
A method to calculate probability and expected document
frequency of discontinued word sequences

Antoine Doucet
Department of Computer Science

P.O. Box 68
FIN-00014 University of Helsinki

doucet@cs.helsinki.fi

Helena Ahonen-Myka
Department of Computer Science

P.O. Box 68
FIN-00014 University of Helsinki

hahonen@cs.helsinki.fi

ABSTRACT
In this paper, we present a novel technique for calculating
the probability of occurrence of a discontinued sequence of n

words, that is, the probability that those words occur, and
that they occur in a given order, regardless of which and
how many other words may occur between them.

Our method relies on the formalization of word occur-
rences into a Markov chain model. Numerous techniques of
probability and linear algebra theory are exploited to offer
an algorithm of competitive computational complexity. The
technique is further extended to permit the calculation of
the expected document frequency of an n-words sequence in
an efficient manner.

We finally present an application of this technique; A fast
and automatic direct evaluation of the interestingness of
word sequences, by comparing their expected and observed
frequencies.

1. INTRODUCTION
The probability of occurrence of words and phrases is a

crucial matter in all domains of information retrieval. All
language models rely on such probabilities. However, while
the probability of a word is frequently based on counting its
total number of occurrences in a document collection (its col-
lection frequency), calculating the probability of a phrase is
far more complicated. Counting the number of occurrences
of a multi-word unit is often intractable, unless restrictions
are adopted, such as setting a maximal unit size, requiring
word adjacency or setting a maximal distance between two
words.

Due to the higher information content and specificity of
phrases versus words, information retrieval researchers have
always been interested in multi-word units. However, the
definition of what makes a few words form a unit has varied
with time, and notably through the evolution of computa-
tional capacities.

The first models, introduced until the late 1980’s, came
with numerous restrictions. Mitra et al. [10], for example,
defined phrases as adjacent pairs of words occurring in at
least 25 documents of the TREC-1 collection. Choueka et
al. [2] later extracted adjacent word sequences of length up
to 6. The extraction of sequences of longer size was then in-
tractable. The adjacency constraint is regrettable, as natu-
ral language often permits to express similar concepts by in-
troducing one or more words between two others. For exam-
ple, the phrases “President John Kennedy” and “President

Kennedy” are likely to refer to the same person. Church
and Hanks [3] proposed a technique based on the notion of
mutual information, which permits to produce word pairs
occurring in the same window, regardless of their relative
positions.

A new trend started in the 1980’s, as linguistic informa-
tion started to be used to filter out “undesirable” patterns.
The idea consists in using parts-of-speech (POS) analysis
to automatically select (or skip) the phrases matching a
given set of linguistic patterns. Most recent extraction tech-
niques still rely on a combination of statistical and syntac-
tical methods [13, 7].

However, at a time when multilingual information retrieval
is in full expansion, we think it is of crucial importance
to propose language-independent techniques. There is very
few research in this direction, as was suggested by a recent
workshop on multi-word expressions [14] where most of the
11 accepted papers presented monolingual techniques, in a
total of 6 distinct languages.

Dias et al. [5] introduced an elegant generalization of con-
ditional probabilities to n-grams extraction. The normalized
expectation of an n-words sequence is the average expecta-
tion to see one of the words occur in a position, given the
position of occurrence of all the others. Their main metric,
the mutual expectation, is a variation of the normalized ex-
pectation that rewards n-grams occurring more frequently.
While the method is language-independent and does not re-
quire word adjacency, it still recognizes phrases as a very
rigid concept. The relative word positions are fixed, and
to recall our previous example, no relationship is taken into
account between “President John Kennedy” and “President
Kennedy”.

We present a technique that permits to efficiently calcu-
late the exact probability (respectively, the expected docu-
ment frequency) of a given sequence of n words to occur in
this order in a document of size l, (respectively, in a docu-
ment collection D) with an unlimited number of other words
eventually occurring between them.

The main challenges we had to handle in this work were
to avoid the computational issue of using a potentially un-
limited distance between each two words, while not making
those distances rigid (we do see an occurrence of “President
Kennedy” in the text fragment “President John Kennedy”).
Achieving language-independence (neither stoplists nor POS
analysis are used) and dealing with document frequencies
rather than term frequencies are further specificics of this
work.

By comparing observed and expected frequencies, we can
estimate the interestingness of a word sequence. That is, the
more the actual number of occurrences of a phrase is higher
than its expected frequency, the stronger the lexical cohe-
sion of that phrase. This evaluation technique is entirely
language-independent, as well as domain- and application-
independent. It permits to efficiently rank a set of candidate
multi-word units, based on statistical evidence, without re-
quiring manual assessment of a human expert.

The techniques presented in this paper can be generalized
further. The procedure we present for words and documents
may indeed similarly be applied to any type of sequential
data, e.g., item sequences and transactions.

In the next section, we will introduce the problem, present
an approximation of the probability of occurrence of an n-
words sequence, and describe our technique in full details
before analyzing its computational complexity and showing
how it outperforms naive approaches. In section 3, we will
explain how the probability of occurrence of an n-words se-
quence in a document can be generalized to compute its ex-
pected document frequency in a document collection, with
a very reasonable complexity. Section 4 explains and ex-
periments the use of statistical testing as an automatic way
to evaluate and rank general-purpose non-contiguous lexical
cohesive relations. We conclude the paper in section 5.

2. PROBABILITY OF OCCURRENCE OF A
DISCONTINUED WORD SEQUENCE

2.1 Problem Definition
Let A1A2 . . . An be an n-gram, and d a document of length

l (i.e., d contains l word occurrences). Each word Ai is
assumed to occur independently with probability pi.

Problem: In d, we want to calculate the probability
P (A1 → A2 → · · · → An, l) of the words A1, A2, . . . , An

to occur at least once in this order, an unlimited number of
interruptions of any size being permitted between each Ai

and Ai+1, 1 ≤ i ≤ (n − 1).

2.1.1 More definitions
Let D be the document collection, and W the set of all

distinct words occurring in D. The probability pw of occur-
rence of a word w is its collection frequency divided by the
total number of word occurrences in the document collec-
tion. One reason why we prefer collection frequency versus,
e.g., document frequency, is that in this case, the set of all
word probabilities {pw | ∀w ∈ W} is a (finite) probability
space. Indeed, we have

X

w∈W

pw = 1, and pw ≥ 0, ∀w ∈ W.

For convenience, we will simplify the notation of pAi
to

pi, and define qi = 1− pi, the probability of non-occurrence
of the word Ai.

2.1.2 A running example
Let there be a hypothetic document collection containing

only three different words A, B, and C, each occurring with
equal frequency. We want to find the probability that the
bigram A → B occurs in a document of length 3.

For this simple example, we can afford a manual enumera-
tion. There exists 33 = 27 distinct documents of size 3, each

occurring with equal probability 1

27
. These documents are:

{AAA, AAB , AAC, ABA , ABB , ABC , ACA, ACB , ACC,

BAA, BAB , BAC, BBA, BBB, BBC, BCA,BCB, BCC,

CAA, CAB , CAC,CBA, CBB, CBC, CCA,CCB, CCC}

The seven framed documents contain the n-gram AB. Thus,
we have p(A → B, 3) = 7

27
.

2.2 A decent over-estimation in the general
case

We can attempt to enumerate the number of occurrences
of A1 . . . An in a document of size l, by separately counting
the number of ways to form the (n−1)-gram A2 . . . An, given
the l possible positions of A1. For each of these possibilities,
we can then separately count the number of ways to form the
(n−2)-gram A3 . . . An, given the various possible positions of
A2 following that of A1. We repeat this process recursively
until we need to find the number of ways to form the 1-gram
An, given the various positions left for An−1.

This enumeration leads to n nested sums of binomial co-
efficients:

l−n+1X

posA1
=1

0

@

l−n+2X

posA2
=posA1

+1

0

@· · ·
lX

posAn
=posAn−1

+1

l − posAn

0

!1

A

1

A ,

(1)
where each posAi

, 1 ≤ posAi
≤ l, denotes the position of

occurrence of Ai.
The following can be proven easily by induction:

nX

i=k

i

k

!

=

n + 1

k + 1

!

,

and we can use it to simplify formula (1) by observing that:

l−n+iX

posAi
=posAi−1

+1

l − posAi

n − i

!

=

l−posAi−1
−1

X

posAi
=n−i

posAi

n − i

!

=

l − posAi−1

n − i + 1

!

.

Therefore, leaving further technical details to the reader,
the previous nested summation (1) interestingly simplifies
to
`

l

n

´
, which permits to obtain the following result:

enum overestimate(A1 → · · · → An, l) =

l

n

!

·
nY

i=1

pi,

where
`

l

n

´
is the number of ways to form the n-gram, and

Qn

i=1
pi the probability of conjoint occurrence of the words

A1, . . . , An (since we assumed that the probability of oc-
currence of a word in one position is independent of which
words occur in other positions).

The big flaw of this result, and the reason why it is an
approximation only, is that some of the ways to form the
n-gram are obviously overlapping. Whenever we separate
the alternative ways to form the n-gram, knowing that Ak

occurs in position i, we do ignore the fact that Ak may
also occur before position i. In this case, we enumerate each
possible case of occurrence of the n-gram, but we count some
of them more than once, since it is actually the ways to form
the n-gram that are counted.

Running Example. This is better seen by returning
to the running example presented in subsection 2.1.2. As

described above, the upper-estimate of the probability of
the bigram A → B, based on the enumeration of the ways
to form it in a document of size 3 is:

`
3

2

´
(1

3
)2 = 9

27
, whereas

the actual probability of A → B is 7

27
. This stems from

the fact that in the document AAB (respectively ABB),
there exists two ways to form the bigram A → B, using the
two occurrences of A (respectively B). Hence, out of the 27
possible equiprobable documents, 9 ways to form the bigram
A → B are found in the 7 documents that contain it.

With longer documents, the loss of precision due to those
cases can be considerable. Still assuming we are interested
in the bigram A → B, we will count one extra occurrence
for every document that matches *A*B*B*, where * is used
as a wildcard. Similarly, 8 ways to form A → B are found
in each document matching *A*A*B*B*B*B*.

2.3 An exact formalization based on Markov
Chains

2.3.1 An absorbing Markov Chain.
One interesting way to formalize the problem is to con-

sider it as a sequence of l trials with outcomes X1, X2, . . . , Xl.
Let each of these outcomes belong to the set {0, 1, . . . , n},
where the outcome i signifies that the i-gram A1A2 . . . Ai

has already occurred. This sequence of trials verifies the
following two properties:

(i) All the outcomes X1, X2, . . . , Xl belong to a finite set
of outcomes {0, 1, . . . , n} called the state space of the
system. If i is the outcome of the m-th trial (Xm = i),
then we say that the system is in state i at the m-th
step. In other words, the i-gram A1A2 . . . Ai has been
observed after the m-th word of the document.

(ii) The second property is called the Markov property:
the outcome of each trial depends at most upon the
outcome of the immediately preceding trial, and not
upon any other previous outcome. In other words, the
future is independent of the past, given the present.
This is verified indeed; if we know that we have seen
A1A2 . . . Ai, we only need the probability of Ai+1 to
determine the probability that we will see more of the
desired n-gram during the next trial.

These two properties are sufficient to call the stochastic
process we just defined a (finite) Markov chain. The prob-
lem can thus be represented by an (n + 1)-states Markov
chain M (see figure 1). The state space of the system is
{0, 1, . . . , n} where each state, numbered from 0 to n tells
how much of the n-gram has already been observed. Pres-
ence in state i means that the sequence A1A2 . . . Ai has been
observed. Therefore, Ai+1 . . . An remains to be seen, and the
following expected word is Ai+1. It will be the next word
with probability pi+1, in which case a state transition will
occur from i to (i + 1). Ai+1 will not be the following word
with probability qi+1, in which case we will remain in state i.
Whenever we reach state n, we can denote the experience a
success: the whole n-gram has been observed. The only out-
going transition from state n leads to itself with associated
probability 1 (such a state is said to be absorbing).

2.3.2 Stochastic Transition Matrix (in general).
Another way to represent this Markov chain is to write its

transition matrix.

n2

p
2

p p
n−1

p

q

n

1

n−1

q

0

1 q

p
1 1

p
n

Figure 1: State-transition diagram of the Markov

Chain M.

For a general finite Markov chain, let pi,j denote the tran-
sition probability from state i to state j for 1 ≤ i, j ≤ n. The
(one-step) stochastic transition matrix is:

P =

0

B
B
@

p1,1 p1,2 . . . p1,n

p2,1 p2,2 . . . p2,n

. . .

pn,1 pn,2 . . . pn,n

1

C
C
A

Theorem 2.1. [6] Let P be the transition matrix of a
Markov chain process. Then the m-step transition matrix is
equal to the m-th power of P. Furthermore, the entry pi,j(m)
in P m is the probability of stepping from state i to state j

in exactly m transitions.

2.3.3 Our stochastic transition matrix of interest.
For the Markov chain M defined above,the corresponding

stochastic transition matrix is the following (n+1)× (n+1)
square matrix:

M =

0

B
B
B
B
B
B
B
B
B
B
@

states 0 1 2 . . . n − 1 n

0 q1 p1 0 0

1 0 q2 p2

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . . qn pn

n 0 0 1

1

C
C
C
C
C
C
C
C
C
C
A

Therefore, the probability of the n-gram A1 → A2 →
· · · → An to occur in a document of size l is the probability
of stepping from state 0 to state n in exactly l transitions.
Following Theorem 2.1, this value resides at the intersection
of the first row and the last column of the matrix M l:

M
l =

0

B
B
@

m1,1(l) m1,2(l) . . . m1,n+1(l)

m2,1(l) m2,2(l) . . . m2,n+1(l)
. . .

mn+1,1(l) mn+1,2(l) . . . mn+1,n+1(l)

1

C
C
A

Thus, the result we are seeking can be obtained by raising
the matrix M to the power l, and looking at the value in the
upper-right corner. In terms of computational complexity,
however, one must note that to multiply two (n+1)×(n+1)
square matrices, we need to compute (n+1) multiplications
and n additions to calculate each of the (n + 1)2 values
composing the resulting matrix. To raise a matrix to the
power l means to repeat this operation l − 1 times. The
resulting time complexity is then O(ln3).

One may object that more time-efficient algorithms for
matrix multiplication exist. The lowest exponent currently
known is by Coppersmith and Winograd: O(n2.376) [4]. Such

results are achieved by studying how matrix multiplication
depends on bilinear and trilinear combinations of factors.
The strong drawback of those techniques is the presence of
a constant factor so large that it removes the benefits of the
lower exponent for all practical sizes of matrices [8]. For
our purpose, the use of such an algorithm is typically more
costly than to use the naive O(n3) matrix multiplication.

Linear algebra techniques, and a careful exploitation of
the specificities of the stochastic matrix M will, however,
permit to perform a few transformations that will drastically
reduce the computational complexity of M l.

2.3.4 The Jordan normal form
Definition: A Jordan block Jλ is a square matrix whose

elements are zero except for those on the principal diagonal,
which are equal to λ, and for those on the first superdiago-
nal, which are equal to unity. Thus:

Jλ =

0

B
B
B
B
@

λ 1 0

λ
. . .

. . . 1
0 λ

1

C
C
C
C
A

.

Theorem 2.2. (Jordan normal form) [11] If A is a gen-
eral square matrix, then there exists an invertible matrix S

such that

J = S
−1

AS =

0

B
@

J1 0
. . .

0 Jk

1

C
A ,

where the Ji are ni × ni Jordan blocks. The same eigenval-
ues may occur in different blocks, but the number of distinct
blocks corresponding to a given eigenvalue is equal to the
number of eigenvectors corresponding to that eigenvalue and
forming an independent set. The number k and the set of
numbers n1, . . . , nk are uniquely determined by A.

In the following subsection we will demonstrate that M

is a matrix such that there exists only one block for each
eigenvalue.

2.3.4.1 Uniqueness of the Jordan block correspond-
ing to any given eigenvalue of M .

Theorem 2.3. For the matrix M , no two eigenvectors
corresponding to the same eigenvalue can be linearly inde-
pendent.

Proof. Because M is triangular, its characteristic poly-
nomial is the product of the diagonals of (λIn+1 − M):
f(λ) = (λ − q1)(λ− q2) . . . (λ − qn)(λ − 1). The eigenvalues
of M are the solutions of the equation f(λ) = 0. Therefore,
they are the distinct qi’s, and 1.

Now let us show that whatever the order of multiplicity
of such an eigenvalue (how many times it occurs in the set
{q1, . . . , qn, 1}), it has only one associated eigenvector. The
eigenvectors associated to a given eigenvalue e are defined
as the non null solutions of the equation M · V = e · V . If
we write the coordinates of V as [v1, v2, . . . , vn+1], we can
observe that M · V = e · V results in a system of (n + 1)
equations, where, for 1 ≤ j ≤ n, the j-th equation permits

to express vj+1 in terms of vj , and therefore in terms of v1.
That is,

for 1 ≤ j ≤ n : vj+1 =
e − qj

pj

vj =
(e − qj) . . . (e − q1)

pj . . . p1

v1.

In general (for all the qi’s), v1 can be chosen freely to have
any non null value. This choice will uniquely determine all
the values of V .

Since the general form of the eigenvectors corresponding
to any eigenvalue of M is V = [v1, v2, . . . , vn+1], where all
the values can be determined uniquely by the free choice of
v1, it is clear that no two such eigenvectors can be linearly
independent. Hence, one and only one eigenvector corre-
sponds to each eigenvalue of M .

Following theorem 2.2, this means that there is a single
Jordan block for each eigenvalue of M , whose size equals to
the order of algebraic multiplicity of the eigenvalue, that is,
its number of occurrences in the principal diagonal of M .
In other words, there is a distinct Jordan block for every
distinct qi (and its size equals the number of occurrences of
qi in the main diagonal of M), plus a block of size 1 for the
eigenvalue 1. Therefore we can write

J = S
−1

MS =

0

B
B
@

Je1
0

. . .

0 Jeq

1

C
C
A

,

where the Jei
are ni × ni Jordan blocks, corresponding to

the distinct eigenvalues of M . Following general properties
of the Jordan normal form, we have

J
l =

0

B
B
B
@

J l
e1

0

. . .

0 J l
eq

1

C
C
C
A

.

Also,

M
l =

l times
z }| {
`
SJS

−1
´
·
`
SJS

−1
´
. . .
`
SJS

−1
´

= S · J ·

(l − 1) times
z }| {
`
S

−1 · S
´
· J ·

`
S

−1 · S
´
· J . . .

`
S

−1 · S
´
· J ·S−1

= S ·

l times
z }| {

J · J . . . J ·S−1

= S · J l · S−1
.

Therefore, by multiplying the first row of S by J l, and
multiplying the resulting vector by the last column of S−1,
we do obtain the upper right value of M l, that is, the prob-
ability of the n-gram (A1 → · · · → An) to appear in a
document of size l.

2.3.4.2 Calculating powers of a Jordan block.
As mentioned above, to raise J to the power l, we can

simply write a direct sum of the Jordan blocks raised to the
power l. In this section, we will show how to compute J l

ei

for a Jordan block Jei
.

Let us define Dei
and Nei

such that Jei
= Dei

+ Nei
,

where Dei
contains only the principal diagonal of Jei

, and
Nei

only its first superdiagonal. That is,

Dei
=

0

B
B
B
@

ei 0
ei

. . .

0 ei

1

C
C
C
A

and Nei
=

0

B
B
B
@

0 1 0
. . .

1
0 0

1

C
C
C
A

.

Observing that Nei
Dei

= Dei
Nei

, we can use the bino-
mial theorem:

J
l
ei

= (Dei
+ Nei

)l =
lX

k=0

l

k

!

N
k
ei

D
l−k
ei

Because Nei
is nilpotent (Nk

ei
= 0, ∀k ≥ ni), we can

shorten the summation to:

J
l
ei

= (Dei
+ Nei

)l =

ni−1
X

k=0

l

k

!

N
k
ei

D
l−k
ei

Hence, to calculate J l
ei

, one can compute the powers of
Dei

and Nei
from 0 to l, which is a fairly simple task. The

power of a diagonal matrix is easy to compute, as it is an-
other diagonal matrix where each term of the original matrix
is raised to the same power as the matrix. Dj

ei
is thus iden-

tical to Dei
, except that the main diagonal is filled with the

value e
j
i instead of ei. To compute Nk

ei
is even simpler. Each

multiplication of a power of Nei
by Nei

results in shifting
the non-null diagonal one row upwards.

The result of Nk
ei

Dj
ei

resembles N j
ei

, except that the ones
on the only non-null diagonal (the j-th superdiagonal) are
replaced by the value of the main diagonal of Dj

ei
, that is

e
j
i . Therefore, we have:

N
k
ei

D
l−k
ei

=

0

B
B
B
B
B
@

0 el−k
i 0

. . .

el−k
i

0 0

1

C
C
C
C
C
A

.

Since each value of k corresponds to a distinct diagonal,
the summation

Pl

k=0

`
l

k

´
Nk

ei
Dl−k

ei
is easily written as:

J
l
ei

=
lX

k=0

l

k

!

N
k
ei

D
l−k
ei

=

0

B
B
B
B
B
B
B
@

`
l

0

´
· el

i . . .
`

l

k

´
· el−k

i . . .
`

l

ni−1

´
· el−ni+1

i

. . .
. . .

...
`

l

0

´
· el

i

`
l

k

´
· el−k

i

. . .
...

0
`

l

0

´
· el

i

1

C
C
C
C
C
C
C
A

.

2.3.5 Conclusion
The probability of the n-gram (A1 → · · · → An) in a

document of size l can be obtained as the upper-right value
in the matrix M l such that:

M
l = SJ

l
S

−1 = S

0

B
B
B
@

J l
e1

0

. . .

0 J l
eq

1

C
C
C
A

S
−1

,

o/seen:

0

qqaa=2/3=2/3 bq =2/3

1
seen:A

p
a
=1/3 p

b
=1/3

seen:AB

2

1

Figure 2: State-transition diagram of the Markov

Chain corresponding to our running example.

where the J l
ei

blocks are as described above, while S and

S−1 are obtained through the Jordan Normal Form theorem
(Theorem 2.2). We actually only need the first row of S and
the last column of S−1, as we are not interested in the whole
matrix M l but in its upper-right value only.

In the next subsection we will calculate the worst case
time complexity of the technique that we just presented.
Before that, let us return to the running example presented
in subsection 2.1.2.

2.3.6 Running Example.
The state-transition diagram of the Markov Chain corre-

sponding to the bigram A → B has only three states (fig-
ure 2). The corresponding transition matrix is:

Mre =

0

@

2

3

1

3
0

0 2

3

1

3

0 0 1

1

A .

Following Theorem 2.2 on the Jordan normal form, there
exists an invertible matrix Sre such that

Jre = S
−1
re MreSre =

0

@
J 2

3

0

0 J1

1

A ,

where J1 is a block of size 1, and J 2

3

a block of size 2 since

qa = qb = 2

3
. We can actually write Jre as:

Jre =

0

@

2

3
1 0

0 2

3
0

0 0 1

1

A .

Since we seek the probability of the bigram A → B in a
document of size 3, we need to calculate J3

re:

J
3
re =

0

@

`
3

0

´
(2

3
)3

`
3

1

´
(2

3
)2 0

0
`
3

0

´
(2

3
)3 0

0 0 1

1

A =

0

@

8

27

4

3
0

0 8

27
0

0 0 1

1

A .

In the next subsection, we will give further details as to
the practical computation of Sre and the last column of
its inverse S−1

re . For now, let us simply assume they were
calculated, and we can thus obtain the probability of the
bigram AB in a document of length 3 as:

P (A → B, 3) =

1st row of S
z }| {

(1 0 1)

0

@

8

27

4

3
0

0 8

27
0

0 0 1

1

A

last col. of S−1

z }| {
0

@

−1
− 1

3

1

1

A

=
7

27
.

Our technique indeed obtains the right result. But how
efficiently is it obtained? We overview an answer to this
question in the following subsection.

2.4 Algorithmic Complexity
The process of calculating the probability of occurrence

of an n-gram in a document of size l consists of two main
phases: calculating J l, and computing the transformation
matrix S and its inverse S−1.

Below, we will study the worst case time complexity, but
it is interesting to observe that in practice, for a corpus
big enough, the number of words equally-weighed should be
small. This is especially true since, following Zipf’s law,
infrequent words are most likely to have equal weights, and
they precisely are often pruned during preprocessing.

The following complexity analysis might be easier to fol-
low, if studied together with the general formulas of M l and
the Jordan blocks as presented in the conclusion of subsec-
tion 2.3 (subsection 2.3.5).

2.4.1 Time complexity of the J l calculation
Observing that each block J l

i contains exactly ni distinct
values, we can see that J l contains

P

1≤k≤q
nk = n + 1 dis-

tinct values. Those (n+1) values are (n+1) multiplications
of a binomial coefficient by a power of an eigenvalue.

The computation of the powers between 0 and l of each
eigenvalue is evidently achieved in O(lq), because each of
the q distinct eigenvalues needs to be multiplied by itself l

times.
For every Jordan block J l

i , the binomial coefficients to be
computed are:

`
l

0

´
,
`

l

1

´
, . . . ,

`
l

ni−1

´
. For the whole matrix J l,

we thus need to calculate
`

l

k

´
where 0 ≤ k ≤ maxblock and

maxblock = maxq
i=1 ni. Observing that

`
l

j+1

´
=
`

l

j

´
l−j

j+1
, and

thus, that
`

l

j+1

´
can be computed from

`
l

j

´
in a constant

number of operations, we see that the set {
`

l

k

´
| 1 ≤ k ≤

maxblock} can be computed in O(maxblock).
If l < n, the probability of occurrence of the n-gram in l is

0, since the n-gram is longer than the document. Therefore,
the current algorithm is only used when l ≥ n ≥ maxblock.
We can therefore conclude that the time complexity of

the computation of J l is O(lq).

2.4.2 Calculating the transformation matrix S

Following general results of linear algebra [11], the (n +
1) × (n + 1) transformation matrix S can be written as:

S =
ˆ
S1S2 . . . Sq

˜
,

where each Si is an ni × (n+1) matrix corresponding to the
eigenvalue ei, and such that Si =

ˆ
vi,1vi,2 . . . vi,ni

˜
, where:

• vi,1 is an eigenvector associated with ei, thus such that,
Mvi,1 = eivi,1, and

• vi,j , for all j = 2 . . . ni, is a solution to the equation
Mvi,j = eivi,j + vi,j−1.

The vectors vi,1vi,2 . . . vi,ni
are sometimes called general-

ized eigenvectors of ei. We have already seen in section 2.3.4,
that the first coordinate of each eigenvector can be assigned
freely, and that every other coordinate can be expressed in
function of its immediately preceding coordinate. Therefore
it takes a constant number of operations to calculate the
value of each coordinate of an eigenvector, and each eigen-
vector can be computed in O(n). It is equally provable that
the generalized eigenvectors can be expressed and calculated
in a constant number of operations. Following this fact, each
column of S can be computed in O(n), and thus the whole

matrix S in O(n2).

2.4.3 The inversion of S

The general inversion of an (n+1)×(n+1) matrix can be
done in O(n3) through Gaussian elimination. To calculate
only the last column of S−1 does not help, since the resulting
system of (n + 1) equations still requires O(n3) operations
to be solved by Gaussian elimination.

However, some specificities of our problem will again per-
mit an improvement over this general complexity. When
calculating the similarity matrix S, we can ensure that S

is a column permutation of an upper-triangular ma-

trix. It is therefore possible to calculate the last column
of S−1 by solving a triangular system of linear equations
through a backward substitution mechanism. The compu-

tation of the last column of S−1 is thus achieved in

O(n2).

2.4.4 Conclusion
To obtain the final result, the probability of occurrence of

the n-gram in a document of size l, it remains to multiply
the first row of S by J l, and the resulting vector by the
last column of S−1. The second operation takes (n + 1)
multiplications and n additions. It is thus O(n).

The general multiplication of a vector of size (n+1) by an
(n+1)× (n+1) square matrix takes (n+1) multiplications
and n additions for each of the (n+1) values of the resulting
vector. This is thus O(n2). However, we can use yet another
trick to improve this complexity. When we calculated the
matrix S, we could assign the first row values of each column
vector freely. We did it in such a way that the only non-null
values on the first row of S are unity, and that they occur on
the q eigenvector columns (these same choices ensured that
S is a column permutation of an upper-triangular matrix).
Therefore, to multiply the first row of S by a column vector
simply consists in the addition of the q terms of index equal
to the index of the eigenvectors in S. That operation of
order O(q) needs to be repeated for each column of J l. The
multiplication of the first row of S by J l is thus O(nq).

The worst case time complexity of the computation of
the probability of occurrence of an n-gram in a document
of size l is finally max{O(lq), O(n2)}. Since our problem
of interest is limited to l ≥ n (otherwise the probability
of occurrence is 0), an upper bound of the complexity for
computing the probability of occurrence of an n-gram

in a document of size l is O(ln). This is clearly better
than directly raising M to the power l, which is O(ln3).

3. EXPECTED DOCUMENT FREQUENCY
OF A WORD SEQUENCE

Now that we have defined a formula to calculate the prob-
ability of occurrence of an n-gram in a document of size l,
we can use it to calculate the expected document frequency
of the n-gram in the whole document collection D. Assum-
ing the documents are mutually independent, the expected
frequency in the document collection is the sum of the prob-
abilities of occurrence in each document:

Exp df(A1 → . . . An, D) =
X

d∈D

p(A1 → . . . An, |d|),

where |d| stands for the number of word occurrences in the
document d.

Naive Computational Complexity. We can compute
the probability of an n-gram to occur in a document in

O(ln). A separate computation and summation of the val-
ues for each document can thus be computed in O(|D|ln),
where |D| stands for the number of documents in D.

In practice, we can improve the computational efficiency
by counting the number of documents of same length and
multiplying this number by the probability of occurrence
of the n-gram in a document of that size, rather than re-
processing and summing up the same probability for each
document of equal size. But as we are currently considering
the worst case time complexity of the algorithm, we are fac-
ing the worst case situation in which every document has a
distinct length.

Better Computational Complexity. We can achieve
better complexity by summarizing everything we need to
calculate and organizing the computation in a sensible way.
Let L = maxd∈D |d| be the size of the longest document in
the collection. We first need to raise the Jordan matrix J

to the power of every distinct document length, and then
to multiply the (at worst) |D| distinct matrices by the first
row of S and the resulting vectors by the last column of its
inverse S−1.

The matrix S and the last column of S−1 need to be
computed only once, and as we have seen previously, this is
achieved in O(n2), whereas the |D| multiplications by the
first row of S are done in O(|D|nq). It now remains to find
the computational complexity of the various powers of J .

We must first raise each eigenvalue ei to the power L,
which is an O(Lq) process. For each document d ∈ D, we

obtain all the terms of J |d| by (n + 1) multiplications of
powers of eigenvalues by a set of combinatorial coefficients
computed in O(maxblock). The total number of such multi-
plications is thus O(|D|n), an upper bound for the compu-
tation of all combinatorial coefficients. The worst case time
complexity for computing the set { J |d| | d ∈ D}, is thus
max{O(|D|n), O(Lq)}.

Finally, the computational complexity for calculat-

ing the expected frequency of an n-gram in a docu-

ment collection D is max{O(|D|nq), O(Lq)}, where q is
the number of words in the n-gram having a distinct prob-
ability of occurrence, and L is the size of the longest doc-
ument in the collection. The improvement is considerable
compared to the naive technique’s O(|D|ln3).

4. DIRECT EVALUATION OF LEXICAL CO-
HESIVE RELATIONS

The evaluation of lexical cohesion is a difficult problem.
Attempts of direct evaluation are rare, simply due to the
subjectivity of any human assessment and due to the wide
acceptance that we first need to know what we want to do
with a lexical unit before being able to decide whether or
not it is relevant for that purpose. A common application of
research in lexical cohesion is lexicography, where the eval-
uation is carried out by human experts who simply look at
phrases to assess them as good or bad. This process permits
to score the extraction process with highly subjective mea-
sures of precision and recall. However, a linguist interested
in the different forms and uses of the auxiliary “to be” will
have a different view of what is an interesting phrase than a
lexicographer. What a human expert judges as uninterest-
ing may be highly relevant to another.

Hence, most evaluation has been indirect, through ques-
tion answering, topic segmentation, text summarization, and

passage or document retrieval [12]. To pick the last case,
such an evaluation consists in trying to figure out which are
the phrases that permit to improve the relevance of the list
of documents returned. A weakness of indirect evaluation
is that it hardly shows whether an improvement is due to
the quality of the phrases, or to the quality of the technique
used to exploit them.

There is a need to fill the lack of a general purpose direct
evaluation technique, one where no subjectivity or knowl-
edge of the domain of application will interfere. Our tech-
nique permits exactly that, and this section will show how.

4.1 Hypothesis testing
A general approach to estimate the interestingness of a set

of events is to measure their statistical significance. In other
words, by evaluating the validity of the assumption that an
event occurs only by chance (the null hypothesis), we can
decide whether the occurrence of that event is interesting or
not. If a frequent occurrence of a multi-word unit was to be
expected, it is less interesting than if it comes as a surprise.

To estimate the quality of the assumption that an n-gram
occurs by chance, we need to compare its (by chance) ex-
pected frequency and its observed frequency. There exists a
number of statistical tests, extensively described in statistics
textbooks, even so in the specific context of natural language
processing [9]. In this paper, we will base our experiments
on the t-test :

t =
Obs df(A1 → . . . An, D) − Exp df(A1 → . . . An, D)

p
|D|Obs DF (A1 → . . . An)

4.2 Example of non-contiguous lexical units:
MFS

Maximal Frequent Sequences (MFS) [1] are word sequences
built with an unlimited gap, no stoplist, no POS analysis
and no linguistic filtering. They are defined by two charac-
teristics:

• A sequence is said to be frequent if its document fre-
quency is higher than a given threshold.

• A sequence is maximal, if there exists no other frequent
sequence that contains it.

Thus, MFSs correspond very well to our technique, since the
extraction algorithm provides each extracted MFS with its
document frequency. To compare the observed frequency of
MFSs to their expected frequency is thus especially mean-
ingful, and it will permit to rank a set of MFSs with respect
to their statistical significance.

4.3 Experiments

4.3.1 Corpus
For experiments we used the publicly available Reuters-

21578 newswire collection 1, which originally contains about
19, 000 non-empty documents. We split the data into 106, 325
sentences. The average size of a sentence is 26 word occur-
rences, while the longest sentence contains 260.

Using a minimum frequency threshold of 10, we extracted
4, 855 MFSs, distributed in 4, 038 2-grams, 604 3-grams, 141
4-grams, and so on. The longest sequences had 10 words.

1http://www.daviddlewis.com/resources/textcollections/reuters21578

t-test n-gram expected observed

0.03109 los angeles 0.08085 103
0.02824 kiichi miyazawa 0.09455 85
0.02741 kidder peabody 0.04997 80
0.02666 morgan guaranty 0.20726 76
0.02485 latin america 0.65666 67

Table 1: Overall Best 5 MFSs

t-test n-gram expected observed

9.6973-03 het comite 0.6430-03 10
9.6972-03 piper jaffray 0.8184-03 10
9.6969-03 wildlife refuge 0.0522-03 10
9.6968-03 tate lyle 0.1458-03 10
9.6968-03 g.d searle 0.1691-03 10

8.2981-03 pacific security 1.4434 10
8.2896-03 present intervention 1.4521 10
8.2868-03 go go 1.4551 10
8.2585-03 bills holdings 1.4843 10
8.2105-03 cents barrel 1.5337 10

Table 2: The t-test applied to the 5 best and worst

bigrams of frequency 10

The expected document frequency and the t-test of all the
MFSs were computed in 31.425 seconds on a laptop with a
1.40 Ghz processor and 512Mb of RAM. We used an im-
plementation of a simplified version of the algorithm that
does not make use of all the improvements presented in this
paper.

4.3.2 Results
Table 1 shows the overall best-ranked MFSs. In Table 2,

we can compare the best-ranked bigrams of frequency 10
to their last-ranked counterparts, noticing a difference in
quality that observed frequency alone does not reveal.

It is important to note that our technique permits to rank
longer n-grams amongst pairs. For example, the best-ranked
n-gram of size higher than 2 lies in the 10th position: “chan-
cellor exchequer nigel lawson” with t-test value 0.023153, ob-
served frequency 57, and expected frequency 0.2052e − 07.

In contrast to this high-ranked 4-gram, the last-ranked
n-gram of size 4 occupies the 3, 508th position: “issuing
indicated par europe” with t-test value 0.009698, observed
frequency 10, and expected frequency 22.25e − 07.

5. CONCLUSION
We presented a novel technique for calculating the prob-

ability and expected document frequency of any given non-
contiguous lexical cohesive relation. We found a Markov
representation for the problem and exploited the specifici-
ties of that representation to obtain a low computational
complexity.

We further described a method that compares observed
and expected document frequencies through a statistical test
as a way to give a direct numerical evaluation of the intrinsic
quality of a multi-word unit (or of a set of multi-word units).
This technique does not require work of a human expert, and
it is fully language- and application-independent.

It is generally accepted that, in English, two words at a

distance five or more are not connected. We can attempt
to deal with this by using short documents, for example
sentences, or even comma-separated units.

A weakness that our approach shares with most language
models is the assumption that terms occur independently
from each other. In the future, we hope to present more ad-
vanced Markov representations that will permit to account
for term dependency.

6. REFERENCES
[1] H. Ahonen-Myka and A. Doucet. Data mining meets

collocations discovery. In print, pages 1–10. CSLI
Publications, Center for the Study of Language and
Information, University of Stanford, 2005.

[2] Y. Choueka, T. Klein, and E. Neuwitz. Automatic
retrieval of frequent idiomatic and collocational
expressions in a large corpus. Journal for Literary and
Linguistic computing, 4:34–38, 1983.

[3] K. W. Church and P. Hanks. Word association norms,
mutual information, and lexicography. Computational
Linguistics, 16(1):22–29, 1990.

[4] D. Coppersmith and S. Winograd. Matrix
multiplication via arithmetic progressions. In STOC
’87: Proceedings of the nineteenth annual ACM
conference on Theory of computing, pages 1–6, 1987.

[5] G. Dias. Multiword unit hybrid extraction. In
Workshop on Multiword Expressions of the 41st ACL
meeting. Sapporo. Japan., 2003.

[6] W. Feller. An Introduction to Probability Theory and
Its Applications, volume 1. Wiley Publications, third
edition, 1968.

[7] K. T. Frantzi, S. Ananiadou, and J. ichi Tsujii. The
c-value/nc-value method of automatic recognition for
multi-word terms. In ECDL ’98: Proceedings of the
Second European Conference on Research and
Advanced Technology for Digital Libraries, pages
585–604. Springer-Verlag, 1998.

[8] R. A. Horn and C. R. Johnson. Topics in matrix
analysis. Cambridge University Press, New York, NY,
USA, 1994.

[9] C. D. Manning and H. Schütze. Foundations of
Statistical Natural Language Processing. MIT Press,
Cambridge MA, second edition, 1999.

[10] M. Mitra, C. Buckley, A. Singhal, and C. Cardie. An
analysis of statistical and syntactic phrases. In
Proceedings of RIAO97, Computer-Assisted
Information Searching on the Internet, pages 200–214,
1987.

[11] B. Noble and J. W. Daniel. Applied Linear Algebra,
pages 361–367. Prentice Hall, second edition, 1977.

[12] V. O. The role of multi-word units in interactive
information retrieval. In Proceedings of the 27th
European Conference on Information Retrieval,
Santiago de Compostela, Spain, pages 403–420, 2005.

[13] F. Smadja. Retrieving collocations from text: Xtract.
Journal of Computational Linguistics, 19:143–177,
1993.

[14] T. Tanaka, A. Villavicencio, F. Bond, and
A. Korhonen, editors. Second ACL Workshop on
Multiword Expressions: Integrating Processing, 2004.

