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Abstract

In this paper, we present a new technique for the extractialiscontiguous sequential descriptors from text. We ate &bform word
sequences without any restriction on their size or on thiadce between their components. Based on the concept ofimaldrequent
sequence (MFS), our approach allows for the extraction afpgart text descriptors of quality in a more efficient mantemt other
previously known techniques. It further scales up to doaurnsellections of virtually any size, when other approachesmally fail for
collections large enough. After a review of the related warkl the presentation of our approadi,F'S_MineSweep, we introduce
measures of the quality and quantity of information in a $etemuential descriptors representing a document catlectiVe finally
present experiments whose results demonstrate the fealpplicability and superiority of the proposed method.

1. Introduction rent best-performing algorithm for the extraction of MFSs
. in text and expose some of its limitations. In Section 3,
Most document models rely on single word terms. A o — .
trend to improve this fact is to extract and use multi—wordWe will introduce our contribution)/ £S5 _MineSweep, a

P technique that relies upah/ineM F'S to extract relevant

units or phrases. The problem of detecting such cohesivg . ) .
. o o : ocument descriptors from document collections of virtu-
lexical units is a very difficult one as the number of possible

word compounds in text is enormous and a vast maiorit 0]gally any size. We will then introduce a set of metrics for the
P . . . 10Ny Olvaluation of a sequence-based document description (Sec-
them do not constitute true multi-word units.

) ) tion 4). Before concluding the paper, we will present and
Exhaustive approaches are clearly exponential and rjiscuss our experiments in Section 5

searchers have therefore always had to place several re-
strictions on the search space, such as a maximal phrase .
length (Church and HanEs, 1990), fixed relative Sosi— 2. Maximal Frequent Sequence (MFS)

tions (Dias, 2003), or linguistic filtering (Mitra et al., 89). In this section, we will introduce the concept of a Maxi-
Maximal frequent sequences (MFS) (Ahonen-Myka andmal Frequent Sequence in further detail (Ahonen-Myka and
Doucet, 2005) are a type of phrases that presents the afoucet, 2005). We will then overview the data mining tech-
vantage to remove most of these constraints. They can baiques that aim at the extraction of sequential patterrns, an
formed of words separated by any distance and they are ngarticularly those that permit to extract MFSs.

restricted in length. MFSs as content descriptors present

two major strengths. Firstly, they offer a very compact2.1. Definitions

description: with a maximal phrase length of 8 words, it Definition 1 A sequence = a; - - - ai is a subsequence
takes thousands of 8-sequences to replace a single phrasegdfa sequence if all the itemsa;, 1 < i < k, occur ing
length 20 (precisely(’) = 125970 such sequences). Sec- and they occur in the same order asgin If p is a subse-
ondly, they do not require any knowledge about the datayuence of;, we also say thap occursin ¢ and thatq is a

at hand. They can therefore be applied to documents iBupersequenasf p.

any domain and written in any language. We believe this

isa very strong point when billions of heterogeneous doc-  For instance, the sequenﬁenfair practices" can be
uments coexist in real-world document collections such asound in all of the three sentences in Figure 1.

the World Wide Web.

This paper presents two contributions. The first one isDefinition 2 A sequence is frequentin a set of fragments
MFS_MineSweep, a technique relying on MFSs to ex- S if p is a subsequence of at leasfragments ofS, where
tend the extraction of compact sequential descriptors t@r is a given frequency threshold.
very large document collections. The resulting phrasal
document descriptions are far more exhaustive and have a If we assume that the frequency threshold,isve can
higher discriminative power. The second contribution & th find the following frequent sequences in our sample set
introduction of metrics to measure the quality and densityof sentences‘congress retaliation against foreign unfair
of a sequence-based representation of a document collerade practices”and“unfair practices” (Fig. 1).
tion.

In the next section, we will formally define the concept Definition 3 A sequencep is a maximal frequent
of a Maximal Frequent Sequence (MFS) and review thgsub)sequende a set of fragments' if there does not exist
current state of the art of work addressing the problem ofany sequencg’ in S such thap is a subsequence pfand
their extraction We will then presedt/ineM F'S, the cur-  p’ is frequent inS.



1. TheCongresssubcommittee backed away from man- jng step to remove all{+1)-gram candidates that contain
dating specifiaetaliation against foreign countries  at |east one non-frequentgram. This permits to avoid a
for unfair foreigntrade practices number of useless frequency counts. Most approaches are

fueled by the same idea of pruning a number of “candidate

frequent sequences”, to avoid costly frequency counts.
Zaki (2001) presented PADE, an advanced tech-
nique for the discovery of sequential patterns. Its ar-
3. Washington charged France, West Germany, the U.Khitecture relies on a vertical database that fastens fre-
Spain and the EC Commission witimfair practices quency counts and a lattice-theoretic approach permits
on behalf of Airbus. to reduce the search space. Unfortunately, the main
weakness of SPADE is that it still enumerates all
, the candidate sequences by forming candidatel}-
F|ggre 1: A set of sentences from the Reuters-21578 CO'éequences through the combination of each two
lection (1987). sequencesDF'S_Mine (Tsoukatos and Gunopulos, 2001)
was subsequently designed to try to disconesequences
In our example, the sequentienfair practices” is not without engmgrating all the freguent sequences of.Ie.ngth
maximal, since it is a subsequence of the frequent sequenég™D): ~ This is done by storing two lists, containing

“congress retaliation against foreign unfair trade prac- minimal non-frequent_se_quences (beca‘EJse t_he|r superse-

tices”. This latter sequence is maximal. quences ar:e necessarily |_nfrequent) and “maximal freqL_Jent
With this simple example, we already get a glimpse ofSequences’ (b_e_cause their subsequences are necessarily fr

the compact descriptive power of MFSs. Should we bequent). A significant number of frequency counts can then

restricted to word pairs, thé-gram “congress retaliation be 3\,’3'dEd' The problem W'tf@F S ‘dj\ﬁme 'Sbt.h"."t the
against foreign unfair trade practicesivould need to be candidate+1)-sequences are formed by combiningran

replaced by21 bigrams. With MFSs, we can obtain a very fsequgance _V\ch thg items of ltr:je data;]base. Wh'lz this lr_nay
compact representation of the regularities of text. The res u"ction With spatiotemporal data, the presented applica-

of this section will focus on the problem of their efficient t'ﬁn _Of DFS_Minet,)lw?ere the nhumber: of |terEs 'SfIQW’
extraction in a document collection. this is not reasonable for text, where the number of items

(words) can be enormous.

2. He urgedCongressto reject provisions that would
mandate U.S.retaliation against foreign unfair
trade practices

2.2. Related Work

. . - 2.2.2. Sequential Patterns and Text
Given a document collection and a minimal frequency . . .
. . The key particularity of text as a sequential data type
threshold, the naive approach is to go through the document ) )

) is the number of items. For instance, the vocabulary of
collection, collect each frequent word, and use the setlof al he widelv knownBrown corpuscontainss0. 406 distinct
frequent words to produce candidate word pairs (bigrams ords w¥1ereas o bios?a Lences ha\}e a verv limited
and retain only the frequent ones. The process of formm%ocabhlar ) the;e agrje onlyoqamino acids. and 03"/“%
and counting the frequency af{1)-gram candidates from Y: '

) . molecules containing nitrogen in DNA and RNA (A, C, G,
the set of all frequent-grams can be repeated iteratively as ; . . L
. and T). Another particularity of text is that the distrilrti
long as frequentr{+1)-grams are found. To obtain the set

. . of words is skewed. There is a small number of words that
of all MFSs, it remains to remove every frequent sequenc%1re very frequent. whereas the maiority of words are in-
that is a subsequence of another frequent sequence. But ttys ry-treq ’ jorty

. ' A requent. The words with moderate frequency are usually
approach s clearly computationally inefficient. considered the most interesting and most informative.

2.2.1. Sequential Pattern Mining These special characteristics of textual data have a
Agrawal and Srikant (1995) introduced the problem of strong influence on the discovery of interesting sequences
mining sequential patternas an advanced subtask of data?” text._ All the breadth-first, bottom-up approachgs ark f_ai
mining, where typical data consists of customer transacind quickly for a number of reasons. They permit pruning
tions, that is, database entries keyed draasaction idand ~ Put require to keep in memory all the subsequences of two
each consisting of austomer idassociated to the list of distinct lengths. They further generate a large number of
items that she bought in this very transaction. The problen¢@ndidates whose frequency is slow to count. Depth-first
of mining sequential patterns is an advanced version of thaiéarch takes less memory, but the number of items (words)
of the extraction of interestinigem sets But in sequential {0 be intersected with a given sequence is prohibitive.
pattern mining, we also aim to exploit the fact that the trans ) S ,
action entries of the databases include a time field that pe-3- Seéquential Pattern Mining in Text: MineM F'S
mits to sort the transactions in chronological order ancheve ~ MineMFS (Ahonen-Myka and Doucet, 2005) is a
know the time interval (or distance) that separates them. Anethod combining breadth-first and depth-first search that
motivating example of a sequential pattern, from (Agrawalis particularly well-suited for text. It extracts MFSs ofyan
and Srikant, 1995), would be that customers typically rentength, i.e., also very long sequences, and it allows an un-
the movie “Star Wars”, then “The Empire Strikes Back”, restricted gap between words of the sequence. In prac-
and finally “The Return of the Jedi". tice, however, text is usually divided into sentences oapar
Agrawal and Srikant (1995) presented an improvemengraphs, which indirectly restricts the length of sequences
of the naive approach that benefits of an intermediary prunas well as the maximal distance between two words of a se-



quence. The constraints used in the method are minimum -
and maximum frequency. Hence, words that are less (re- INPUT:
spectively, more) frequent than a minimum (respectively,
maximum) frequency threshold are removed.

Algorithm. As for DF'S_Mine, an important idea in
MineM F'S'is to compute frequentif+1)-sequences with-  k document
out enumerating all the frequentsequences. It relies on
a set of h-gram seeds”, initialized with the set of all fre-
quent bigrams. The main idea is to pick argram seed
and try to combine it with other grams in a greedy manner,
i.e., as soon as the-gram seed is successfully expanded
to a longer frequent sequence, other expansion altersative
are not checked, but only that longer frequent sequence
is tentatively expanded again. This expansion procedure
is repeated until the longer frequent sequence at hand can
only be expanded to infrequent sequences. This sequence id-iure 2: The different phases 8f 'S_Mine Sweep.
maximal. When all thex-gram seeds have been processed,
those that cannot be used to form a new maximal frequent

sequence of size more thanare pruned. The remaining |ts main drawback is the loss of the maximality property,
ones are joined to produce candidateT)-gram seeds that  pyoqucing a less compact set of content descriptors.
will be used in a new iteration of the process. This process

is repeated until no new maximal frequent sequence can b®1. Description and Claims

discovered. Our approach relies on the idea to partition the doc-
Strengths. A main strength ofMineM F'S versus yment collection into a set of homogeneous subcollec-
DFS_Mine is the fact that the choice of items that may tions. The initial motivation to do this is that/ineM F'.S
be inserted to expand argram is restricted to the other does not produce any result at all for sufficiently large
non-pruned frequent-grams. Whereas i F'S_Mine,an  document collections.  Figure 2 describes the steps
n-gram is expanded by trying to insert every (or most) fre-of N/ FS_MineSweep. In the first phase, we apply
quent word, which is too costly for textual data. Further so-jineM FS on a number of disjoint subcollections, so as
phisticated pruning techniques permit restricting thetdep to obtain an MFS set corresponding to each subcollection.
first search, which means only a few alternatives need tqhe second step is to gather the MFS sets of each subcol-
be checked to try to expand a sequence, despite the larggction to form a set of content descriptors for the whole
vocabulary size. collection. This gathering operation mainly consists in ap
Limitations. Even though the use of minimal and max- pending the sets of MFSs, as there is no clear way to join a
imal frequency thresholds permits to reduce the burstinessequence (maximal frequent in a subcollection) to its sub-
of word distribution, it also causes the miss of a numbersequence (maximal frequent in another). Only identical
of truly relevant word associations. For large enough col-sequences can be merged. Thus, the maximality property
lections, theMineM F'S process fails to produce results, is lost, and therefore, the content description of our pre-
unless excessive minimal and maximal frequencies are deyartitioning technique is always less or equally compact to
cided upon, in which case the set of MFSs produced is smathat of the MFSs of the whole collection.
and contains mostly non-interesting descriptors. One rea- With this technique, we make two main claims that we
son may be the pruning step, which runs through the set afill try to confirm or disprove in the evaluation. The main
n-grams and compares each two of them that may form amotivation for developingy/ F'S_MineSweep is to effi-
(n+1)-gram, by checking if a new item can be added be-iently obtain a more detailed description of the document
tween every two adjacent words. The number of possibleollection Hypothesis HY, as we can use looser frequency

OUTPUT:

Set of phrasal
descriptors of the
document collection

positions of insertion shall be problematic. thresholds. This is easily understood by thinking of an ex-
treme case; if a collection ¢D| documents is split int@D|
3. Partitioning the Collection to subcollections of sizé and the minimal frequency is we

can obtain the corresponding sets of MFS instantly: each
MFS set contains only one sequence of frequehcthe

We have seen that/ineM F'S fails to extract the MFS  unique document in the corresponding subcollection. No
set of a sufficiently large document collection. In this information is lost, but the content description is prolyabl
section, we will introduceMFS_MineSweepa technique too large.
to decompose a collection of documents into several dis- Our second main claim is about the optimal way to
jointed subcollections, small enough so that the MFS setorm the disjointed subcollections. We conjecture thatenor
of each subcollection can be extracted efficiently. Join-consistent subcollections permit to obtain better desmrip
ing all the sets of MFSs, we obtain an approximate of(Hypothesis HR The main reason of this train of thought
the maximal frequent sequence set for the full collectionrelies on the fact that a collection made of similar docu-
MFS_MineSweep permits extracting more and sharper ments will contain more interesting MFSs than a collection
descriptors from document collections of virtually anyesiz  made of dissimilar documents. Again, thinking of extreme

Approximate the MFS set efficiently



e d;: Mary had a little lamb whose fleece was white aspetween any two words of an MFS ensures that the asser-
snow. tion “ABCD is an MFS” implies “AB, AC, AD, BC,

e d>: A radio station called Sputnik broadcasts Rus—BD’ andCD are frequent bigrams”. .
sian programs in Saint-Petersburg and Helsinki. It was We can thus transform _each set of phrasal dgscrlpto_rs
named after the first satellite ever launched. Into a set of comparable items, the frequent bigrams it

contains. LetRp be the phrasal description of a docu-

e d3: History changed on October 4, 1957, when thement collectionD, and Ry be the corresponding set of
Soviet Union successfully launched Sputnik 1. The phrases describing a documehte D. We can write
world’s first artificial satellite was about the size of the corresponding set of word pairs@grams(R,). For
a basketball, weighed only 183 pounds, and revolved € bigrams(Rq), we also definelf, as the document
around the Earth in about 98 minutes. frequency of the bigrand. Finally, we define the ran-

dom variableX over the sebigrams(R;). For allb €
e d,: Everywhere that Mary went, her lamb was sure tobigrams(Rd):

go.
dfy
p(X =0b)= T
. . ZUE{ U bigrams(Rq)} f?!
Figure 3: A collection of four documents. deD
wherezye{UdED bigrams(Rq)} Wy 1S the total number of

cases makes this point easier to see, as a collection where Rigram occurrences resulting from the phrasal description

two documents have a word in common will not contain anyfip- It can be thought of as the sample size.

frequent sequences, except for the documents themselv&ize of the representation of a document collection.

(if the frequency threshold ik). The phrasal representation of a document collection can be
For example, let us assume that we want to partitiorseen as a set of associations between descriptiy@ams

the collection of four documents presented in Figure 3 intcand documents. We defin®& | as the size of the phrasal

2 subcollections o2 documents each, and use a minimal representatiot, in a very intuitive way:

frequency of for extracting MFSs from the subcollections.

Only by clustering together the similar documefds, d,) |Bp| = Z | Ral-

and (dz, ds), will we obtain sequences of words, that is,

phrasal descriptors Those descriptors are: “Mary lamb Hence,|Rp| is the number of document-phrase associa-

was” for d; andd,, and “Sputnik first satellite launched” tions in the collection representatiaiy,.

for d; andds. Any other way to partition the collection |mplied quantity of frequent bigrams in the representa-
produces an emptyhrasal description tion. Several phrases may contain identical bigrams that
. o represent the same document. To count the number of im-
4. Evaluating a Phrasal Text Description plied document-bigram associations permits to ignore re-
To confirm or disprove the hypotheses we just made, welundant information stemming from the long descriptors.
need measures to compare different sets of phrasal descrifde shall therefore measure the quantity of information in
tors. Ideal metrics upon which to compare sets of descripthe description with the number of document-bigram asso-
tors should be able to evaluate two things: 1) the size of theiations that correspond to the descriptip. This value
phrasal text representation, and 2) the amount (and dgnsitys bigram_size(Rp), defined as follows:
of information it contains. ) ) )
In general, the problem of comparing two sets is not bigram.size(Rp) = ) _ [bigrams(Ra)l.
an easy one. A large quantity of work in the domains of deb
document clustering and textual classification has praposeHence, bigram_size(Rp) is the number of document-
measures to compare different ways to partition documerigram associations stemming from the collection repre-
sets (Sebastiani, 2002). Unfortunately, we cannot exploigentation?p.
this work to solve our problem, because such techniquepensity of the description. To measure whether the de-
rely on the comparison of a given clustering (or classifica-scription is loose or dense, we can use the two preceding
tion) to a gold standard. In the general case of textual repmetrics in a very simple way. By computing the ratio be-
resentation, without aiming at a specific application, ¢her tween the number of document-bigram associations in a
is no clear way to define a gold standard of the phrasal dedocument representation and its size, we obtain a relative
scription of a document collection. measure of the number of document-bigram associations
Fortunately, the problem we are facing here is a subthat can be avoided with longergrams:
problem of the above. The sets we need to compare are . .
; T T . bigram_size(Rp)
indeed similar in nature. For example, a major difficulty Density(Rp) =
in comparing general sequences would be the comparison |Rp
of long grams to their subgrams. However, in the specificFor example, a density value af1 means that the bi-
case where all the descriptors are MFS (either of the wholgram representation oRp contains10% more associa-
collection or of one of its subcollections), we can simplify tions than the equivalent representatiBp. The higher
the problem by normalizing each descriptor to a set of allDensity(Rp), the more storage space we save by using
its subpairs. This is because the unlimited distance atfowe R, instead of frequent pairs only.

deD




| Partitions (min,max) | Bigrams | Descriptors| Density | | Clusters (min,max) | Bigrams | Descriptors| Density |

[ 1[MineMFS] (85,900)] 147,000 | 126,000 | 117 | [ 1[MineMFS](85,900)] 147,000 | 126,000 | 117 |

2 (60-70, 900-1000) | 841,000 | 819,000 | 1.03 2 (40-130, 660-1569)| 554,000 | 568,000 | 0.97
3(40,650-715) | 1,223,000 1,197,000 | 1.02 3(7-129, 180-1470) | 449,000 | 498,000 | 0.90

5 (25-30, 400-600) | 1,605,000 1,574,000 | 1.02 5(3-55,47-1224) | 995,000 | 993,000 | 1.00

10 (5-28, 72-350) | 1,453,000 1,466,000 | 0.99 10 (5-22,58-671) | 1,255,000 1,280,000 | 0.98

20 (10-28, 162-385) | 1,643,000] 2,555,000 | 0.64 20 (3-14,11-682) | 1,767,000 1,904,000 | 0.93
50 (4-20, 60-208) | 2,927,000] 7,448,000 | 0.39 50 (2-37,5-289) | 2,201,000 2,748,000 | 0.80
100 (3-45, 27-630) | 3,570,000 11,038,000 0.32 100 (2-28, 7-220) | 2,932,000 4,597,000 | 0.64

Table 1: Reuters. Corresponding frequency ranges whemable 2: Reuters. Corresponding frequency ranges when
every subcollection is computed withirand5 minutes us-  every subcollection is computed withirand5 minutes us-
ing MineM F'S directly andM F'S_MineSweep on ran-  ing MineM F'S directly and M F'S_MineSweep on ho-

dom partitions of size 2, 3, 5, 10, 20, 50 and 100. mogeneous partitions of size 2, 3, 5, 10, 20, 50 and 100.
5. Experiments and Results the number of equivalent bigrams is less than the number of
5.1. Experiments and Results phrasal descriptors. This steep density decrease expresse

In this section, we will detail and implement a set of more than the loss of the maximality property. A lower den-
' sity means that the number of descriptors is growing faster

experiments that permit to test our initial hypothesess It i X . )
important to observe that the extraction of the set of MFSSthan the number of bigrams. When we split the collection

is an independent process for each distinct subcollecfion. 'r:toorg]g]f ?hﬂsézatjgsgr(i)“teo?slovc:' ftlrr:'j ;ga;?‘l thr?évr:g;?n%?fj
profitable alternative is to run the extraction of the MFS$set nations of biarams that \?ve already found whgn we split the
in parallel, on distinct computers. The total running time 9 y P

is then the time of the slowest MFS set extraction, plus theCO”'aCtIon in less partitions. This sharp decrease in dgnsi

time for splitting the document collection. The experingent Ishlpa;Z?t de:;(':rr'.d'fg::qg theé;tkt.rr']e d:ﬁ(;'?}';f‘;'vr?h?v;er ?T:é?]?a_
are based on a set of desktops witB.80 Ghz processor P ption IS peaking, u ug

tions of the number of partitions will be comparatively less

and1024Mb of RAM. )
and less worthwhile.
5.1.1. MFS_MineSweep extracts better, but less The hypothesisilis verified, an increase in the number
compact descriptors(Hypothesis H1). of subcollections is followed by a more exhaustive, but less

The claim of hypothesibi1 is that we can extract more compact document description. We shall suspect that with
information usingM F'S_MineSweep, although we then homogeneous partitioning, a rise in the number of subcol-
lose the maxima”ty property, Subsequenﬂy |eading tos |es|eCti0nS will increase their internal Slmllarlty and fatake
compact description. To verify this, we experiment with the the discovery of new descriptors, with a strong discriminat
16Mb Reuters-21578 newswire collection (Reuters-21578ing power. This s to be verified in the following subsection.
1987), which originally contains abou®, 000 non-empty
documents. To place both techniques on equal grounds, . :
find a frequency range for every subcollection individually better the descriptors(HypothesisH2).

such that the corresponding MFS extraction time is always dTO supporttl-r|12, we use the tsamdednewiwwi .c?llectl?n
betweerd and5 minutes. This was achieved with a fairly and comparé the siz€, amount and density ot information

simple heuristic, interrupting the process and decreasin btained when splitting the collection into random and ho-

the frequency range when the extraction was too slow, an 0geneous subcglleﬁno?s. In t_?ﬁti)(pe”mfn;’{ we formed
increasing the frequency range after too fast an extractio omogeneous subcollections wi € well-knowmeans

We then compare the resulting sizes, amounts and densiti%’éu.s'[ert'ngI glgﬁrlthm.tvgebusgd the p}gbllcly a\{[atl:]abllf (?Ius-
of information in Table 1. Note that every value resulting ering tool implemented by 15€orge rarypis at the Lniver-

from a random partition inte subcollections is actually the sity of Minnesotd. The phrasal descriptors resulting of ho-

average outcome af) distinct iterations of the random par- M°9€neous subcollections are evaluated in Table 2.
titioning and evaluation process. Experiments have showMFS_MineSweep outperforms MineMFS. What we
the variance is very small. had observed with random partitions is confirmed with

MFS_MineSweep outperforms MineMFS. Our first ob- hom(()jgene_oqs co;leﬁnor:js. we geltl a mo_rfe exhaus-
servation is that both the number of descriptors and thén;;ge;fc_npgon 0 rt] € if ocumzrc}co];?gnll we use
number of equivalent bigrams are always much higher for*/ £'S-MineSweep than if we uselline alone.

MFS_MineSweep than forMineM F'S. These numbers To permit an easier direct comparison, the quantities
increase with the number of partitions and densities of information obtained with random and ho-

o mogeneous patrtitions are presented in Table 3.
The description is less compact. Consequently, the den-

sity of the phrasal representations is decreasing with thyomogeneity provides better discrim!natiqn. We can )
number of subcollections. What we did not expect is thatobserve that when the number of partitions rises, the densit

the density ratio goes down to values belbwneaning that

V\%l.z. The more homogeneous the subcollections, the

ICLUTO, http://iwww-users.cs.umn.edukarypis/cluto/



| Partitions| Random Homogeneous] MFS_MineSweep to extract a better description effi-

2 841,000 (1.03) | 554,000 (0.97) ciently, by applying an MFS extraction algorithm on par-
3 1,223,000 (1.02) 449,000 (0.90) titions of the document collection. Our approach permits to
5 1,605,000 (1.02) 995,000 (1.00) obtain a more exhaustive description faster. This improve-
10 1,453,000 (0.99) 1,255,000 (0.98 ment is strengthened by the possibility to run the costliest
20 1,643,000 (0.64) 1,767,000 (0.93 computations in parallel. We further established that the
50 2,927,000 (0.39) 2,201,000 (0.80 use of homogeneous partitions improves the quality of the

100 3,570,000 (0.32) 2,932,000 (0.64 description.

Table 3: Reuters. Quantities and densities of information 7. References
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Clustering is safer. As opposed to random patrtitioning,
clustering providegjuarantees. It is more reliable, be-
cause it ensures result. The strength of random partition-
ing is it gives good results and permits MFS extraction in
predictable times. But these facts are only tnreaver-

age The problem if we use random partitioning is that we
should, in fact, run several iterations to protect ourselve
from an “unlucky” draw. We mentioned earlier that run-
ning several random iterations increases the exposure to
factors of difficult extraction. Another issue with avenagi
numerous iterations is practical. Assume documewas
represented times bygram 4, andl time by grampg and
gramc, What should be the average document description
of d? Because the extraction of MFS sets from homoge-
neous subcollections is unique and needs to be done only
once, it is generally less costly in the end.

6. Conclusion

In this paper, we introduced/ F'S_MineSweep, a
new solution for the extraction of compact phrasal de-
scriptors from sequential data. We further defined met-
rics for the evaluation of such descriptions. We presented
experiments on textual data that showed the capacity of



