all word probabilities
{pw | ∀w ∈ W} is then a (finite) probability space. Indeed, we have:

∑

w∈W

pw = 1, and pw ≥ 0, ∀w ∈ W.

For convenience, we will also simplify the notation of pAi
to pi, and define qi = 1−pi,

the probability of non-occurrence of the word Ai.

A running example. Let there be a hypothetic document collection containing only
three different words A, B, and C, each occurring with equal frequency. We want to
find the probability that the bigram A → B occurs in a document of length 3.

For such a simple example, we can afford an exhaustive manual enumeration.
There exist 33 = 27 distinct documents of size 3, each occurring with equal prob-
ability 1

27 . These documents are:
{AAA, AAB , AAC, ABA , ABB , ABC , ACA, ACB , ACC,

BAA, BAB , BAC, BBA, BBB, BBC, BCA, BCB, BCC,

CAA, CAB , CAC, CBA, CBB, CBC, CCA, CCB, CCC}
The 7 framed documents contain the n-gram AB. Thus, we have p(A → B, 3) = 7

27 .

2.2. A Decent Over-Estimation in the General Case

We can attempt to enumerate the number of occurrences of A1 → · · · → An in a
document of size l, by separately counting the number of ways to form the (n − 1)-
gram A2 → · · · → An, given the l possible positions of A1. For each of these
possibilities, we can then separately count the number of ways to form the (n − 2)-
gram A3 → · · · → An, given the various possible positions of A2 following that of
A1. And so on until we need to find the number of ways to form the 1-gram An, given
the various possibilities left for placing An−1. This enumeration leads to n nested
sums of binomial coefficients:

l−n+1∑

posA1
=1





l−n+2∑

posA2
=posA1

+1



. . .

l∑

posAn=posAn−1
+1

(
l − posAn

0

)






 , [1]

where each posAi
, 1 ≤ i ≤ n, denotes the position of occurrence of Ai.

Discontinued word sequences 17

The following can be proved easily by induction:

n∑

i=k

(
i

k

)

=

(
n + 1

k + 1

)

,

and we can use it to simplify Formula [1] by observing that:

l−n+i∑

posAi
=posAi−1

+1

(
l − posAi

n − i

)

=

l−posAi−1
−1

∑

posAi
=n−i

(
posAi

n − i

)

=

(
l − posAi−1

n − i + 1

)

.

Therefore, leaving further technical details to the reader, the previous nested summa-
tion [1] interestingly simplifies to

(
l
n

)
, which permits to obtain the following result:

enum_overestimate(A1 → · · · → An, l) =

(
l

n

)

·

n∏

i=1

pi,

where
(

l
n

)
is the number of ways to form the n-gram, and

∏n
i=1 pi the probability of

conjoint occurrence of the words A1, . . . , An (since we assumed that the probability
of occurrence of a word in one position is independent of which words occur in other
positions).

The big flaw of this result, and the reason why it is an approximation only, is
that some of the ways to form the n-gram are obviously overlapping. Whenever we
separate the alternative ways to form the n-gram, knowing that Ai occurs in position
posAi

, with 1 ≤ i ≤ n and (posAi−1
+1) ≤ posAi

≤ (l−n+i), we do ignore the fact
that Ai may also occur before position posAi

. In this case, we find and add different
ways to form the same occurrence of the n-gram. We do enumerate each possible case
of occurrence of the n-gram, but we count some of them more than once, since it is
actually the ways to form the n-gram that are counted.

Running Example. This is better seen by returning to the running example pre-
sented in Section 2.1. As described above, the upper-estimate of the probability of the
bigram A → B, based on the enumeration of the ways to form it in a document of size
3 is: (1

3)2
(
3
2

)
= 9

27 , while the actual probability of A → B is 7
27 . This stems from the

fact that in the document AAB (respectively ABB), there exist two ways to form the
bigram A → B, using the two occurrences of A (respectively B). Hence, out of the
27 possible equiprobable documents, 9 ways to form the bigram A → B are found in
the 7 documents that contain it.

With longer documents, the loss of precision due to those cases can be consid-
erable. Still assuming we are interested in the bigram A → B, we will count one
extra occurrence for every document that matches *A*B*B*, where * is used as a
wildcard. Similarly, 8 ways to form A → B are found in each document matching
*A*A*B*B*B*B*.

18 TAL. Volume 46 – n˚2/2005

2.3. Exact Probability of a Discontiguous Word Sequence

With a slightly different approach, we can actually reach the exact result. The
previous technique exposed overlapping ways to form a word sequence. That is why
the result was only an overestimate of the desired probability.

In this section, we will present a way to categorize the different sets of documents
of size l in which the n-gram A1 → · · · → An occurs, with the property that all
the sets are disjoint and that no case of occurrence of the n-gram is forgotten. This
ensures that we can calculate p(A1 → · · · → An, l) by summing up the probabilities
of each set of documents where A1 → · · · → An occurs.

2.3.1. A Disjoint Categorization of Successful Documents

We can split the successful documents (those in which the n-gram occurs) of size
l, depending on the position from which a successful outcome is guaranteed. For
example, and for l ≥ n, the documents of size l for which success is guaranteed as
soon as from position n onwards can be represented by the set of documents E0:

E0 = {A1A2 . . . AnW l−n},

where as defined earlier W is the set of all words in the document collection, and
using regular expression notation, W l−n stands for a concatenation of any (l − n)
words of W . Because each word is assumed to occur independently of the others, the
probability of a given document is a conjunction of independent events, and therefore
it equals the multiplication of the probability of all the words in the document. The
probability of the set of documents E0 is the probability of occurrence of A1, A2. . . ,
and An once, plus (l − n) times any word of W (with probability 1). Therefore,

p(E0) = p1 · p2 . . . pn · 1l−n =

n∏

i=1

pi.

Similarly, the documents in which the occurrence of the n-gram is guaranteed as
soon as the (n + 1)-th word can be represented by the set E1 where, for 1 ≤ k ≤ n,
ik ≥ 0:

E1 = {Ā1
i1

A1Ā2
i2

A2 . . . Ān
in

AnW l−n−1 |

n∑

k=1

ik = 1},

where Āk, 1 ≤ k ≤ n, represents any word but Ak. In other words, E1 is the set
of all documents where a total number of 1 word is inserted before each word of the
n-gram. The probability of this set of documents is:

p(E1) = (q1p1p2 . . . pn1l−n−1) + (p1q2p2 . . . pn1l−n−1) +

· · · + (p1p2 . . . pn−1qnpn1l−n−1)

=
n∏

i=1

pi

n∑

k=1

qk.

Discontinued word sequences 19

We can proceed similarly for the following positions after which a successful out-
come is guaranteed. Finally, the same idea provides an expression for the set of doc-
uments for which the occurrence of the n-gram was not complete before the word in
position l (and therefore the last word of the document is An):

El−n = {Ā1
i1

A1Ā2
i2

A2 . . . Ān
in

An |

n∑

k=1

ik = (l − n)}.

The set El−n contains all the possibilities to disseminate exactly (l − n) other words
before the words of the n-gram. Its probability of occurrence is:

p(El−n) = p

({

Ā1
i1

A1 . . . Ān
in

An |

n∑

k=1

ik = (l − n)

})

= pn

l−n∑

in=0

qin
n p

({

Ā1
i1

A1 . . . ¯An−1
in−1

An−1 |

n−1∑

k=1

ik = (l − n − in)

})

= pnpn−1

l−n∑

in=0

l−n−in∑

in−1=0

qin
n q

in−1

n−1

p

({

Ā1
i1

A1 . . . ¯An−2
in−2

An−2 |

n−2∑

k=1

ik = (l − n − in − in−1)

})

= . . .

=

n∏

i=1

pi

l−n∑

in=0

. . .

l−n−(in+···+i3)
∑

i2=0

qin
n . . . qi2

2 q
l−n−(in+···+i2)
1 .

In general, for 0 ≤ k ≤ l − n , we can write:

p(Ek) =

n∏

i=1

pi

k∑

in=0

. . .

k−(in+···+i3)
∑

i2=0

q
k−

Pn
j=2

ij

1 qi2
2 . . . qin

n .

2.3.2. The precise formula

It is clear that the sets Ek, for 0 ≤ k ≤ (l − n), are all disjoint, because in any
document, the presence of the n-gram is ensured from only one position onwards. It
is also evident that in any document of size l containing the n-gram, its occurrence
will be ensured between the n-th and l-th position. Therefore the sets Ek are mutually
exclusive, for 0 ≤ k ≤ (l − n), and their union contains all the documents of size l

where A1 → · · · → An occurs. Consequently,

p(A1 → · · · → An, l) =
l−n∑

k=0

p(Ek)

20 TAL. Volume 46 – n˚2/2005

Finally, the formula of the probability of occurrence of a discontiguous sequence of
length n in a document of length l is:

p(A1 → · · · → An, l) =

n∏

i=1

pi

l−n∑

in=0

. . .

l−n−(in+···+i2)
∑

i1=0

qi1
1 qi2

2 . . . qin
n . [2]

Running Example. For better comprehension, let us return to the running example:

p(A → B, 3) = papb

1∑

ib=0

1−ib∑

ia=0

qia
a qib

b

= papb (1 + qa + qb) .

And we find the exact result of 7
27 . But we will now see that the direct calculation of

Formula [2] is is not satisfying in practice because of an exponential computational
complexity.

2.3.3. Computational Complexity

Let us observe the steps involved in the computation of p(Ek), 0 ≤ k ≤ l − n. To
calculate this probability consists in multiplying n values (the pi’s) by a summation
of summations. The total number of terms resulting from these nested summations
equals the total number of ways to insert k terms in n different positions: nk. Thus,
p(Ek) is the result of multiplying n values by a summation of nk distinct terms, each
individually calculated by k multiplications. Hence, the gross number of operations
to calculate p(A1 → · · · → An, l) with Formula [2] is:

n

l−n∑

k=0

knk.

Therefore, the order of complexity of the direct computation of Formula [2] is
O(lnl−n). Consequently, this formula is hardly usable at all, except for extremely
short documents and length-restricted n-grams.

2.4. Efficient Computation through a Markov Chain Formalization

We found a way to calculate the probability of discontiguous occurrence of an n-
words sequence in a document of size l. However, its computational complexity cuts
clear any hope to use the result in practice. The following approach permits to reach
the exact result with a far better complexity.

2.4.1. An Absorbing Markov Chain

Another interesting way to formalize the problem is to consider it as a sequence of
l trials whose outcomes are X1, X2, . . . , Xl. Let each of these outcomes belong to the
set {0, 1, . . . , n}, where the outcome i signifies that the i-gram A1 → A2 → · · · → Ai

has already occurred. This sequence of trials verifies the following two properties:

Discontinued word sequences 21

n2

p
2

p p
n−1

p

q

n

1

n−1

q

0

1 q

p
1 1

p
n

Figure 1. The state-transition diagram of the Markov Chain M.

(i) All the outcomes X1, X2, . . . , Xl belong to a finite set of outcomes
{0, 1, . . . , n} called the state space of the system. If i is the outcome of the
m-th trial (Xm = i), then we say that the system is in state i at the m-th step.
In other words, the i-gram A1 → A2 → · · · → Ai has been observed after the
m-th word of the document.

(ii) The second property is called the Markov property: the outcome of each trial
depends at most upon the outcome of the immediately preceding trial, and not
upon any other previous outcome. In other words, the future is independent of
the past, given the present. This is verified indeed; if we know that we have seen
A1 → A2 → · · · → Ai, we only need the probability of Ai+1 to determine the
probability that we will see more of the desired n-gram during the next trial.

These two properties are sufficient to call the defined stochastic process a (finite)
Markov chain. The problem can thus be represented by an (n + 1)-states Markov
chain M (see Figure 1). The state space of the system is {0, 1, . . . , n} where each
state, numbered from 0 to n tells how much of the n-gram has already been observed.
Presence in state i means that the sequence A1 → A2 → · · · → Ai has been ob-
served.Therefore, Ai+1 → · · · → An remains to be seen, and the following expected
word is Ai+1. It will be the next word with probability pi+1, in which case a state
transition will occur from i to (i + 1). Ai+1 will not be the following word with prob-
ability qi+1, in which case we will remain in state i. Whenever we reach state n, we
can denote the experience a success: the whole n-gram has been observed. The only
outgoing transition from state n leads to itself with associated probability 1 (such a
state is said to be absorbing).

2.4.2. Stochastic Transition Matrix (in general)

Another way to represent this Markov chain is to write its transition matrix. For
a general finite Markov chain, let pi,j denote the transition probability from state i to
state j for 1 ≤ i, j ≤ n. The (one-step) stochastic transition matrix is:

P =







p1,1 p1,2 . . . p1,n

p2,1 p2,2 . . . p2,n

. . .

pn,1 pn,2 . . . pn,n







.

22 TAL. Volume 46 – n˚2/2005

Theorem 2.1 (Feller, 1968) Let P be the transition matrix of a Markov chain process.
Then the m-step transition matrix is equal to the m-th power of P . Furthermore, the
entry pi,j(m) in P m is the probability of stepping from state i to state j in exactly m

transitions.

2.4.3. Our stochastic transition matrix of interest

For the Markov chain M defined above, the corresponding stochastic transition
matrix is the following (n + 1) × (n + 1) square matrix:

M =











states 0 1 . . . n − 1 n

0 q1 p1 0

1 0 q2
. . .

...
...

.
...

...
. . . qn pn

n 0 0 1











.

Therefore, the probability of the n-gram A1 → A2 → · · · → An to occur in a
document of size l is the probability of stepping from state 0 to state n in exactly l

transitions. Following Theorem 2.1, this value resides at the intersection of the first
row and the last column of the matrix M l:

M l =








m1,1(l) m1,2(l) . . . m1,n+1(l)

m2,1(l) m2,2(l) . . . m2,n+1(l)
. . .

mn+1,1(l) mn+1,2(l) . . . mn+1,n+1(l)








.

Thus, the result we are aiming at can simply be obtained by calculating M l, and
looking at the value in the upper-right corner. In terms of computational complexity,
however, one must note that to multiply two (n+1)×(n+1) square matrices, we need
to compute (n + 1) multiplications and n additions to calculate each of the (n + 1)2

values composing the resulting matrix. To raise a matrix to the power l means to repeat
this operation l − 1 times. The resulting time complexity is then O(ln3).

One may object that there exist more time-efficient algorithms for matrix multipli-
cation. The lowest exponent currently known is O(n2.376) (Coppersmith et al., 1987).
These results are achieved by studying how matrix multiplication depends on bilinear
and trilinear combinations of factors. The strong drawback of such techniques is the
presence of a constant so large that it removes the benefits of the lower exponent for
all practical sizes of matrices (Horn et al., 1994). For our purpose, the use of such an
algorithm is typically more costly than to use the naive O(n3) matrix multiplication.

Linear algebra techniques, and a careful exploitation of the specificities of the
stochastic matrix M will, however, permit to perform a few transformations that will
drastically reduce the computational complexity of M l over the use of any matrix mul-
tiplication algorithm (it has been proved that the complexity of matrix multiplication
cannot possibly be lower than O(n2)).

Discontinued word sequences 23

2.4.4. The Jordan normal form

Definition: A Jordan block Jλ is a square matrix whose elements are zero ex-
cept for those on the principal diagonal, which are equal to λ, and those on the first
superdiagonal, which are equal to unity. Thus:

Jλ =









λ 1 0

λ
. . .
. . . 1

0 λ









.

Theorem 2.2 (Jordan normal form) (Noble et al., 1977) If A is a general square ma-
trix, then there exists an invertible matrix S such that

J = S−1AS =






J1 0
. . .

0 Jk




 ,

where the Ji are ni × ni Jordan blocks. The same eigenvalues may occur in different
blocks, but the number of distinct blocks corresponding to a given eigenvalue is equal
to the number of eigenvectors corresponding to that eigenvalue and forming an inde-
pendent set. The number k and the set of numbers n1, . . . , nk are uniquely determined
by A.

In the following subsection we will show that M is such that there exists only one
block for each eigenvalue.

2.4.5. Uniqueness of the Jordan block corresponding to any given eigenvalue of M

Theorem 2.3 For the matrix M , no two eigenvectors corresponding to the same
eigenvalue can be linearly independent. Following theorem 2.2, this implies that there
exists a one-one mapping between Jordan blocks and eigenvalues.

Proof. Because M is triangular, its characteristic polynomial is the product of the
diagonals of (λIn+1 − M): f(λ) = (λ − q1)(λ − q2) . . . (λ − qn)(λ − 1). The
eigenvalues of M are the solutions of the equation f(λ) = 0. Therefore, they are the
distinct qi’s, and 1.

Now let us show that whatever the order of multiplicity of such an eigenvalue
(how many times it occurs in the set {q1, . . . , qn, 1}), it has only one associated eigen-
vector. The eigenvectors associated to a given eigenvalue e are defined as the non
null solutions of the equation M · V = e · V . If we write the coordinates of V as
[v1, v2, . . . , vn+1], we can observe that M · V = e · V results in a system of (n + 1)
equations, where, for 1 ≤ j ≤ n, the j-th equation permits to express vj+1 in terms
of vj , and therefore in terms of v1. That is,

for 1 ≤ j ≤ n : vj+1 =
e − qj

pj

vj =
(e − qj) . . . (e − q1)

pj . . . p1
v1.

24 TAL. Volume 46 – n˚2/2005

In general (for all the qi’s), v1 can be chosen freely to have any non-null value. This
choice will uniquely determine all the values of V .

Since the general form of the eigenvectors corresponding to any eigenvalue of M

is V = [v1, v2, . . . , vn+1], where all the values can be determined uniquely by the
free choice of v1, it is clear that no two such eigenvectors can be linearly independent.
Hence, one and only one eigenvector corresponds to each eigenvalue of M . �

Following theorem 2.2, this means that there is a single Jordan block for each
eigenvalue of M , whose size equals the order of algebraic multiplicity of the eigen-
value, that is, its number of occurrences in the principal diagonal of M . In other
words, there is a distinct Jordan block for every distinct qi (and its size equals the
number of occurrences of qi in the main diagonal of M), plus a block of size 1 for the
eigenvalue 1. Therefore we can write:

J = S−1MS =







Je1
0

. . .
0 Jeq







,

where the Jei
are ni × ni Jordan blocks, corresponding to the distinct eigenvalues

of M . Following the general properties of the Jordan normal form, we have M l =
SJ lS−1 and:

J l =








J l
e1

0

. . .

0 J l
eq








.

Therefore, by multiplying the first row of S by J l, and multiplying the resulting vector
by the last column of S−1, we do obtain the upper right value of M l, that is, the
probability of the n-gram (A1 → · · · → An) to appear in a document of size l.

2.4.6. Calculating powers of a Jordan block

As mentioned above, to raise J to the power l, we can simply write a direct sum of
the Jordan blocks raised to the power l. In this section, we will show how to compute
J l

ei
for a Jordan block Jei

.

Let us define Dei
and Nei

such that Jei
= Dei

+ Nei
, where Dei

contains only
the principal diagonal of Jei

, and Nei
only its first superdiagonal. That is,

Dei
=








ei 0
ei

. . .
0 ei








and Nei
=








0 1 0
. . .

1
0 0








.

Discontinued word sequences 25

Observing that Nei
Dei

= Dei
Nei

, we can exploit the binomial theorem and shorten
the resulting summation by observing that Nei

is nilpotent (Nk
ei

= 0, ∀k ≥ ni):

J l
ei

= (Dei
+ Nei

)l =

l∑

k=0

(
l

k

)

Nk
ei

Dl−k
ei

=

ni−1∑

k=0

(
l

k

)

Nk
ei

Dl−k
ei

Hence, to calculate J l
ei

, one can compute the powers of Dei
and Nei

from 0 to l,
which is a fairly simple task. The power of a diagonal matrix is easy to compute, as
it is another diagonal matrix where each term of the original matrix is raised to the
same power as the matrix. Dj

ei
is thus identical to Dei

, except that the main diagonal
is filled with the value e

j
i instead of ei.

To compute Nk
ei

is even simpler. Each multiplication of a power of Nei
by Nei

results in shifting the non-null diagonal one row upwards (the values on the first row
are lost, and those on the last row are 0’s).

The result of Nk
ei

Dj
ei

resembles N j
ei

, except that the ones on the only non-null
diagonal (the j-th superdiagonal) are replaced by the value of the main diagonal of
Dj

ei
, that is, e

j
i . Therefore, we have:

Nk
ei

Dl−k
ei

=










0 el−k
i 0

. . .
el−k

i

0 0










.

Since each value of k corresponds to a distinct diagonal, the summation
∑l

k=0

(
l
k

)
Nk

ei
Dl−k

ei
is easily written as:

J l
ei

=

l∑

k=0

(
l

k

)

Nk
ei

Dl−k
ei

=











(
l
0

)
· el

i . . .
(

l
k

)
· el−k

i . . .
(

l
ni−1

)
· el−ni+1

i

.
...

(
l
0

)
· el

i

(
l
k

)
· el−k

i

. . .
...

0
(

l
0

)
· el

i











.

2.4.7. Conclusion

The probability of the n-gram A1 → · · · → An in a document of size l can be
obtained as the upper-right value in the matrix M l such that:

M l = SJ lS−1 = S








J l
e1

0

. . .

0 J l
eq








S−1,

26 TAL. Volume 46 – n˚2/2005

o/seen:

0

qqaa=2/3=2/3 bq =2/3

1
seen:A

p
a
=1/3 p

b
=1/3

seen:AB

2

1

Figure 2. The state-transition diagram of the Markov Chain corresponding to our
running example.

where the J l
ei

blocks are as described above, while S and S−1 are obtained through
the Jordan Normal Form theorem (Theorem 2.2). We actually only need the first row
of S and the last column of S−1, as we are not interested in the whole matrix M l but
only in its upper-right value.

In the next subsection we will calculate the worst case time complexity of the
technique that we just presented. Before that, let us return to the running example
presented in subsection 2.1.

2.4.8. Running Example

The state-transition diagram of the Markov Chain corresponding to the bigram
A → B has only three states (see Figure 2). The corresponding transition matrix is:

Mre =





2
3

1
3 0

0 2
3

1
3

0 0 1



 .

Following Theorem 2.2 on the Jordan normal form, there exists an invertible matrix
Sre such that

Jre = S−1
re MreSre =




J 2

3
0

0 J1



 ,

where J1 is a block of size 1, and J 2
3

a block of size 2 since qa = qb = 2
3 . We can

actually write Jre as:

Jre =





2
3 1 0
0 2

3 0
0 0 1



 .

Since we seek the probability of the bigram A → B in a document of size 3, we need
to calculate J3

re:

J3
re =





(
3
0

)
(2
3)3

(
3
1

)
(2
3)2 0

0
(
3
0

)
(2
3)3 0

0 0 1



 =





8
27

4
3 0

0 8
27 0

0 0 1



 .

Discontinued word sequences 27

In the next subsection, we will give further details as to the practical computation of
Sre and the last column of its inverse S−1

re . For now, let us simply assume they were
calculated, and thus:

P (A → B, 3) =

first row of S
︷ ︸︸ ︷

(1 0 1)





8
27

4
3 0

0 8
27 0

0 0 1





last column of S−1

︷ ︸︸ ︷




−1
− 1

3
1



 =
7

27
.

Our technique indeed obtains the right result. But how efficiently is it obtained? The
purpose of the following subsection is to answer this question.

2.5. Algorithmic Complexity

The process of calculating the probability of occurrence of an n-gram in a docu-
ment of size l consists of two main phases: calculating J l, and computing the trans-
formation matrix S and its inverse S−1.

The following complexity analysis might be easier to follow, if studied together
with the general formulas of M l and the Jordan blocks as presented in the conclusion
of Section 2.4.7.

2.5.1. Time complexity of the J l calculation

Observing that each block J l
i contains exactly ni distinct values, we can see that

J l contains
∑

1≤k≤q nk = n + 1 distinct values. Those (n + 1) values are (n + 1)
multiplications of a binomial coefficient by the power of an eigenvalue.

The computation of the powers between 0 and l of each eigenvalue is evidently
achieved in O(lq), because each of the q distinct eigenvalues needs to be multiplied
by itself l times.

For every Jordan block J l
i , the binomial coefficients to be computed are:

(
l
0

)
,
(

l
1

)
, . . . ,

(
l

ni−1

)
. For the whole matrix J l, we thus need to calculate

(
l
k

)
where

0 ≤ k ≤ maxblock and maxblock = maxq
i=1 ni. Observing that

(
l

j+1

)
=
(

l
j

)
l−j
j+1 , and

thus, that
(

l
j+1

)
can be computed from

(
l
j

)
in a constant number of operations, we see

that the set {
(

l
k

)
| 1 ≤ k ≤ maxblock} can be computed in O(maxblock).

Finally, all the terms of J l are obtained by (n + 1) multiplications of pow-
ers of eigenvalues (computed in O(lq)) and combinatorial coefficients (computed in
O(maxblock)). Note that if l < n, the probability of occurrence of the n-gram in l is
immediately 0, since the n-gram is longer than the document. Therefore, the current
algorithm is only used when l ≥ n ≥ maxblock. We can therefore conclude that the
time complexity of the computation of J l is O(lq).

28 TAL. Volume 46 – n˚2/2005

2.5.2. Calculating the transformation matrix S

Following general results of linear algebra (Noble et al., 1977), the (n + 1) ×
(n + 1) transformation matrix S can be written as: S =

[
S1S2 . . . Sq

]
, where each

Si is an ni × (n + 1) matrix corresponding to the eigenvalue ei, and such that Si =
[
vi,1vi,2 . . . vi,ni

]
,where:

– vi,1 is an eigenvector associated with ei, thus such that Mvi,1 = eivi,1, and
– vi,j , for all j = 2 . . . ni, is a solution of the equation Mvi,j = eivi,j + vi,j−1.

The vectors vi,1vi,2 . . . vi,ni
are sometimes called generalized eigenvectors of ei. We

have already seen in Section 2.4.4 that the first coordinate of each eigenvector can be
assigned freely, and that every other coordinate can be expressed in function of its
immediately preceding coordinate. Setting the first coordinate a1 to 1, we can write:

vi,1 =















a1

a2

...
ai

ai+1

...
an+1















=
















1
ei−q1

p1

...
(ei−q1)...(ei−qi−1)

p1...pi−1

0
...
0
















The resolution of the system of (n+1) linear equations following Mvi,2 = eivi,2+
vi,1 permits to write:

vi,2 =
























b1

b2

...
bi

bi+1

bi+2

...
bi+k

bi+k+1

...
bn+1
























=


























b1
a1

p1
+ ei−q1

p1
b1

...
ai−1

pi−1
+ ei−qi−1

pi−1
bi−1

ai

pi
ei−qi+1

pi+1
bi+1

...
ei−qi+k−1

pi+k−1
bi+k−1

0
...
0


























,

where k is such that (i + k) is the position of second occurrence of ei on the principal
diagonal of M (that is, qi+k = qi = ei), the position of first occurrence being i.

We can similarly write the other column vectors vi,j , where j = 3 . . . ni. Hence, it
is clear that each coordinate of those vectors can be calculated in a constant number of

Discontinued word sequences 29

operations. Therefore, we can compute each column in O(n), and the whole matrix
S in O(n2).

Observe that the value of b1 is free and that it can be set to 0, without loss of
generality. The same is true for the value in the first row of each column vector vi,j ,
where j = 2 . . . ni. In our implementation (notably when applying this technique to
the running example in Section 2.4.8), we made the choice to assign those first row
values to 0. This means that the only non-null values on the first row of S are unity, and
that they occur on the q eigenvector columns. This will prove helpful when calculating
the expected frequency of occurrence of an n-gram by lowering the complexity of
repeated multiplications of the first row of S by various powers of the matrix J .

2.5.2.1. The inversion of S.

The general inversion of an (n+1)×(n+1) matrix can be done in O(n3) through
Gaussian elimination. To calculate only the last column of S−1 does not help, since
the resulting system of (n + 1) equations still requires O(n3) operations to be solved
by Gaussian elimination.

However, some specificities of our problem will again permit an improvement over
this general complexity. When describing the calculation of the similarity matrix S, it
became clear that the ni occurrences of ei on the main diagonal of the matrix M are
matched by ni column vectors whose last non-null values exactly correspond to the
ni positions of occurrence of ei on the main diagonal of M .

This is equivalent to saying that S is a column permutation of an upper-
triangular matrix. Let T be the upper-triangular matrix corresponding to the column
permutation of S. We can calculate the vector x, equal to the same permutation of the
last column of S−1, by solving the triangular system of linear equations that follows
TT−1 = In+1:








T1,1 T1,2 . . . T1,n+1

0 T2,2 T2,n+1

...
.

...
0 . . . 0 Tn+1,n+1








x =last column of T−1

︷ ︸︸ ︷







x1

x2

...
xn+1








=

last column of In+1
︷ ︸︸ ︷







0
...
0
1








.

The solution x is calculated by backward substitution:







xn+1 = 1
Tn+1,n+1

xn = − 1
Tn,n

(Tn,n+1xn+1)
...
x1 = − 1

T1,1
(T1,2x2 + T1,3x3 + · · · + T1,n+1xn+1)

This way, the set of (n+1) triangular linear equations can be solved in O(n2). It only
remains to apply the reverse permutation to x to obtain the last column of S−1.

30 TAL. Volume 46 – n˚2/2005

Finding the permutation and its inverse are simple sorting operations. Thus, the
whole process of computing the last column of the matrix S−1 is O(n2).

2.5.3. Conclusion

To obtain the final result, the probability of occurrence of the n-gram in a document
of size l, it only remains to multiply the first row of S by J l, and the resulting vector
by the last column of S−1. The second operation takes (n + 1) multiplications and n

additions. It is thus O(n).

The general multiplication of a vector of size (n + 1) by an (n + 1) × (n + 1)
square matrix takes (n + 1) multiplications and n additions for each of the (n + 1)
values of the resulting vector. This is thus O(n2). However, we can use yet another
trick to improve this complexity. When we calculated the matrix S, we could assign
the first row values of each column vector freely. We did it in such a way that the only
non-null values on the first row of S are unity, and that they occur on the q eigenvector
columns. Therefore, to multiply the first row of S by a column vector simply consists
in the addition of the q terms of index equal to the index of the eigenvectors in S. That
operation of order O(q) needs to be repeated for each column of J l. The multiplication
of the first row of S by J l is thus O(nq).

The worst-case time complexity of the computation of the probability of occur-
rence of an n-gram in a document of size l is finally max{O(lq), O(n2)}. Clearly, if
l < n, the document is smaller than the n-gram, and thus the probability of occurrence
of the n-gram therein can immediately be said to be null. Our problem of interest is
hence limited to l ≥ n.

Therefore, following our technique, an upper bound of the complexity for com-
puting the probability of occurrence of an n-gram in a document of size l is O(ln).
This is clearly better than directly raising M to the power of l, which is O(ln3), not
to mention the computation of the exact mathematical Formula [2], which is only
achieved in O(lnl−n).

3. The Expected Frequency of an n-Words Sequence

Now that we have defined a formula to calculate the probability of occurrence of
an n-gram in a document of size l, we can use it to calculate the expected document
frequency of the n-gram in the whole document collection D. Assuming the docu-
ments are mutually independent, the expected frequency in the document collection is
the sum of the probabilities of occurrence in each document:

Exp_df(A1 → · · · → An, D) =
∑

d∈D

p(A1 → · · · → An, |d|),

where |d| stands for the number of word occurrences in the document d.

Discontinued word sequences 31

Naive Computational Complexity
We can compute the probability of an n-gram to occur in a document d in O(|d|n).
A separate computation and summation of the values for each document can thus be
computed in O(

∑

d∈D

|d|n).

Better Computational Complexity
We can achieve better complexity by summarizing everything we need to calculate
and organizing the computation in a sensible way. Let L = maxd∈D |d| be the size of
the longest document in the collection and |D|, the number of documents in D. We
first need to raise the Jordan matrix J to the power of every distinct document length,
and then to multiply the (at worst) |D| distinct matrices by the first row of S and the
resulting vectors by the last column of its inverse S−1.

The matrix S and the last column of S−1 need to be computed only once, and as
we have seen previously, this is achieved in O(n2), whereas the |D| multiplications
by the first row of S are done in O(|D|nq). It now remains to find the computational
complexity of the various powers of J .

We must first raise each eigenvalue ei to the power of L, which is an O(Lq) pro-
cess. For each document d ∈ D, we obtain all the terms of J |d| by (n + 1) multi-
plications of powers of eigenvalues by a set of combinatorial coefficients computed
in O(maxblock). The total number of such multiplications is thus O(|D|n), an up-
per bound for the computation of all combinatorial coefficients. The worst case time
complexity for computing the set { J |d| | d ∈ D}, is then max{O(|D|n), O(Lq)}.

Finally, the computational complexity for calculating the expected frequency
of an n-gram in a document collection D is max{O(|D|nq), O(Lq)}, where q is
the number of words in the n-gram having a distinct probability of occurrence, and
L is the size of the longest document in the collection. The improvement is consid-
erable, compared to the computational complexities of the more naive techniques, in
O(
∑

d∈D

|d|nl−n) and O(
∑

d∈D

|d|n3).

4. Direct evaluation of lexical cohesive relations

In this section, we will introduce an application of the expected document fre-
quency that fills a gap in information retrieval. We propose a direct technique, lan-
guage and domain-independent, to rank a set of phrasal descriptors by their interest-
ingness, regardless of their intended use.

The evaluation of lexical cohesion is a difficult problem. Attempts at direct eval-
uation are rare, simply due to the subjectivity of any human assessment, and to the
wide acceptance that we first need to know what we want to do with a lexical unit
before being able to decide whether or not it is relevant for that purpose. A common
application of research in lexical cohesion is lexicography, where the evaluation is car-
ried out by human experts who simply look at phrases to assess them as good or bad.

32 TAL. Volume 46 – n˚2/2005

This process permits scoring the extraction process with highly subjective measures
of precision and recall. However, a linguist interested in the different forms and uses
of the auxiliary “to be” will have a different view of what is an interesting phrase than
a lexicographer. What a human expert judges as uninteresting may be highly relevant
to another.

Hence, most evaluation has been indirect, through question-answering, topic
segmentation, text summarization, and passage or document retrieval (Vechtomova,
2005). To pick the last case, such an evaluation consists in trying to figure out which
are the phrases that permit to improve the relevance of the list of documents returned.
A weakness of indirect evaluation is that it hardly shows whether an improvement is
due to the quality of the phrases, or to the quality of the technique used to exploit
them. Moreover, text retrieval collections often have a relatively small number of
queries, which means that only a small proportion of the phrasal terms will be used
at all. This is a strong argument against the use of text retrieval as an indirect way to
evaluate the quality of a phrasal index, initially pointed out by Fox (Fox, 1983).

There is a need to fill the lack of a general purpose direct evaluation technique, one
where no subjectivity or knowledge of the domain of application will interfere. Our
technique permits exactly that, and we will now explain how.

4.1. Hypothesis testing

A general approach to estimate the interestingness of a set of events is to mea-
sure their statistical significance. In other words, by evaluating the validity of the
assumption that an event occurs only by chance (the null hypothesis), we can decide
whether the occurrence of that event is interesting or not. If a frequent occurrence of a
multi-word unit was to be expected, it is less interesting than if it comes as a surprise.

To estimate the quality of the assumption that an n-gram occurs by chance, we
need to compare its (by chance) expected frequency and its observed frequency. There
exists a number of tests, extensively described in statistics textbooks, even so in the
specific context of natural language processing (Manning et al., 1999). In this paper,
we will base our experiments on the t-test:

t =
Obs_df(A1 → · · · → An, D) − Exp_df(A1 → · · · → An, D)

√

|D|Obs_DF (A1 → · · · → An)

4.2. Example of non-contiguous lexical units: MFS

Maximal Frequent Sequences (MFS) are word sequences built with an unlimited
gap, no stoplist, no POS analysis and no linguistic filtering. They are defined by
two characteristics; A sequence is said to be frequent if its document frequency is
higher than a given threshold. It is maximal, if there exists no other frequent sequence
that contains it. MineMFS (Ahonen-Myka et al., 2005) is a method that combines

Discontinued word sequences 33

breadth-first and depth-first search so as to extract all the MFSs of a document collec-
tion.

The nature of MFSs makes them correspond very well to our technique, since the
extraction algorithm provides each extracted MFS with its document frequency. To
compare the observed frequency of MFSs to their expected frequency is thus espe-
cially meaningful, and it will permit to order a set of MFSs based on their statistical
significance.

4.3. Experiments

4.3.1. Corpus

For experiments we used the publicly available Reuters-21578 newswire collec-
tion (Reuters-21578, 1987), which originally contains about 19, 000 non-empty docu-
ments. We split the data into 106, 325 sentences. The average size of a sentence is 26
word occurrences, while the longest sentence contains 260.

Using MineMFS with a minimum frequency threshold of 10, we obtained 4, 855
MFSs, distributed in 4, 038 2-grams, 604 3-grams, 141 4-grams, and so on. The
longest sequences had 10 words.

The expected document frequency and the t-test of all the MFSs were computed in
31.425 seconds on a laptop with a 1.40 Ghz processor and 512Mb of RAM. We used
an implementation of a simplified version of the algorithm that does not make use of
all the improvements presented in this paper.

4.3.2. Results

Table 1 shows the overall best-ranked MFSs. The number in parenthesis after
each word is its frequency. With Table 2, we can compare the best-ranked bigrams
of frequency 10 to their worst-ranked counterparts (which are also the worst-ranked
n-grams overall), noticing a difference in quality that the observed frequency alone
does not reveal.

It is important to note that our technique permits to rank longer n-grams amongst
pairs. For example, the best-ranked n-gram of a size higher than 2 lies in the 10th

position: “chancellor exchequer nigel lawson” with t-test value 0.02315, observed
frequency 57, and expected frequency 0.2052e− 07.

In contrast to this high-ranked 4-gram, the last-ranked n-gram of size 4 occupies
the 3, 508th position: “issuing indicated par europe” with t-test value 0.009698, ob-
served frequency 10, and expected frequency22.25e−07. Now, let us attempt to com-
pare our ranking, based on the expected document frequency of discontiguous word
sequences to a ranking obtained through a well-known technique. We must first un-
derline that such a “ranking comparison” can only be empirical, since our standpoint

34 TAL. Volume 46 – n˚2/2005

t-test n-gram expected observed
.0311 los(127) angeles(109) .0809 103
.0282 kiichi(88) miyazawa(184) .0946 85
.0274 kidder(91) peabody(94) .0500 80
.0267 morgan(382) guaranty(93) .2073 76
.0249 latin(246) america(458) .6567 67
.0243 orders(516) orders(516) 1.550 66
.0243 leveraged(85) buyout(145) .0720 63
.0240 excludes(350) extraordinary(392) .7995 63
.0239 crop(535) crop(535) 1.666 64
.0232 chancellor(120) exchequer(100) nigel(72) lawson(227) 2.052e-8 57

Table 1. Overall 10 best-ranked MFSs

t-test n-gram expected observed
9.6973-3 het(11) comite(10) .6430-3 10
9.6972-3 piper(14) jaffray(10) .8184-3 10
9.6969-3 wildlife(18) refuge(10) .0522-3 10
9.6968-3 tate(14) lyle(14) .1458-3 10
9.6968-3 g.d(10) searle(20) .1691-3 10
8.2981-3 pacific(502) security(494) 1.4434 10
8.2896-3 present(496) intervention(503) 1.4521 10
8.2868-3 go(500) go(500) 1.4551 10
8.2585-3 bills(505) holdings(505) 1.4843 10
8.2105-3 cents(599) barrel(440) 1.5337 10

Table 2. The 5 best- and worst-ranked bigrams of frequency 10

is to focus on general-purpose descriptors. It is therefore, by definition, impossible to
assess descriptors individually as interesting and not.

Evaluation through Pointwise Mutual Information
The choice of an evaluation technique to oppose is rather restricted. A compu-

tational advantage of our technique is that it does not use distance windows or the
distances between words. As a consequence, no evaluation technique based on the
mean and variance of the distance between words can be considered. Smadja’s z-
test (Smadja, 1993) is then out of reach. Another option is to apply a statistical test,
using a different technique to calculate the expected frequency of the word sequences.
We decided to opt for pointwise mutual information, as applied to collocation discov-
ery by Church and Hanks (Church et al., 1990), an approach we already mentioned in
the introduction of this paper.

Discontinued word sequences 35

Bigram Frequency Mutual Information
het(11) comite(10) 10 17.872

corpus(12) christi(12) 12 17.747
kuala(14) lumpur(13) 13 17.524
piper(14) jaffray(10) 10 17.524
cavaco(15) silva(11) 11 17.425
lazard(16) freres(16) 16 17.332

macmillan(16) bloedel(13) 13 17.332
tadashi(11) kuranari(16) 11 17.332

hoare(15) govett(14) 13 17.318
ortiz(16) mena(14) 13 17.225

Table 3. Mutual Information: the 10 best bigrams.

The rank of all word pairs is obtained by comparing the frequency of each pair
to the probability that both words occur together by chance. Given the independence
assumption, the probability that two words occur together by chance is the multiplica-
tion of the probability of occurrence of each word. And pointwise mutual information
is thus calculated as follows:

I(w1, w2) = log2
P (w1, w2)

P (w1)P (w2)
.

If I(w1, w2) is positive, and thus P (w1, w2) is greater than P (w1)P (w2), it means
than the words w1 and w2 occur together more frequently than chance. In practice, the
mutual information of all the pairs is greater than zero, due to the fact that the maximal
frequent sequences that we want to evaluate are already a selection of statistically
remarkable phrases.

As stated by Fano (Fano, 1961), the intrinsic definition of mutual information is
only valid for bigrams. Table 3 presents the best 10 bigrams, ranked by decreasing
mutual information. Table 4 shows the 5 best- and worst-ranked bigrams of frequency
10 (again, the worst ranked bigrams of frequency 10 are also the worst ranked over-
all). We can observe that, for the same frequency, the rankings are very comparable.
Where our technique outperforms mutual information is in ranking together bigrams
of different frequencies. It is actually a common criticism against mutual informa-
tion, to point out that the score of the lowest frequency pair is always higher, with
other things equal (Manning et al., 1999). For example, the three best-ranked MFS
in our evaluation, “Los Angeles”, “Kiichi Miyazawa” and “Kidder Peabody”, which
are among the most frequent pairs, rank only 191st, 261st and 142nd with mutual
information (out of 4, 038 pairs).

Mutual information is not defined for n-grams of a size longer than two. Other
techniques are defined, but they usually give much higher scores to longer n-grams,
and in practice, rankings are successions of decreasing size-wise sub-rankings. A
noticeable exception is the measure of mutual expectation (Dias et al., 2000).

36 TAL. Volume 46 – n˚2/2005

Bigram Frequency Mutual Information
het(11) comite(10) 10 17.872

piper(14) jaffray(10) 10 17.524
wildlife(18) refuge(10) 10 17.162

tate(14) lyle(14) 10 17.039
g.d(10) searle(20) 10 17.010

pacific(502) security(494) 10 6.734
present(496) intervention(503) 10 6.725

go(500) go(500) 10 6.722
bills(505) holdings(505) 10 6.693
cents(599) barrel(440) 10 6.646

Table 4. Mutual Information: the 5 best and worst bigrams of frequency 10.

Compared to the state of the art, the ability to evaluate n-grams of different sizes
on the same scale is one of the major strengths of our technique. Word sequences
of different size are ranked together, and furthermore, the variance in their rankings
is wide. While most of the descriptors are bigrams (4, 038 out of 4, 855), the 604
trigrams are ranked between the 38th and 3, 721st overall positions. For the 141 4-
grams, the position range is 10−3, 508.

5. Conclusion

The main contribution of this article is a novel technique for calculating the proba-
bility of occurrence of any given non-contiguous lexical cohesive relation (actually, of
any n sequential items of any data type), that is, the probability that those words occur,
and that they occur in a given order, regardless of which and how many other words
may occur between them. We found a Markov representation of the problem and
exploited the specificities of that representation to reach linear computational com-
plexity. The initial order of complexity of O(lnl−n) was brought down to O(ln). The
technique is mathematically sound, computationally efficient, and it is fully language-
and application-independent.

We further described a method that compares observed and expected document
frequencies through a statistical test as a way to give a direct numerical evaluation
of the intrinsic quality of a multi-word unit (or of a set of multi-word units). This
technique does not require the work of a human expert, and it is fully language- and
application-independent. It permits to efficiently compare n-grams of different length
on the same scale.

A weakness that our approach shares with most language models is the assumption
that terms occur independently from each other. In the future, we hope to present more
advanced Markov representations that will permit to account for term dependency.

Discontinued word sequences 37

6. References

Ahonen-Myka H., Doucet A., « Data Mining Meets Collocations Discovery », Inquiries into
Words, Constraints and Contexts, Festschrift in the Honour of Kimmo Koskenniemi, CSLI
Publications, Center for the Study of Language and Information, University of Stanford,
p. 194-203, 2005.

Choueka Y., Klein S. T., Neuwitz E., « Automatic Retrieval of frequent idiomatic and colloca-
tional expressions in a large corpus », Journal for Literary and Linguistic computing, vol.
4, p. 34-38, 1983.

Church K. W., Hanks P., « Word association norms, mutual information, and lexicography »,
Computational Linguistics, vol. 16, n˚ 1, p. 22-29, 1990.

Coppersmith D., Winograd S., « Matrix multiplication via arithmetic progressions », STOC’87:
Proceedings of the 19th annual ACM conference on Theory of computing, p. 1-6, 1987.

Dias G., Guilloré S., Bassano J.-C., Pereira Lopes J. G., « Extraction Automatique d’Unités
Complexes: Un Enjeu Fondamental pour la Recherche Documentaire », Traitement Au-
tomatique des Langues, vol. 41, n˚ 2, p. 447-472, 2000.

Fano R. M., Transmission of Information: A Statistical Theory of Information, MIT Press,
Cambridge MA, 1961.

Feller W., An Introduction to Probability Theory and Its Applications, vol. 1, third edn, Wiley
Publications, 1968.

Fox E. A., Some Considerations for Implementing the SMART Information Retrieval System
under UNIX, Technical Report n˚ TR 83-560, Department of Computer Science, Cornell
University, Ithaca, NY, September, 1983.

Frantzi K., Ananiadou S., Tsujii J.-i., « The C-value/NC-value Method of Automatic Recogni-
tion for Multi-Word Terms », ECDL ’98: Proceedings of the Second European Conference
on Research and Advanced Technology for Digital Libraries, Springer-Verlag, p. 585-604,
1998.

Horn R. A., Johnson C. R., Topics in matrix analysis, Cambridge University Press, New York,
NY, USA, 1994.

Manning C. D., Schütze H., Foundations of Statistical Natural Language Processing, second
edn, MIT Press, Cambridge MA, 1999.

Mitra M., Buckley C., Singhal A., Cardie C., « An analysis of statistical and syntactic phrases »,
Proceedings of RIAO97, Computer-Assisted Information Searching on the Internet, p. 200-
214, 1987.

Noble B., Daniel J. W., Applied Linear Algebra, second edn, Prentice Hall, p. 361-367, 1977.

Reuters-21578, « Text Categorization Test Collection, Distribution 1.0 », 1987.
http://www.daviddlewis.com/resources/testcollections/reuters21578.

Smadja F., « Retrieving Collocations from Text: Xtract », Journal of Computational Linguistics,
vol. 19, p. 143-177, 1993.

Tanaka T., Villavicencio A., Bond F., Korhonen A., (eds). Second ACL Workshop on Multiword
Expressions: Integrating Processing, 2004.

Vechtomova O., « The Role of Multi-Word Units in Interactive Information Retrieval », Pro-
ceedings of the 27th European Conference on Information Retrieval, Santiago de Com-
postela, Spain, p. 403-420, 2005.

