
Accurate Retrieval of XML Document Fragments using
EXTIRP

Antoine Doucet
∗

Lili Aunimo Miro Lehtonen Renaud Petit
Department of Computer Science
P. O. Box 26 (Teollisuuskatu 23)

FIN–00014 University of Helsinki
Finland

[Antoine.Doucet|Lili.Aunimo|Miro.Lehtonen|Renaud.Petit]@cs.Helsinki.FI

ABSTRACT
EXTIRP1, a novel XML retrieval system, aims at finding
elements with exact coverage by first dividing XML docu-
ments into a set of minimal XML fragments and then rank-
ing and combining them into retrieved document fragments.
With respect to a query, a similarity measure is computed
for each fragment by combining the scores of a vector space
model with term-based features and a text phrase model.
The similarity measures are propagated bottom-up from the
smallest units to article-sized ancestor elements. The system
also includes query expansion, with which the score calcula-
tion can be iterated.

1. INTRODUCTION
In this paper, we focus on the problem of finding an an-
swer with optimal coverage of the topic, given an unstruc-
tured query (CO topics in INEX). That is, we want to find
a trade-off between responding to a query with a 15 page
article and a fragment that is not sufficient when deprived
of its context. The architecture of the interactive part of the
system is presented in Figure 1. As input, the system takes
a CO topic, and as output, it gives a ranked list of document
fragments. In Figures 2 and 3, the non-interactive part of
the system is described. This non-interactive part is run
offline when the system is taken into use or when the docu-
ment collection changes. Figure 2 shows how the document
collection is transformed into inverted indices consisting of
document fragments of different granularities. Figure 3 il-
lustrates how an inverted text phrase index is created for
each of the different granularities. MFS stands for Maximal
Frequent Sequence (see Section 3.3.1 for definition).

Previously, every single element of the document collection
has been indexed, e.g., see [6, 7], but modeling and comput-
ing a Retrieval Status Value (RSV) for each element causes
a clear problem with efficiency. We limit the set of indexed
elements to those that can be retrieved on their own, and
define the minimal unit of retrieval, such that none of its
parts is big enough to be of interest by itself. An RSV
is computed for each minimal unit using words as features
in the vector space model and multiword expressions. The

∗This author is supported by the Academy of Finland
(project 50959; DoReMi - Document Management, Infor-
mation Retrieval and Text Mining)
1EXacT coverage IR based on static Passage clusters

INPUT: A topic

Topic processing

EXTIRP:
Match topic with records

from document
fagment databases,

calculate joined
 RSV value,

perform upward
 propagation

Processed topic
Document
fragments

represented as
word features

Document
 fragments

represented as
MFS features

Query expansion

Expanded topic

OUTPUT: Ranked list of
document fragments

Figure 1: The system architecture of the interactive
part of EXTIRP.

RSVs of the minimal units are finally propagated upwards
to their ancestors. One or more query expansion steps can
be iterated to form more extensive topic descriptions.

Section 2 describes the XML-related processing of the doc-
ument collection. Our document and query models are pre-
sented in Section 3, followed by the corresponding tech-
niques to evaluate similarities within these models in Sec-
tion 4. We explain our query expansion technique in Sec-
tion 5. The system description ends in Section 6, where we
present the method used to propagate RSVs upwards. We
finally describe our runs in Section 7 and conclude.

2. PREPARATORY PROCEDURES
Finding the most relevant text documents for each given
topic is the basic problem to be solved in traditional IR.
But, as the document collection is in XML format, we can
identify two additional challenges that must be overcome
before any traditional IR methods can be applied. First, the
document collection consists of 125 XML documents which
alone are too big to be retrieved on their own. Therefore, the
collection is divided into smaller XML units which we shall
call XML fragments. Second, the XML fragments contain all
the XML markup that is present in the original XML format.

IEEE
document
collection

Create
MRUs

Section
collection

Paragraph
collection

Processing
(stop word pruning

and stemming)

Inverted word
term index
for sections

Inverted word
term index

for paragraphs

OUTPUT:

INPUT:

Figure 2: This module transforms the IEEE docu-
ment collection into word term indices.

Document
fragments

represented by
word features

INPUT:

K-means
clustering
algorithm

JOIN
Concatenate

the MFS indices
into one

MFS index Inverted MFS
index for

document fragmentsOUTPUT:

k clusters :

k MFS indices:
Form MFSs
separately
for each
cluster

Figure 3: This module forms MFS indices. It is run
separately for each of the different levels of granu-
laritry.

Our goal is to convert the XML fragments into a text-only
format where all XML markup has been removed without
losing any of the information that is implicitly or explicitly
coded in the XML structure of the original documents.

2.1 Division of the collection
The division of the collection was performed at two differ-
ent levels of granularity called section-level and paragraph-
level divisions. The levels for these two separate divisions
were defined manually by looking into both the XML DTD
and the XML documents. For example, the division into
section-sized fragments concerned the following XML ele-
ments: sec, fm, bm, dialog, vt. In the document tree,
all of these elements are close descendants of the article

element, and none of them have text node children. In a
similar fashion, the paragraph-sized elements taken into ac-
count in the paragraph-level division are p, p1, p2, ip1,

ip2, ip3, bq. These elements have text node children, and
also, most of the text content of the collection is covered by
choosing these elements. A similar approach with a different
set of element names was chosen by Ben-Aharon et al. [3].

By carefully defining the set of similar elements for each
level, we intend to approximate an unsupervised division
into fragments that is based on structural features only.
Moreover, concentrating on structural similarity and dis-
carding the information about element names will set us
free from any particular document type or DTD. One might
argue that contextual information is neglected by ignoring
information specific to the document type. We believe, how-
ever, that identical content should be valued equally whether
its parent element is called sec (section) or bm (back mat-
ter). Automating the division still remains part of our future
work.

Intra-document links create connections between related XML
elements. For example, footnotes are linked to the para-
graphs that have a reference to the footnote element. Other
examples include figure and table captions, biographical and
bibliographical information, and other out-of-line content.
Fragmentation of the collection separates linked elements
unless both ends of the link belong to the same fragment.
To avoid this, we have included some of the referred content
that would increase the informational value of the fragment.
Again, finding the intra-document links is possible without
knowing the document type by a careful analysis of attribute
values.

After the division, we have a collection of XML fragments.
Each fragment is considered independent of the others, al-
though information about the origin of the fragment is still
included. The fragments can be combined later to make
results with wider coverage, but dividing them further is
hardly sensible as the size of a fragment is already sup-
posed to be sufficiently small. In our system, these XML
fragments constitute what are defined as Minimal Retrieval
Units (MRU).

2.2 Structural conversion
The XML structure of an MRU is not ideal for linguistic
processing. Although XML is a textual format and the
tag names often are words, the semantics of the markup
is different from that of the actual text content and thus

should be treated differently. Our goal of a text-only format
is achieved by simply removing all markup; however, this
would lead to the loss of all the information carried by the
structure. To avoid this unnecessary information loss, we
suggest that the structure be analysed and utilised to the
greatest extent possible before being removed.

Unlike Ben-Aharon et al., we set a goal that the structural
analysis must not be specific to any document type. As a
consequence, no particular element type has a special way of
being processed, and also, elements of the same type are pro-
cessed differently under different structural circumstances.
Only the structural properties of an element should deter-
mine the way it is handled.

The starting point of the analysis is the highest level of text
nodes in the tree representation of the XML fragment. Any
text node at a lower level is seen to stand out, and it is
usually formatted differently in a printable version of the
document. For example, all the text with added emphasis is
marked with inline-level tags which often imply changes in
the current typeface. Although not all inline-level elements
denote a change in the typeface, we have found heuristics
with which we can automatically determine whether added
emphasis or other inline-level content is in question. Af-
ter detecting the emphasised content, we can remove the
tags and preserve the emphasis by giving the content more
weight in the index than the unemphasised content, e.g. by
repetition.

3. DOCUMENT AND QUERY MODELS
In our approach, we represent the MRUs by word features
of the vector space model, and by multiword expressions
accounting for the sequential aspect of text. An RSV is
computed for each of those two representations. These val-
ues are later combined to form a single RSV per MRU, that
will later be propagated to parent nodes as described in Sec-
tion 6.

3.1 Preprocessing
The first step of the modeling phase is to cleanse the data.
We do this by skipping a set of words that are considered
least informative, the stopwords. We also discarded all words
of small size (less than three characters).

In addition, we reduced each word to its stem using the
Porter algorithm [10]. For example, the words “models”,
“modelling” and “modeled” were all stemmed to “model”.
This technique for reducing words to their stems allows fur-
ther reduction of the number of term features.

This feature selection phase brings more computational com-
fort for the next steps since it greatly reduces the size of
the document collection representation in the vector space
model (the dimension of the vector space).

3.2 Modeling document fragments
The set of the remaining word stems W is used to represent
the MRUs of the document collection within the vector space
model. Each minimal retrieval fragment is represented by
a ‖W‖-dimensional vector filled in with a weight standing
for the importance of each word w.r.t. that fragment. To

calculate this weight, we used a normalized tfidf variation
following the “tfc” term-weighting components as detailed
by Salton et al. [13], that is:

tfidfw =
tfw · log N

nw� �
wi∈W � tfwi

· log N
nwi � 2

,

where tfw is the term frequency of the word w. N is the
total number of MRUs in the document collection and n the
number of MRUs in which w occurs.

3.3 Extracting Maximal Frequent Sequences

3.3.1 Definition and technique
Maximal Frequent Sequences (MFS) are sequences of words
that are frequent in the document collection and, moreover,
that are not contained in any other longer frequent sequence.
Given a frequency threshold σ, a sequence is considered to
be frequent if it appears in at least σ documents.

Ahonen-Myka presents an algorithm combining bottom-up
and greedy methods in [1], that permits to extract max-
imal sequences without considering all their frequent sub-
sequences. This is a necessity, since maximal frequent se-
quences may be rather long.

Nevertheless, when we tried to extract the maximal frequent
sequences from the collection of MRUs obtained as described
in Section 2, their number and the total number of word fea-
tures in the collection did pose a clear computational prob-
lem and did not actually permit to obtain any result.

To bypass this complexity problem, we partitioned the col-
lection of MRUs into several disjoint subcollections, small
enough so that we could efficiently extract the set of max-
imal frequent sequences of each subcollection. Joining all
the MFS sets, we obtained an approximate of the maximal
frequent sequence set for the full collection. This process is
shown in Figure 3.

We conjecture that more consistent subcollections permit to
obtain a better approximation. This is due to the fact that
MFSs are formed from similar text fragments. Followingly,
we formed the subcollection by clustering similar documents
together using the common k-means algorithm (see for ex-
ample [17, 5]).

3.3.2 Main Strengths of the MFSs
The method efficiently extracts all the maximal frequent
word sequences from the collection. From the definitions
above, a sequence is said to be maximal if and only if no
other frequent sequence contains that sequence.

Furthermore, a gap between words is allowed: in a sentence,
the words do not have to appear continuously. A parameter
g tells how many other words two words in a sequence can
have between them. This parameter g usually gets values
between 1 and 3.

For instance, if g = 2, a phrase “president Bush” will be
found in both of the following text fragments:
...President of the United States Bush...

...President George W. Bush...

Note: Articles and prepositions were pruned away.

This allowance of gaps between words of a sequence is prob-
ably the strongest specificity of the method, compared to
the other existing methods for extracting text phrase de-
scriptors. This greatly increases the quality of the phrases,
since the variety of natural language is taken into account.

Another strength of the technique is the ability to extract
maximal frequent sequences of any length. This permits
to obtain a very compact description of documents. For
example, by restricting the length of phrases to 8, a maximal
frequent sequence of 25 words would have to be represented
by thousands of phrases of size 8, even though they would
represent the same knowledge !

3.4 Modeling queries
To build our queries, we only considered words found in
the <title> and <keywords> elements. For consistency, we
applied the same preprocessing to them as to MRUs.

Vector space model. A novelty in INEX 2003 was the
possibility to precede keywords with various operators. A
keyword preceded by “-” meant that this word was not de-
sired, whereas a keyword preceded by “+” indicated that
this word was especially important. We attached different
weights to keywords preceded by such operators:

• no prefix operator: the normal case, weight 1

• +: especially important, weight 1.5

• -: especially not desired, negative weight -1

In practice, things were not that simple, since the same word
could occur within two phrases with contradictory operators
(e.g., “language” in topic 111 occurs in -“programming lan-
guage” and in +“human language”). In such rare cases, we
ignored the word (weight: 0).

Keyphrases. All the phrases occurring in the <title> and
<keywords> elements are stored in the (possibly empty) set
of keyphrases representing the topic. For example, topic 117
(see Figure 4) will be represented by the 4 phrases: “Patri-
cia Tries”, “text search”, “string search algorithm”, “string
pattern matching”.

4. EVALUATING DOCUMENTS
Once document fragments and queries are represented within
our two models, a way to estimate the relevance of a frag-
ment w.r.t. a query remains to be found. As mentioned
earlier, we compute separate RSVs for the word features
vector space model and the MFS model. In a second step,
we aggregate these two RSVs into one single relevance score
for each document fragment w.r.t. a query.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE inex_topic SYSTEM "topic.dtd">

<inex_topic topic_id="117" query_type="CO"

ct_no="98">

<title>Patricia Tries </title>

<description>Find documents/elements that describe

Patricia tries and their use.</description>

<narrative>To be relevant, a document/element

must deal with the use of Patricia Tries for text

search. Description of the standard algorithm,

optimisied implementation and use in Information

retrieval applications are all relevant.

</narrative>

<keywords>Patricia tries, tries, text search,

string search algorithm, string pattern matching

</keywords>

</inex_topic>

Figure 4: Topic 117.

4.1 Word features RSV
The vector space model offers a very convenient framework
for computing similarities between MRUs and queries. In-
deed, there exists a number of techniques to compare two
vectors. Eucclidean distance, Jaccard and cosine similarity
being the most frequently used in IR. We have used co-
sine similarity because of its computational efficiency. By

normalizing the vectors, cosine(
−→
d1,

−→
d2) indeed simplifies to

vector product (d1 · d2).

4.2 MFS RSV
To compute a RSV using MFSs, the first step is to create
an MFS index for the MRU collection. Once a set of MFSs
has been extracted and each document fragment has been
attached to its corresponding phrases, as detailed in Sec-
tion 3.3, it only remains to define the procedure to match
a phrase describing a MRU to a keyphrase and compute a
corresponding RSV for each MRU.

Note that from here onwards, keyphrase denotes a phrase
found in a query, and maximal sequence denotes a phrase
extracted from a document fragment.

To compare keyphrases and MFSs, our approach consists
of decomposing keyphrases of a query into pairs. Each of
these pairs is bound to a score representing its quantity of
relevance. Informally speaking, the quantity of relevance of
a word pair tells how much it makes a document relevant
to include an occurrence of this pair. This value depends
on the specificity of the pair (expressed in terms of inverted
document frequency) and modifiers, among which an adja-
cency coefficient, reducing the quantity of relevance given to
a pair formed by two words that are not adjacent.

4.2.1 Definitions:
Let D be a collection of N document fragments and A1 . . . Am

a keyphrase of size m. Let Ai and Aj be 2 words of A1 . . . Am

occurring in this order, and nAiAj
be the number of MRUs

of the collection in which AiAj was found. We define the
quantity of relevance of the pair AiAj as:

Qrel(AiAj) = idf(AiAj) · adj(AiAj),

where idf(AiAj , D) represents the specificity of AiAj in the
collection D:

idf(AiAj) = log � N

nAiAj � ,

and when decomposing the keyphrase A1 . . . Am into pairs,
adj(AiAj) is a score modifier to penalize word pairs AiAj

formed from non adjacent words. d(Ai,Aj) indicates the
number of words appearing between the two words Ai and
Aj (d(Ai,Aj) = 0 means that Ai and Aj are adjacent):

adj(AiAj) = ���
��

1, if d(Ai,Aj) = 0
α1, 0 ≤ α1 ≤ 1, if d(Ai,Aj) = 1
α2, 0 ≤ α2 ≤ α1 if d(Ai,Aj) = 2
. . .

αm−2, 0 ≤ αm−2 ≤ αm−3, if d(Ai,Aj) = m−2

Followingly, the larger the distance between the two words,
the lowest quantity of relevance is attributed to the corre-
sponding pair. In our runs, we will actually ignore distances
higher than 1 (i.e., (k > 1) ⇒ (αk = 0)).

4.2.2 Example:
For example, ignoring distances above 1, a keyphrase ABCD
is decomposed into 5 tuples (pair, adjacency coefficient):

(AB, 1), (BC, 1), (CD, 1), (AC, α1), (BD, α1)

Let us compare this keyphrase to the documents d1, d2, d3, d4

and d5, described respectively by the frequent sequences AB,
AC, AFB, ABC and ACB. The corresponding quantities of
relevance brought by the keyphrase ABCD are shown in
table 1.

Assuming equal idf values, we observe that the quantities
of relevance form a meaningful order. The longest matches
rank first, and matches of equal size are untied by adjacency.
Moreover, non adjacent matches (AC and ABC) are not
ignored as in many other phrases representations [9].

4.3 Aggregated RSV
In practice, some queries do not contain any keyphrase, and
some documents do not contain any MFS. However, there
can of course be correct answers to these queries, and those
documents can be relevant answers to some queries. Also, all
document fragments containing the same matching phrases
get the same MFS RSV. Therefore, it is necessary to find
a way to separate them. The word-based cosine similarity
measure is very appropriate for that.

Another possible response would have been to further de-
compose the pairs into single words and form fragment vec-
tors accordingly. However, this would not be satisfying, be-
cause the least frequent words are missed by the algorithm
for MFS extraction. An even more important category of

missed words is that of frequent words that do not frequently
cooccur with other words. The loss would be considerable.

This is the reason to compute another RSV using a basic
word-features vector space model. To combine both RSVs
to one single score, we must first make them comparable by
mapping them onto a common interval. To do so, we used
Max Norm, as presented in [14], which permits to bring all
positives scores within the range [0,1]:

New Score =
Old Score

Max Score

Following this normalization, we aggregate both RSVs us-
ing a linear interpolation factor λ representing the relative
weight of scores obtained with each technique (similarly as
in [8]).

Aggregated Score = λ·RSVWord Features+(1−λ)·RSVMFS

The evidence of experiments with the INEX 2002 collection
showed good results when weighting the single word RSV
with the number of distinct word terms in the query (let
a be that number), and the MFS RSV with the number of
distinct word terms found in keyphrases of the query (let b

be that number). Thus:

λ =
a

a + b

For example, in Figure 4 showing topic 117, there are 11
distinct word terms and 7 distinct word terms occurring in
keyphrases. Thus, for this topic, we have λ = 11

11+7
.

5. QUERY EXPANSION
Query expansion (QE) was used in two of the three runs that
we submitted to INEX 2003. Both of these runs performed
better than the one with no expansion at all. However, as
the two official runs using QE also contained some other pa-
rameters that differed from those used in the run without
QE (See Section 7 for a detailed description of the parame-
ters.), these runs cannot be used to assess the performance
of QE. We did a separate experiment to assess the perfor-
mance of QE alone, and it showed that the average precision
was increased by 11,5 % (from 0.0357 to 0.0398) when using
the strict measure and by 44 % (from 0.0207 to 0.0298) when
using the generalized measure. In the rest of this chapter
we will first describe some background concepts of QE. In
Section 5.2, we will describe our QE method, and in 5.3, we
will describe further work in developing the method.

5.1 Background
It is generally agreed that modern variants of query expan-
sion improve the results of a query engine [2]. However, there
are many different ways in which QE can be performed.
Some methods are based on relevance feedback, which can
be blind or which can involve feedback from the user. In
both cases, the QE approach is local because it is based

Document MFS Corresponding pairs Matches Quantity of relevance

d1 AB AB AB idf(AB)
d2 ACD AC CD AD AC CD idf(CD) + α1·idf(AC)
d3 AFB AF FB AB AB idf(AB)
d4 ABC AB BC AC AB BC AC idf(AB) + idf(BC) + α1·idf(AC)
d5 ACB AC CB AB AC AB idf(AB) + α1·idf(AC)

Table 1: Quantity of relevance stemming from various MFSs w.r.t. a keyphrase query ABCD

on the retrieved set of documents. A global QE approach
uses the the information derived from the whole document
collection. Modern global QE methods usually use an auto-
matically constructed thesaurus [11, 4]. Other methods are
based on manually crafted thesauri, such as WordNet, but
experimental studies have shown that if the expansion terms
from such theasuri are selected automatically, QE can even
degrade the performance of the system [16].

5.2 The Process
Our QE process can be considered a form of blind relevance
feedback that has been inspired by the standard Rocchio
way [12] of calculating the modified query vectors. However,
it is different from the traditional relevance feedback frame-
work in that it takes into account only positive terms and
no negative terms and in that it does not take into account
all of the terms in the fragments, but only the best ones.
This limits in practice the number of expansion terms per
QE iteration between zero and ten. However, experimen-
tal studies have shown that even a few carefully selected
QE terms can considerably improve the performance of a
system [15].

Here is the outline of the process:

1. Run EXTIRP. The output from EXTIRP is a set of
ranked lists of document fragments. There is one list
per topic and the fragments are ranked according to
their RSVs with regard to the topic.

2. Take the ten topmost items of each list.

3. Calculate the similarity threshold value.

4. For each topic do:

(a) Take those fragments whose RSV is greater than
the similarity threshold value. Make a list of
words occurring in these fragments followed by
their frequency count, and sort by frequency.

(b) Take the ten topmost words and expand the topic
with them.

(c) Multiply the weights of the old terms by two and
give the new terms a weight of 1.

5. Run EXTIRP with the expanded topics.

We will now describe each of the steps in the process in
more detail. In steps 1 and 5 EXTIRP is run with the same
parameters and the RSV is calculated according to these.
This means that the only things that change from the first

iteration to the second are the keywords in the topic and
the threshold value for similarity.

In step 3, the similarity threshold for a given topic is deter-
mined in the following way: Read the topmost RSV of the
matches for each topic and maintain a list of the six smallest
values. The threshold value is the highest one among the
six smallest values. This way of determining the similarity
threshold value implies that there are always at least six
topics that are not expanded. The topics vary a lot and it
is thus necessary to treat them differently from each other.
The number six was determined by training the QE method
on the topics and assesments of the year 2002. This step
of determining the similarity threshold value is crucial to
the success of the QE step, because running EXTIRP with
different parameters results in radically different RSVs.

In step 4 (a), a list of words occurring in the fragments is cre-
ated. This list is pruned from stopwords, and the remaining
words are stemmed with the Porter stemmer2[10]. A stan-
dard list for English language as well as a collection-specific
list is used as a stopword list. The collection-specific list is
created simply by gathering the most frequent terms in the
collection.

In step 4 (c), the weights of the old terms are multiplied
by two and the new terms are given a weight of 1. The
possible weights of the old terms are: -1, 1 and 1.5. This
means that the term weights in the expanded topic vectors
can have the following values: -2, 1, 2 and 3. The topic
vectors are normalized so that their length is one when they
are processed by EXTIRP.

5.3 Improvement and further work
The above QE method can be developed further in many
ways. We plan to treat different topics in more individual
ways, run the method through more iterations and perform
QE on negative query terms as well. For example, EXTIRP
can be run separately for each topic instead of running it for
all topics at the same time. This would mean a loop in step
4. In this loop, EXTIRP would be run for each topic until
the RSVs of the resulting fragments reach a stable level. In
this way, the number of iterations performed per topic would
vary. The topics that perform well in the beginning would
receive less attention than those which do not perform well
in the beginning but that have a potential for improvement.

Expansion of negative query terms can be performed in a
similar way as expansion of positive query terms. In negative

2The program was obtained from
http://www.tartarus.org/ martin/PorterStemmer/

1. Initialisation:

• ∀n ∈ N , score(n)=0

• ∀m ∈ M , score(m)=RSV(m)

2. Iterate:

• ∀m ∈ M : ∀nm ∈ N such that nm is an ancestor
of m, score(nm) = score(nm) + score(m)

3. Final step:

• ∀n ∈ N , score(n)= score(n)

(size(n))UP F

Figure 5: Greedy upward propagation algorithm.

expansion, we will run EXTIRP with the negative terms and
expand the topics with those terms that are most common
in the matches of this negative query.

6. UPWARD PROPAGATION OF MRU’S
The result of the previous steps is the assignment of an RSV
to each MRU of the document collection. In this section, we
propose a technique for assigning an RSV to each of their
ancestors.

Its principle is to propagate upwards the relevance value of
each MRU, weighting it upon the size of the corresponding
element. We define the size of an element to be the sum of
the sizes of all its MRU descendants. In turn, the size of an
MRU is the number of characters it contains.

Let A be an XML document, N the set of elements of A,
and M the set of MRUs of A. We compute the score of
each element n ∈ A as shown in Figure 5. UPF (Upward
Propagation Factor) is a parameter that modulates the im-
portance of the size of the elements. High UPF values give
more penalty to big elements, and cause smaller ones to be
promoted. On the other hand, if UPF=0, for any given
article, the best score will always be given to the full article.

Because we assume that users go through answers in in-
creasing rank order, we decided to avoid to propose them a
document fragment they had already seen. Therefore, as a
postprocessing, we decided to prune every element having an
ancestor with a higher rank. This implies for instance, that
if UPF=0, the set of answers will only contain full articles.

7. OUR RUNS
Our three official runs are described below. More details
and the corresponding results are presented in Table 2.

• UHel-Run1.

– Number of clusters: 200

– MFS frequency threshold: σ = 7

• UHel-Run2.

– Number of clusters: 100

– MFS frequency threshold: σ = 7

• UHel-Run3.

– Number of clusters: 100

– MFS frequency threshold: σ = 7

The results of our first run are based on the paragraph-level
division. Section-sized and bigger results are composites of
the paragraph-sized fragments. Combining the paragraphs
relies heavily on the upward propagation method described
in Section 6. Due to their small size, paragraph-level frag-
ments could benefit from Query Expansion more than bigger
fragments, which partly explains the low evaluation scores
of our first run. Also, small elements are more sensitive to
changes in the fragment combination process.

The minimal result granularity of the second and the third
run is a section. The section-level fragment count is sub-
stantially smaller than the corresponding paragraph count,
which makes it slightly easier to find the best fragments for
each query.

8. CONCLUSIONS
We came up with a new technique for exploiting the logi-
cal structure of XML documents so as to give more focused
answers to information retrieval queries. We developed a
system with the new ideas implemented, and the runs were
submitted to INEX 2003. After preliminary observation, we
notice that EXTIRP performs best at the very beginning of
the top 1,500 answers where recall is relatively low. Consid-
ering the answers ranking between 1 and 50, our best runs
are among the top of all submissions for CO topics.

There is a number of improvements to be achieved. First, we
plan to reuse the clusterings formed prior to the extraction of
maximal frequent sequences, aiming at query optimization.
The idea is that by comparing queries to centroids of MRU
clusters, we will be able to efficiently skip large quantities of
MRUs, without having to compute similarity measures for
each minimal unit individually.

Another concern is the fact that the current upward prop-
agation formula is exponential in nature, meaning a small
variation in the UPF factor can cause a switch from a set
of answers with a large majority of minimal units to a set
of answers with a large majority of full articles. Part of our
future work is to explore the various ways to smooth this
effect.

9. REFERENCES
[1] H. Ahonen-Myka. Finding All Frequent Maximal

Sequences in Text. In Proceedings of the 16th
International Conference on Machine Learning
ICML-99 Workshop on Machine Learning in Text
Data Analysis, Ljubljana, Slovenia, pages 11–17. J.
Stefan Institute, eds. D. Mladenic and M. Grobelnik,
1999.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern
Information Retrieval. Addison-Wesley, ACM Press,
New York, 1999.

[3] Y. Ben-Aharon, S. Cohen, Y. Grumbach, Y. Kanza,
J. Mamou, Y. Sagiv, B. Sznajder, and E. Twito.

Runs MRU Granularity UPF QE strict generalized

UHel-Run1 paragraph 2 no 0.0061 (51st) 0.0105 (46th)
UHel-Run2 section 2 yes 0.0323 (31st) 0.0222 (39th)
UHel-Run3 section 5 yes 0.0449 (20th) 0.0235 (38th)

Table 2: Results and ranks of our official runs (out of 56).

Searching in an XML Corpus Using Content and
Structure. In Proceedings of the Second Workshop of
the Initiative for the Evaluation of XML Retrieval
(INEX), Schloss Dagsuhl, Germany, 2003.

[4] C. J. Crouch and B. Yang. Experiments in automatic
statistical thesaurus construction. In Proceedings of
the 15th ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 77–88,
Copenhagen, Denmark, 1992.

[5] A. Doucet and H. Ahonen-Myka. Naive clustering of a
large XML document collection. In Proceedings of the
First Workshop of the Initiative for the Evaluation of
XML Retrieval (INEX), pages 81–87, Schloss Dagsuhl,
Germany, 2002.

[6] K. Hatano, H. Kinutani, M. Yoshikawa, and
S. Uemura. Information Retrieval System for XML
Documents. In Proceedings of the 13th International
Conference on Database and Expert Systems
Applications (DEXA 2002), pages 758–767, 2002.

[7] D. Hiemstra. A Database Approach to Content-based
XML Retrieval. In Proceedings of the First Workshop
of the Initiative for the Evaluation of XML Retrieval
(INEX), pages 111–118, Schloss Dagsuhl, Germany,
2002.

[8] J. Kamps, M. Marx, M. de Rijke, and
B. Sigurbjörnsson. The Importance of Morphological
Normalization for XML Retrieval. In Proceedings of
the First Workshop of the Initiative for the Evaluation
of XML Retrieval (INEX), pages 41–48, Schloss
Dagsuhl, Germany, 2002.

[9] M. Mitra, C. Buckley, A. Singhal, and C. Cardie. An
analysis of statistical and syntactic phrases. In
Proceedings of RIAO97, Computer-Assisted
Information Searching on the Internet, pages 200–214,
1987.

[10] M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, 1980.

[11] Y. Qiu and H. Frei. Concept based query expansion.
In Proceedings of the 16th ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 160–169, Pittsburgh, PA, USA, 1993.

[12] J. J. Rocchio. Relevance feedback in information
retrieval. In Salton, G., editor, The SMART Retrieval
System - Experiments in Automatic Document
Processing. Prentice Hall Inc., 1971.

[13] G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing
and Management: an International Journal,
24(5):513–523, 1988.

[14] C. C. Vogt and G. W. Cottrell. Predicting the
performance of linearly combined IR systems. In
Research and Development in Information Retrieval,
pages 190–196, 1998.

[15] E. Voorhees. Relevance feedback revisited. In
Proceedings of the 15th ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 1–10, Copenhagen, Denmark, 1992.

[16] E. Voorhees. Query expansion using lexical-semantic
relations. In Proceedings of the 17th ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 61–69, Dublin, Ireland,
1994.

[17] P. Willett. Recent trends in hierarchic document
clustering: a critical review. In Information Processing
and Management, 24(5):577–597, 1988.

