
MUSEUMFINLAND

—Finnish Museums on the Semantic Web

Eero Hyvönen, Eetu Mäkelä, Mirva Salminen, Arttu Valo,
Kim Viljanen, Samppa Saarela, Miikka Junnila, and Suvi Kettula

Helsinki Institute for Information Technology (HIIT),
University of Helsinki, and Helsinki University of Technology

P.O. Box 5500, 02015 TKK, FINLAND
FirstName.LastName@cs.Helsinki.FI

http://www.cs.helsinki.fi/group/seco/

Abstract

This article presents the semantic portal MUSEUMFINLAND for publishing heteroge-
neous museum collections on the Semantic Web. It is shown how museums with their se-
mantically rich and interrelated collection content can create a large, consolidated semantic
collection portal together on the web. By sharing a set of ontologies, it is possible to make
collections semantically interoperable, and provide the museum visitors with intelligent
content-based search and browsing services to the global collection base. The architecture
underlying MUSEUMFINLAND separates generic search and browsing services from the
underlying application dependent schemas and metadata by a layer of logical rules. As a
result, the portal creation framework and software developed has been applied success-
fully to other domains as well. MUSEUMFINLAND got the Semantic Web Challence Award
(second prize) in 2004.

Key words: semantic web, information retrieval, multi-facet search, view-based search,
ontology, recommendation system

1 Why Museums on the Semantic Web?

A special characteristic of cultural collection contents is semantic richness. Collec-
tion items have a history and are related in many ways to our environment, to the
society, and to other collection items. For example, a chair may be made of oak and
leather, may be of a certain style, was designed by a famous designer, was manu-
factured by a certain company during a time period, was used in a certain building
together with other pieces of furniture, and so on. Other collection items, loca-
tions, time periods, designers, companies etc. can be related to the chair through

Preprint submitted to Elsevier Science 9 May 2005

their properties and implicitly constitute a complicated semantic network of asso-
ciations. This semantic network is not limited to a single collection but spans over
other related collections in other museums. The network of semantic associations
can be extended to contents of other types in other organization, as well.

Much of the semantic web content will be published using semantic portals 1 [24].
Such portals typically provide the end-user with two basic services: 1) a search
engine based on the semantics of the content [2] and 2) dynamic linking between
pages based on the semantic relations in the underlying knowledge base [6]. Se-
mantic web technology 2 enables new possibilities when publishing museum col-
lections on the web [15]:

Collection interoperability in content Web languages, standards, and ontologies
make it possible to make heterogeneous museum collections of different kind
mutually interoperable. This enables, e.g., the creation of large inter-museum
exhibitions.

Intelligent applications More versatile, user-friendly, and useful applications based
on the semantics of the collections can be created.

To realize these ideas in practice, we have developed a semantic web portal called
“MUSEUMFINLAND—Finnish Museums on the Semantic Web” 3 . This system
contains an inter-museum exhibition of over 4,000 cultural artifacts, such as tex-
tiles, pieces of furniture, tools etc. Also metadata concerning some 260 historical
sites in Finland were incorporated in the system. The goals for developing the sys-
tem were the following:

Global view to distributed collections It is possible to use the heterogeneous dis-
tributed collections of the museums participating in the system as if the collec-
tions were in a single uniform repository.

Content-based information retrieval The system supports intelligent information
retrieval based on ontological concepts, not on simple keyword string matching
as is customary with current search engines.

Semantically linked contents A most interesting aspect of the collection items to
the end-user are the implicit semantic relations that relate collection data with
their context and to each other. In MUSEUMFINLAND, such associations are ex-
posed dynamically to the end-user by defining them in terms of logical predicate
rules that make use of the underlying ontologies and collection metadata.

Easy local content publication The portal should provide the museums with a
cost-effective publication channel.

Museum databases are usually situated at different locations and use different data-
base systems and schemas. This creates a severe obstacle to information retrieval.

1 See, e.g., http://www.ontoweb.org/.
2 http://www.w3.org/2001/SW/
3 http://museosuomi.cs.helsinki.fi/

2

To address the problem, the web can be used for creating a single interface and
access point through which a search query can be sent to distributed local databases
and the results combined into a global hit list. This “multi-search” approach is
widely applied and there are many cultural collection systems on the web based on
it, such as the portals Australian Museums Online 4 and Artefacts Canada 5 .

Fig. 1. Information retrieval in MUSEUMFINLAND. Local database contents are first
merged and the query is evaluated with respect to the global interrelated data.

A problem of multi-search is that by processing the query independently at each
local database, the global dependencies, associations between objects in different
collections are difficult to found. Since exposing semantic associations between
collections items is one of our main goals, MUSEUMFINLAND cannot be based on
the multi-search paradigm. Instead, the local collections are first consolidated into
a global repository, and the search queries are answered based on it (cf. figure 1).
Mutually shared conceptual models, ontologies, are used for enriching the content
and for making the collections interoperable. To show the associations to the end-
user, the collection items are represented as web pages interlinked with each other
through the semantic associations. The MUSEUMFINLAND home page is the single
entry point through which the end-user enters the global semantic WWW space. A
challenge in this approach is that a separate content creation process is needed for
consolidating the global repository based on local databases.

This paper presents MUSEUMFINLAND from different viewpoints [15, 13, 19, 18,
25]. The creation and structure of the ontologies underlying the system is first
discussed. After this we explain how content from the museum databases can be
imported into the global RDF(S) 6 [21, 1] repository conforming to the shared on-

4 http://www.amonline.net.au/
5 http://www.chin.gc.ca/
6 http://www.w3.org/RDF/

3

tologies. Next the semantic search and browsing services of MUSEUMFINLAND are
explained from the end-user’s viewpoint, and adaptation of the system to new data
is briefly discussed. Then we get down to the implementation and describe the gen-
eral architecture underlying the system, and its components. The paper concludes
by discussing the lessons learned as well as related and future work.

2 Ontologies

Ontology Content Classes Instances

Artifacts Classes for tangible collection objects 3227 0

Materials Substances that the artifacts are made of 364 0

Situations Situations, events, and processes in the society 992 0

Actors Persons, organizations, and other active agents 26 1715

Locations Continents, countries, cities, villages, farms etc. 33 864

Times Eras, centuries, etc. as labeled time intervals 57 0

Collections Museum collections included in the system 22 24
Table 1
The ontologies used in the MUSEUMFINLAND portal. The numbers indicate classes and
individuals in actual use in the first version of the portal. The total number of all classes
and individuals in the underlying ontologies is about 10,000.

MUSEUMFINLAND uses the seven domain ontologies that are listed in table 1.

(1) The Artifacts ontology is a hyponymy taxonomy of tangible collection ob-
jects, such as pottery, cloths, weapons, etc. All artifact exhibits in the system
belong to some class in this ontology. The taxonomy was extended with prop-
erties available from an underlying thesaurus MASA [23] (to be discussed
later in more detail). In some parts of the ontology, more properties have been
defined but are not used in the current version of MUSEUMFINLAND.

(2) The Materials ontology is a hyponymy taxonomy of the artifact materials,
such as steel, silk, tree, etc. The classes are based on MASA.

(3) The Actors ontology defines classes of agents, such as persons, companies
etc., and individuals as instances of these classes.

(4) The Situations ontology is a taxonomy that includes intangible happenings,
situations, events, and processes that take place in the society, such as farming,
feasts, sports, war, etc. The classes are based on MASA.

(5) The Locations ontology represents areas and places on the Earth. It contains
classes such as Continent, Country, County, City, Farm etc. The main content
in the ontology is its individual location instances (e.g., Helsinki or Finland)
and their mutual meronymy relations (e.g., Helsinki is a part of Finland).

4

(6) The Times ontology is a meronymy of various predefined historical periods.
First, there are categories representing special eras of interest such as the Mid-
dle Ages and the time of the World War II. Second, there is a linear breakdown
hierarchy of centuries and decennia. The properties of time concepts are a
human readable label of period and the beginning and end year of the time
interval.

(7) The Collections ontology is a taxonomy that classifies the collections included
in the portal under the museums hosting them. The properties of the taxonomy
indicate the name and the hosting museum of the collection.

All taxonomy classes in MUSEUMFINLAND are instances of metaclasses for which
properties such as the creator, description, date of creation, etc. can be specified.

The seven domain ontologies were created by three main methods: manual editing,
thesaurus transformation, and ontology population. In the following, these methods
and the schemas of the created ontologies are discussed in more detail.

2.1 Manual editing

Ontologies are typically created or enhanced by hand using an ontology editor. This
is feasible, e.g., with small ontologies, semantically complex ontologies, or if there
are no thesauri or other data repositories available for computer-based ontology
creation. In our case, the Collections and Times ontologies were created in this
way. All ontologies have been enhanced manually to some extent even if much of
the creation work could be automated. In this work the Protégé-2000 7 editor with
its RDF plug-in was mostly used.

2.2 Thesaurus transformation

Controlled vocabularies and thesauri are usually used when indexing collection
items in a database. A thesaurus employs a small number of relationships to orga-
nize the terms, such as information about broader (BT), narrower (NT) and related
terms (RT), as well as properties instructing the human thesaurus user, such as
”see” reference (USE), its reciprocal relation ”use for” (UF), and scope note (SN)
[5]. Sometimes references to synonyms, antonyms, and homonyms may be explic-
itly presented, too.

In Finland, the most notable and widely used thesaurus for cultural content in
Finnish is MASA [23] maintained by the National Board of Antiquities 8 . MASA

7 http://protege.stanford.edu/
8 http://www.nba.fi/

5

consists of some 6000 terms and employs the usual thesaurus relations NT, BT, RT,
USE, UF, SN discussed above. This repository was available as a database and its
terms could be used as a basis for creating a new, larger cultural ontology called
MAO (6768 classes).

When transforming a thesaurus into an ontology [36], the NT/BT relations can
be used as a first approximation for the subsumption taxonomy. However, lots of
manual corrections are needed for several reason. First, the semantics of the NT/BT
relation typically includes different forms of both hyponymy and meronymy, which
may not be desirable. Second, the relations are often defined locally without con-
sidering a larger global context, such as transitivity of the NT/BT relation. For
example, the entry Make-up mirror can be a narrower term (NT) of Mirror and the
entry Mirror can be a narrower term of Furniture. However, one should not infer
from this transitively that a make-up mirror is a piece of furniture like one could
with a proper subsumption (subClassOf) hierarchy. Third, the NT/BT relations are
not systematically developed in thesauri. In the case of MASA thesaurus, for ex-
ample, it turned out that there were about 2600 roots that had no broader term
among the 6000 terms. Hundreds of new intermediate classes had to be defined
in order to create a complete developed class hierarchy needed for the MUSEUM-
FINLAND system. Fourth, the thesauri may also contain some errors that have not
been detected by the term bank system used for editing the thesaurus. In MASA, for
example, some missing reciprocal links and even circularity in the NT/BT relation
was detected.

MASA thesaurus was transformed into MAO in three steps:

(1) A meta-level for MAO-ontology was created using Protégé-2000. This meta-
level consists of meta-classes that describe the properties of the ontological
classes to be created as MAO classes. The meta-properties fall into two cat-
egories: 1) Semantic relations of the thesaurus as they are, such as BT, NT,
etc. 2) Metadata documenting the meaning and creation history of the classes,
such as creator, date-of-creation, etc.

(2) An RDF Schema structure (a Protégé-2000 project) conforming to the RDFS
representation conventions of Protégé-2000 was created automatically from
the database. This structure represented the entries of the thesaurus as classes
organized into an initial rdfs:subClassOf taxonomy corresponding to the NT/BT
relation.

(3) A human editor, museum curator, edited the hierarchy further with Protégé-
2000 into a proper taxonomy by introducing new concepts and by re-organizing
the classes. Some 700 new classes were created during this phase.

In this way, three domain ontologies, Artifacts, Materials, and Situations in table 1
emerged as sub-ontologies of MAO. These ontologies were later on extended based

6

on collection item data from the collections of the National Museum 9 , Espoo City
Museum 10 , and Lahti City Museum 11 .

2.3 Ontology population

By ontology population we refer to a process, where a class structure of an on-
tology already exists and is extended by creating individuals based on some data
repository. This can be done either by a computer or by a human editor. In our
case, the Locations and Actors ontologies in table 1 were created in this way by a
semi-automatic process.

The class structure of the Locations ontology is small and could be created by hand
(classes like Continent, Country, City, Farm etc.). An initial set of a couple hun-
dred individual countries and cities was generated automatically from official data
sources, such as the list of Finnish cities and counties. However, most of the in-
stance data had to be populated from the collection databases, since the museum
databases include specific location information—for example specific estates or
historic locations—that were not available in the official data sources. For these
locations some meronymy relations could be identified automatically. This is be-
cause many collection data entries contained both a general and a more particular
location term (c.f., Paris in France vs. Paris in Texas), from which the meronymy
relation could be deducted. For ambiguous location names, the rdf:type and part-of
properties had to be edited by a human editor.

As in Locations, the class structure of the Actors ontology is small including classes
such as Person, Woman, Company, etc., and could be created by hand. Most of the
resources in the ontology are instances, such as particular persons. The individuals
were populated from the databases. In some cases, the class of the instance could
be deduced from the original data. If not, the computer made a guess and let the
human editor check the result. For example, it may be known that a certain string,
say “John Doe”, is a person’s name but the sex has not been represented explicitly.
The computer can then create an instance of class Person and let the editor change
the class to either Woman or Man.

2.4 Enriching ontologies with cultural and common sense knowledge

A major goal of MUSEUMFINLAND is to provide the end-user with semantic asso-
ciation links relating collection contents with each other. Such association are based

9 http://www.nba.fi/en/nmf/
10 http://www.espoo.fi/museo/
11 http://www.lahti.fi/museot/

7

on cultural and common sense knowledge about the society and its functions. It
tells, for example, how, in what context, and for what reason different artifacts have
been used. Much of this kind of knowledge falls outside of traditional taxonomic
ontological knowledge and is not explicit in the metadata descriptions, either.

We therefore decided to enrich the knowledge base of MUSEUMFINLAND with
addition cultural and common sense knowledge. Such knowledge serves two pur-
poses:

• From the end-user’s view-point, it enables semantic link generation and semantic
browsing. This feature will be discussed in detail in the coming sections.

• From the cataloger’s view-point, it makes the cataloging process simpler because
many additional annotations can be automatically created. For example, if we
know that the artifact is a doctor’s hat, then there is no need to tell that it is
related to academic ceremonies, because this inference can be drawn by a simple
rule.

Additional knowledge was incorporated into the system in two ways: 1) by ex-
plicit associations and 2) by more complex logic rules using them (in addition to
ontological knowledge and metadata).

A few simple explicit association types of form X isRelatedTo Y were identified.
First, we envisioned that the events taking place in the society, i.e., the Situations
ontology, are of central importance for creating useful semantic linkage. Therefore
additional association triples of form (arti f act, is−related−to−event, situation)
were created. These relations were defined by a museum curator with the user-
friendly N3-notation 12 . For example:

masa:spade mapping:is-related-to-event masa:forestry.
masa:Christmas_tree mapping:is-related-to-event masa:Christmas.

Second, artifacts are related to each other, which can be represented by the triple
(arti f act1, is− related− to−arti f act, arti f act2). For example, sailing ships are
related to sails, screw drivers to screws, etc. Thirdly, there are association between
artifacts and materials. Altogether, 301 different associations between ontology
classes were created in this way.

Based on the ontologies, associations, annotation schema, and the metadata from
the databases, a set of more complex labeled associations between resources were
defined in terms of predicate logic rules. These rules (to be discussed in more
detail later) exploit, e.g., the fact that the associations are inherited along the
rdfs:subClassOf hierarchy, make use of the relations defined in MASA, and use
the various metadata annotation properties of the collection artifacts.

12 http://www.w3.org/DesignIssues/Notation3.html

8

The association types in MUSEUMFINLAND are primitive from the semantic view
point, but could be defined easily and can be used in practice as a basis for creating
many useful links on the user interface. We have found the idea of using the Sit-
uations ontology as a means for linkage creation very promising. At the moment
we are developing a more elaborate event ontology with properties such as agent,
object, time etc. as is customary in knowledge representation research [32]. We en-
vision, that more useful semantic links can be created by making the distinction
between the different roles in which individuals participate in event, and that the
prize to be paid in terms of creating more complex metadata is worth paying in
many situations.

3 Content creation process

The collection item (meta)data MUSEUMFINLAND came from the four databases
of table 2. The databases were situated in different locations and used four differ-
ent database schemas and cataloging systems that were based on three different
database systems. The column Items indicates the number of collection objects
taken from the databases for the pilot version of MUSEUMFINLAND. Only a small
fraction of collections was used. The selection was based on, e.g., the museums’
publication prioritization, quality of metadata, whether the data record contained
an image of reasonable quality, etc.

Museum DB system Cataloging System Items Content

Espoo City Museum Ingress Escoll 1190 artifacts

Lahti City Museum Ingress Antikvaria 1587 artifacts

National Museum MS Server Musketti 1351 artifacts

National Museum MS Access MS Access 256 hist. sites
Table 2
The databases used in the MUSEUMFINLAND pilot version.

These local heterogenous databases were transformed into a global, syntactically
and semantically interoperable knowledge base in RDF format, which conforms to
the set of global museum ontologies (table 1). The annotation process was designed
to meet two requirements: First, new museum collections need to be imported into
the MUSEUMFINLAND portal as easily as possible and with as little manual work
and technical expertise as possible. Second, the museums should have maximal
local freedom in annotations and need to commit to only necessary restrictions and
complications imposed by the portal and the other content providers. For example,
two museums may use different terms for the same thing. The system should be
able to accept the different terms as far as the terms are consistently used and their
local meanings with respect to the global reference ontologies are provided.

9

Figure 2 depicts the annotation process that consists of three major parts. First syn-
tactic homogenization is obtained by transforming the relational database records
into a shared XML language, cf. the DB2XML arrow on the left. The result is a set
of em XML cards. Second, terminology definitions in RDF, called em term cards,
are created based on the XML data, cf. the lower XML2RDF arrow. The transfor-
mation is performed by a tool called Terminator. The term cards map XML level
literals onto URIs in the museum ontologies. Third, semantic interoperability is
obtained by transforming the XML cards—with the help of term cards—into RDF
form that conforms to the global museum ontologies, cf. the upper XML2RDG ar-
row on the right. The result is a set of RDF cards. This transformation is performed
by a tool called Annomobile. In the following, the three parts of the annotation
process are discussed in more detail.

Fig. 2. The content creation process in MUSEUMFINLAND.

3.1 Syntactic homogenization based on XML

The first step in combining the heterogeneous relational databases is to gain syntac-
tic interoperability by transforming database contents into a shared XML format.
This means, for example, that the data record fields meaning the same thing but
under different labels in different databases, such as “name of object” and “object
name”, are mapped onto the same XML attribute value. The transformation proce-
dure from database to XML depends on the database schema and system at hand,
and is described more in detail in [29].

The reasons for using an intermediate XML level and XML transformation step
in the annotation process are: Firstly, XML provides a simple, open language by
which the participating museums can agree upon the syntax for representing col-
lection data. Secondly, database system dependent parts of the whole annotation
process can now be separated into the database to XML transformation, and the
remaining steps that can be shared by all museums.

Based on the schema, each collection item has an XML description of its own called

10

the XML card. For example, the XML card representing a calendar is presented
below 13 :

<artifactCard created="2003-7-29 10:43:16">
<artifactId> ECM:22461:1 </artifactId>
<artifactType> Christmas calendar,

Finland’s Scouters Assoc. </artifactType>
<museum> Espoo City Museum </museum>
<material> cardboard </material>
<keywords>
<keyword> Christmas </keyword>
<keyword> calendar </keyword>
<keyword> scouts </keyword>

</keywords>
<placeOfUsage> Tapiola, Espoo </placeOfUsage>
<creator> Ulla Vaajakoski </creator>
...
<photo> photos/image3451.jpg </photo>

</artifactCard>

An XML card presents the main features of a collection object by sub-elements.
The values of the features, such as the string ”Espoo City Museum” in the sub-
element <museum>, are read from the underlying database tables. However, there
are often difficulties in creating such strings. In below some of them are listed and
the solution approaches taken in MUSEUMFINLAND outlined.

• Imprecise data. The information available is often imprecise in different ways.
One has be able to make the distinction between the following cases: 1) The value
is missing but existing, i.e., unknown. For example, the creator of a painting may
be unknown. 2) The value does not exist. For example, a telephone machine may
not have the artistic style property at all. 3) The value is uncertain. For exam-
ple, the manufacturing time of a chair may be somewhere during 1850-1870. In
MUSEUMFINLAND unknown values are represented by a special symbol, miss-
ing properties by are identified by empty values, and uncertainty is represented
by time intervals and by using more general classes as values. For example, class
“metal” can be used for uncertain metallic material.

• Complex values. The value of a property is often a combination of facts that
may be stored in different database tables. For example, an artifact may have a
genus name (e.g., “toy”) with a species name (“Donald Duck toy”), additional
colloquial names, and names in different languages. Such detailed information
should not be lost. In our system, complex values are simply concatenated into
a string by using a semicolon as the separation mark, i.e., the value may be a set
of values.

• Dealing with errors. The information available is in many cases syntactically
erroneous due to typing errors. This is a problem that should of course be solved
already when cataloging the items, but errors occur and have to be dealt with. In
MUSEUMFINLAND the system creates a log file for erroneous or not matching
cards and lets the human editor make needed corrections.

13 The example is translated and slightly simplified from the original version in Finnish.

11

Property Meaning

singular Singular form of the term as a string

plural Plural form of the term

concept URI of the concept in an ontology

definition Definition of the term or info from a data source

usage Value that tells whether the term is obsolete or in use

comment Any additional information concerning the term
Table 3
Term card properties.

3.2 Terminology creation

A terminology is represented by a term ontology, where the notion of the term is
defined by the class Term. The class Term has the properties of table 3. They are
inherited by the term instances called term cards. A term card associates a term as
a string with an URI in an ontology represented as the value of the property con-
cept. Both singular and plural forms are stored explicitly for two reasons. First, this
eliminates the need for Finnish morphological analysis that is complex even when
making the singular/plural distinction. Second, singular and plural forms are used
with different meaning in Finnish thesauri. For example, the plural term “operas”
would typically refer to different compositions and the singular “opera” to the ab-
stract art form. To make the semantic distinction at the term card level, the former
term can be represented by a term card with missing singular form and the latter
term with missing plural form. Property definition is a string representing the defi-
nition of the term. Property usage is used to indicate obsolete terms in the same way
as the USE attribute is used in thesauri. Finally, the comment property can be filled
to store any other useful information concerning the term, like context information,
or the history of the term card.

A term ontology is represented by a Protégé-2000 project that consists of the Term
class as an RDF Schema, term instances in RDF, and the referenced ontology rep-
resented as an included project.

Initial sets of term cards were created automatically based on the MASA cultural
thesaurus and the ontologies of MuseumFinland. The morphological tool Machi-
neSyntax 14 was used for creating plural or singular forms for the term cards when
needed.

New term cards are created automatically for unknown terms that are found in
artifact record data. The created term cards are automatically filled with contextual

14 http://www.conexor.fi/m syntax.html

12

information concerning the meaning of the term. This information helps the human
editor to fill the concept property. For example, assume that one has an ontology M
of materials and a related terminology T. To enhance the terminology, the material
property values of a collection database can be read. If a material term not present
in T is encountered, a term card with the new term but without a reference to an
ontological concept can be created. A human editor can then define the meaning by
making the reference to the ontology.

After this new term cards were extracted by examining the XML cards before trans-
forming them into RDF. Figure 3 depicts the general term extraction process in
MUSEUMFINLAND. The process involves a local process at each museum and a
global process at MUSEUMFINLAND. The tool Terminator extracts individual term
candidates from the museum collection items presented in XML. The entity of one
item is called an term card. A human editor annotates ambiguous terms or terms
not known by the system. The result is a set of new term cards. This set is included
in the museum’s local terminology and terms of global interest can be included in
the global terminology of the whole system for other museums to use.

Fig. 3. Creating new term cards in MUSEUMFINLAND.

The global terminology consists of terms that are used in all the museums. It re-
duces the workload of individual museums, since these terms do not need to be
included in local terminologies. The local term base is important because it makes
it possible for individual museums to use and maintain their own terminologies.

The global term base can be extended when needed. For example, when creating
new terms, it may occur that there is no appropriate concept in the ontologies that
a new term can be associated with. In this case, the term is associated with a more
general concept and a suggestion is made to MUSEUMFINLAND for extending the
ontology later on with a more accurate concept.

A problem of the term creation approach described above is how to deal with com-
plex textual expressions involving several primitive concepts. Some expressions,

13

such as “woman’s dress” have been lexicalized into entries in MASA thesaurus, and
have been consequently modeled in the MAO ontology as well as classes. However,
there are lots of similar kind of possible expressions whose representation as a class
would not be feasible, such as “man’s spectacles”, “nylon wardrobe”, “mixture of
cotton and polyamid” etc.

To get insight into this problem, an empirical study was conducted about the tex-
tual expressions that were used in describing the artifact type and material fields
of the collection objects. Terminator separated terms that could not be identified
by using the initial terminology defined in the MASA thesaurus. 413 problem-
atic expressions were found for describing the artifact type in about 4000 descrip-
tions many of which involved two descriptors: the general term, e.g., “trousers”,
and its specifier, e.g. “jeans”. The most common problems were: Complex pha-
rases (36%), e.g. “sleeping bag with a zip”; combining user and artifact descrip-
tions (25%), e.g., “child’s hat”; combining material and artifact descriptions (20%),
e.g. “leather gloves”; combining usage and artifact information (18%), e.g., “sport
shirt”; combining manufacturing technique and artifact type (7%), e.g., “woven
shirt”. Common problems in the descriptions of the material field were: Confus-
ing trademarks and materials, e.g., “banlon” vs. “polyamid”; spelling errors; using
inflected morphological forms (partitive forms); mixing material and form infor-
mation, e.g., “cotton fabric”; multiple descriptions, e.g., “nylon and wool”; mixing
material with numerical information, e.g., “87% cotton”.

The problem of associating complex unknown descriptions with ontological URIs
was solved in two ways. First, if the complex description seemed to be used more
than once, a corresponding term card was created to take care of other instances
of such descriptions. Second, unique, erroneous and confusing descriptions were
annotated by hand when encountered later while transforming the XML cards into
RDF cards by Annomobile.

3.3 Semantic annotation based on ontologies

The last step in the content creation process (cf. fig. 2) is creation of the semanti-
cally interoperable RDF cards based on the XML cards. Interoperability is obtained
by replacing—using term cards—literal data values on the XML level with the on-
tological concepts and individuals on the RDF level. For example, the XML card
presented in page 11 would translate into the RDF card below:

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:card="http://www.fms.fi/RDFCard#">
<card:RDFCard
rdf:about="http://www.fms.fi/rdfCard#card11023">
card:artifactId="16851"
card:artifactType-www="calendar"
card:artifactType="http://www.fms.fi/artifacts#calendar"

14

card:museum-www="Espoo City Museum"
card:museum="http://www.fms.fi/agents#EspooCityMuseum"
card:material-www="cardboard"
card:material="http://www.fms.fi/materials#cardboard"
...

</card:RDFCard>
...
</rdf:RDF>

The elements of the XML cards fall in two categories: literal features and onto-
logical features. Literal features are to be represented only as literal values on the
RDF level, too. They are, for example, used in the user interface. Ontological fea-
ture values need to be linked to not only literal values but to ontological resources
(URIs), too. For example, in the above RDF card the feature artifactId is lit-
eral and is not connected with the ontology resources. In contrast, the ontological
feature material is represented with the literal property material-www and the
ontological property material that has an RDF resource (URI) as its value. This
URI connects the card resource with the material ontology and through it with other
resources.

The XML to RDF transformation is done by the tool Annomobile. Its transfor-
mation algorithm [14] creates for each XML card feature f, represented as an XML
element, a corresponding RDF triple with the corresponding predicate name f-www
and literal object value. For ontological features, an additional triple is created. It
has the same predicate name f and the object value consists of the URIs of the
possible resources that the literal feature value may refer to according to the term
cards. Each ontological feature is associated with one or more ontologies defining
the range of possible feature values, as presented in table 4. The range restrictions
are used for disambiguating homonymous terms referring to resources in different
ontologies. For example, the meaning of the Finnish term “villa” as a kind of resi-
dence can be excluded, if the term is used as a value of the material feature, where
it means wool.

When mapping ontological feature values to URIs in domain ontologies, two major
problem situations occur related to 1) unknown values and 2) homonyms. In case
of unknown values, there are no applicable term card candidates in the terminology.
The solution to this is to map the feature value either to a more general concept or
to a resource considered unknown. For example, if one knows that an artifact was
created in some city in Lapland, one can create an unknown instance of the class
City, tell that it is a part of Lapland, and annotate the place-of-manufacture feature
with this instance.

The problem of homonymous terms occurs when there are homonyms within the
range of ontologies used for annotating the ontological feature at hand. For ex-
ample, the Finnish literal term “kilvet” as a value of the artifact-type feature, can
mean either a signboard or a coat of arms, and these interpretations cannot be dis-
ambiguated by using the range information of table 4. The solution employed in
Annomobile is to fill the RDF card with all potential choices, inform the human

15

Ontological feature Range ontology

artifact-type Artifacts

material Materials

keyword Any ontology

creator Actors

place-of-creation Locations

time-of-creation Times

user Actors

place-of-usage Locations

situation Situations

collection Collections
Table 4
Major ontological feature ranges of artifacts in MUSEUMFINLAND.

Museum 1 Museum 2 Museum 3

Total of annotated items 1354 1682 3010

Items with homonyms 543 (72,43%) 470 (27,94%) 529 (17,57%)

of which disambiguated 426 (70,61%) 407 (24,20%) 389 (12,92%)

of which not disambiguated 116 (8,57%) 63 (3,75%) 140 (4,65%)
Table 5
Results of disambiguating ontological feature values in MUSEUMFINLAND.

editor of the problem, and ask him to remove the false interpretations on the RDF
card manually.

Our first experiments indicate, that at least in Finnish not much manual disambigua-
tion work is needed, since homonymy typically occurs between terms referring to
different domain ontologies. However, the problem still remains in some cases and
is likely to be more severe in languages like English having more homonymy.

Table 5 shows some statistical results that were obtained in an annotation process
experiment. The number of museum collection items totaled 6046, and every item
had nine features on the average that needed to be linked to ontological concepts
by Annomobile. All fields could contain multiple literal values, all of which should
be linked to different ontological concepts. For example, the place-of-usage feature
could contain several location names. The table indicates that homonyms occur
quite often in the data, but in most cases they belong to different domains, and the
simple disambiguation scheme based on feature value ranges worked fairly well in
practice.

16

4 End-User’s Perspective

MUSEUMFINLAND provides the end-user with two services:

• A semantic view-based search engine that is based on the underlying knowledge
base consisting of ontologies and instance data.

• A semantic linking system by which the user can find out semantic associations
within the portal content, and use the associations for browsing.

In this section we describe these knowledge-based services from the end-user’s
viewpoint. The services are provided to the end-user via two different user inter-
faces: one for desktop computers and one for mobile devices. In below the desktop
computer web interface is first presented.

4.1 A semantic view-based search engine

The search engine of MUSEUMFINLAND is based on the multi-facet search
paradigm [28, 9]. Here the concepts used for indexing are called categories and
are organized systematically into a set of hierarchical, orthogonal taxonomies. The
taxonomies are called subject facets or views. In multi-facet search the views are
exposed to the end-user in order to provide her/him with the right query vocabulary
and for presenting the repository contents and search results along different views.

Each category is related to a set of search objects that we will call its projection.
The extension E of a category is the union of its projection P and the extensions of
its subcategories Si: E = P∪S1 ∪S2 ∪ ...∪Sn. A search query in multi-facet view-
based search is formulated by selecting categories of interest from the different
facets, typically one selection from a facet. The answer to the query is simply the
intersection of the extensions Ei of the selected categories: A =∩{Ei}. For example,
by selecting the category “Chairs” from the Artifact facet, and “Helsinki” from
the Place of Manufacturing facet, the user can express the query for retrieving all
chairs (of any subtype) manufactured in Helsinki (or in any of its suburbs and other
locations within Helsinki).

MUSEUMFINLAND classifies the collection items along nine views organized in
four groups, as presented in table 6. The Artifact Views describe the physical as-
pects of the collection item (artifact type and materials). The Creation Views tell
who manufactured or created the artifact, as well as the location and time of the
creation. The Usage Views indicate the user of the artifact, place of usage, and
situations in which the artifact is used. Finally, the Collection View classifies the
museums and collections participating in the portal.

The novelty of MUSEUMFINLAND with respect to traditional view-based search

17

systems lies in the use of ontologies. The nine views are projected from the seven
ontologies of table 1 by a set of logical rules to be discussed later in more detail.

View type Facet view Underlying ontology

Artifact Artifact type Artifacts

Material Materials

Creation Creator Actors

Location of creation Locations

Time of creation Times

Usage User Actors

Location of usage Locations

Situation of usage Situations

Museum Collection Collections
Table 6
The nine view facets in the MUSEUMFINLAND portal based on the domain ontologies of
table 1.

Facets can be used for helping the user in information retrieval in many ways. First,
the facet hierarchies give the user an overview of what kind of information there
is in the repository. Second, the hierarchies can guide the user in formulating the
query in terms of appropriate concepts. Third, the hierarchies do not suffer from the
problems of homonymous query terms. Fourth, the facets can be used as a naviga-
tional aid when browsing the database content [9]. Fifth, the number of hits in every
category that can be selected next can be computed beforehand and be shown to the
user [28]. In this way, the user can be hindered from making a selection leading to
an empty result set—a recurring problem in information retrieval systems—and is
guided toward selections that are likely to constrain (or relax) the search appropri-
ately.

4.1.1 Search interface

Figure 4 shows the initial search interface of MUSEUMFINLAND. The nine facets
are shown (in Finnish), such as Artifact type (“Esinetyyppi”) and Material (“Mate-
riaali”). For each facet, the next level of sub-categories is shown as a set of links. A
query is formulated by selecting a category by clicking on its name. When the user
selects a category c in a facet f , the system constrains the search by leaving in the
result set only such objects that are annotated in facet f with some sub-category
of c or c itself. For example, figure 5 depicts the situation after selecting the sub-
category Tools (“työvälineet”) from the Artifact type facet (“Esinetyyppi”). Now,
the interface shows the nine facets on the left, while result set of the made selection
is shown on the right.

18

The result set is grouped by the sub-categories of Tools, such as Textile making
tools (“tekstiilityövälineet”) and Tools of folk medicine (“kansanlääkinnän työ-
välineet”). Hits in different categories are separated by horizontal bars and can be
viewed page by page independently in each category. The number of hits shown in
each sub-category is determined from the number of sub-categories in the result set
in order to maximize useful information on the limited screen space. In this case,
all subcategories do not fit on the screen, and only a single line of hits is shown for
each subcategory.

By default, the results of the search are grouped by the subcategories of the last
selection, but the system also supports grouping along the other views. Items in the
result set that do not belong in any of the groups are gathered in an “Other hits”
group. For example, in the situation of figure 5, grouping by Museum Collection
would provide the user a quick and intuitive view on what tools there are in each
collection of the participating museums.

Fig. 4. The initial search interface of MUSEUMFINLAND with its nine facets.

The user can refine the query further by selecting another category on the left. For
example, assume that the user selects category Farming and cattle tending (“Maat-
alous ja karjanhoito”) in the view Situation of usage in figure 5. When answering
a query, three things happen. First, the result set on the right is refined to the in-

19

Fig. 5. MUSEUMFINLAND search interface after selecting the category link Tools
(“työvälineet”).

tersection of previous selections; here the result is tools used in farming and cattle
tending. Second, the selected view is changed to expose the subcategories of the
selected category. Third, the size n of the result set resulting from the selection of
any category link seen on the screen is recomputed proactively, and a number (n)
is shown to the user after the category name. This number tells that if the category
is selected next, then there will be n hits in the result set. For example, in figure
5, the number 193 in the Collection facet (“Kokoelma”) on the bottom tells that
there are 193 tools in the collections of the National Museum (“Kansallismuseon
kokoelmat”). A selection leading to an empty result set (n = 0) is removed from
the facet (or alternatively disabled and shown grayed out, depending on the user’s
preference). In this way, the user is hindered from making a selection leading to
an empty result set, and is guided toward selections that are likely to constrain the
search appropriately. The query can be relaxed by making a new selection on a
higher level in the facet or by dismissing the facet totally from the query.

20

Above, the category selection was made among the direct sub-categories listed in
the facets. An alternative way is to click on the link Whole facet (“koko luokittelu”)
on a facet. The system then shows all possible selections in the whole facet hierar-
chy with hit counts. For example, if the user selects in the situation of figure 5 the
link Whole facet of the facet Time of Creation (“Valmistusaika”), the system shows
how the tools in the current result set are classified according to the selected facet
(see figure 6). This gives the user a good overview of the distribution of items over a
desired dimension. By using the option of only graying out categories with no hits,
it is also immediately see in what categories the collections are lacking artifacts.
This may be a useful pease of information for, e.g., the collection manager.

Fig. 6. The Time facet hierarchy classifying the result set of tools in figure 5.

21

4.1.2 Combining keyword and view-based search

View-based search does not a panacea for information retrieval. Google-like key-
word search interface is usually preferred [4] if the user is capable of expressing
her information need terms of accurate keywords. MUSEUMFINLAND seamlessly
integrates this functionality with view-based search in the following way: First, the
search keywords are matched against category names in the facets in addition to text
fields in the metadata. A new dynamic facet is created in the user interface. This
facet contains all facet categories whose name (or other property values) matches
the keyword. Intuitively these facet categories tell the different interpretations of
the keyword, and by selecting one of them next the right choice can be made. This
approach also solves the search problem of finding relevant categories in facets that
contain thousands of categories. Second, a result set of object hits is shown. This
result set contains all objects contained in any of the categories matched in addition
to all objects whose metadata directly contains the keyword. The hits are grouped
by the categories found.

The result of a sample keyword search is shown in figure 7. Here, a search for “esp”
has matched, for example, the categories Spain (“Espanja” in Finnish) and Espoo
in the facet Location of Creation and the category Espoo City Museum (“Espoon
kaupunginmuseo”) in the facet User (“Käyttäjä”). The categories found can be used
to constrain the multi-facet search as normal, with the distinction that selections
from the dynamic facet replace selections in their corresponding facets and dismiss
the dynamic facet.

Fig. 7. Using the keyword search for finding categories.

22

4.2 Semantic browsing

At any point during multi-facet search the user can select any hit found by clicking
on its image. The corresponding data object is then shown as a web page, such
as the one in figure 8. The example depicts a special part, distaff (“rukinlapa” in
Finnish) used in a spinning wheel. The page contains the following information and
links:

(1) On top, there are links to directly navigate in the groups and results of the
current query.

(2) The image(s) of the object is (are) depicted on the left.
(3) The metadata of the object is shown in the middle on top.
(4) All facet categories that the object is annotated with are listed in the middle

bottom as hierarchical link paths. A new search can be started by selecting
any category there.

(5) A set of semantic links to related artifacts is shown on the right.

Fig. 8. Web page depicting a collection object, its metadata, facet categories, and semantic
recommendation links to other collection object pages.

The semantic links on the right reveal to the end-user a most interesting aspect of
the collection items: the implicit semantic relations that relate collection data with
their context and each other. The links provide a semantic browsing facility to the
end-user. For example, in figure 8 there are links to objects used at the same loca-

23

tion (categorized according to the name of the common location), to objects related
to similar events (e.g., objects used in spinning, and objects related to concepts of
time, because the distaff in question has a date carved onto it), to objects manufac-
tured at the same time, and so on. Since a decoratively carved distaff used to be
a typical wedding gift in Finland, it is also possible to recommend links to other
objects related to the wedding events, such as wedding rings. These associations
are exposed to the end-user as link groups whose titles and link names explain to
the user the reason for the link recommendation.

4.3 The mobile user interface

MUSEUMFINLAND has been designed so that the same content and services can
easily be rendered to the end-users in different ways. To demonstrate this, we
created another user interface for MUSEUMFINLAND to be used by WAP 2.0
(XHTML/MP) compatible devices.

In a mobile environment the adaptability of user interface is important. The
MUSEUMFINLAND takes this aspect into concern in following ways. Firstly, empty
results can be eliminated, which is a nice feature in an environment where data
transfer latencies and costs are still often high. Secondly, the elimination of infea-
sible choices makes it possible to use the small screen size more efficiently for
displaying relevant information. Thirdly, the semantic browsing functionality is a
simple and effective navigation method in a mobile environment.

The mobile interface repeats all functionality of the PC interface, but in a layout
more suitable to the limited screen space of mobile devices. In addition, to better fa-
cilitate finding interesting starting points for browsing, some mobile-specific search
shortcuts were created. The search results are shown first up front noting the cur-
rent search parameters for easy reference and dismissal, as seen in figure 9. Below
this, the actual search facets are shown. In the mobile user interface selectable sub-
categories are not shown as explicit links as in the PC interface, but as drop-down
lists that replace the whole view when selected. This minimizes screen space usage
while browsing the facets, but maximizes usability when selecting sub-categories
from them. In-page links are provided for quick navigation between search results
and the search form.

The item page (corresponding to figure 8) is organized in a similar fashion, showing
first the item name, images, metadata, annotations, semantic recommendations, and
finally navigation in the search result. There are also in-page links for jumping
quickly between the different parts of the page.

The mobile user interface also provides two distinct services aimed specifically for
mobile use. First, the interface supports search by the geographical location of the
mobile device in the same manner as in the concept-based keyword search. Any

24

Fig. 9. Results of a mobile geolocation search initiated somewhere near Ruuhijärvi, Fin-
land.

entries in the Location ontology near the current location of the mobile user are
shown in a dynamic facet as well as all data objects made or used in any of these
locations. In addition, any objects directly annotated with geographical coordinates
near the mobile user are shown grouped as normal. This feature gives the user a
one-click path to items of likely immediate interest. Second, because navigation
and search with mobile devices is tedious, any search state can be “bookmarked”,
sent by email to a desired address, and inspected later in more detail by using the
more convenient PC interface.

5 Adapting services for new content

Link Rules

Web Browser

End-User

Domain Knowledge

Ontologies

Instances

Annotation Data

Ontologies

Annotations

Inference

Rules

Ontologies

Metadata

Data

Semantic Browsing
Semantic View-

Based Search

Hierarchy

Rules

Projection

Rules

View Rules

Hierarchy

Rules

Projection

Rules

View Rules

Fig. 10. Architecture of MUSEUMFINLAND on the server side.

Figure 10 depicts the relation between contents and services in MUSEUMFINLAND

25

on the server side. The system is used by a web browser that provides the Semantic
view-based search and Semantic browsing services to the end-user. The services
are based on two forms of content: 1) Domain Knowledge consists of ontologies
(cf. table 1) that define the domain concepts and the individuals. 2) Annotation Data
describes the metadata of the data resources (cf. table 2) represented as RDF cards.

A technical innovation of MUSEUMFINLAND is to introduce an intermediate map-
ping layer of logical rules between the content and semantic services: Link Rules
for the browsing service and View Rules for the search engine. By using the rules
the generic service engines can be separated from domain and annotation specific
details and be adapted to contents of different kind by changing the rules only.
The rules are defined declaratively in terms of Prolog predicates operating on RDF
triples as in [12].

In the following, the idea of View Rules and Link Rules is described in more detail
by using examples. We use SWI-Prolog 15 as the inference engine and SWI-Prolog
syntax in the examples 16 .

5.1 Creating views from ontologies by view rules

A view is a hierarchical index-like decomposition of category resources where each
category is associated with a set of subcategories and a set of directly related data
items. A view is defined in terms of ontologies by specifying a view rule predicate
called ontodella view. It contains the following information: 1) the root resource
URI, 2) a hierarchy rule defined by a binary subcategory relation predicate, 3) a
binary projection rule predicate that maps search objects onto the view categories,
and 4) a label for the view. An example of a view rule predicate is given below:

ontodella_view(
’http://www.cs.helsinki.fi/seco/ns/2004/03/places#earth’,
place_sub_category, place_of_use_leaf_item,
[fi:’Käyttöpaikka’, en:’Place of Usage’] % the labels

).

Here the URI on the second line is the root resource, place sub category is the
name of the hierarchy subcategory predicate and place of use leaf item is the
projection rule predicate. The label list contains the labels for each supported lan-
guage, here in Finnish (fi) and in English (en).

The root URI defines the resource in a domain ontology that will become the root
of the view hierarchy tree, while the hierarchy rule specifies how to construct the

15 http://www.swi-prolog.org
16 The syntax used in the examples is translated from Finnish and is slightly simplified for
better readability.

26

facet hierarchies from the domain ontologies. Hierarchy rules are needed in order
to make the classifications shown to the user independent from the design choices
of the underlying domain ontologies. The view-based search engine itself does not
know about the ontologies, it deals with tree-like category hierarchies.

We have used two hierarchy rules to extract a facet from the RDF(S)-based domain
knowledge. Firstly, the rdfs:subclassOf hyponymy relation can be used in facets
such as Artifact type, and the projection rules map RDF cards of corresponding
artifacts to these categories. Second, places constitute a part-of meronymy. Creating
views along this dimension is a natural choice for the location facets in the user
interface. For example, in the above view rule, the binary subcategory predicate
place sub category can be defined by the containment property isContainedBy
in the following way:

place_sub_category(ParentCategory, SubCategory) :-
SubCategoryProperty =
’http://www.cs.helsinki.fi/seco/ns/2004/03/places#isContainedBy’,

rdf(SubCategory, SubCategoryProperty, ParentCategory).

A projection rules tells when an RDF card instance is a member of a category. For
example, the rule place of use leaf item in our example above could be defined
as follows:

place_of_use_leaf_item(ResourceURI, CategoryURI) :-
Relation = ’http://www.cs.helsinki.fi/seco/ns/2004/03/artifacts#usedIn’,
rdf(ResourceURI, Relation, CategoryURI).

Based on hierarchy and projection rules, the view categories can be generated by
iterating through the predicate ontodella view, and by recursively creating the
category hierarchies using the subcategory rules starting from the given root cate-
gory. At every category, all relevant resources are attached to the category based on
the projection rules.

Hierarchy rules tell how the views are projected logically. A separate question is
how these hierarchies should be shown to the user. Firstly, the ordering of the sub-
resources may be relevant. For example, the sub-happenings of an event should be
presented in the order in which they take place and persons be listed in alphabetical
order. The ordering of the sub-nodes can be specified by a configurable property;
the sub-categories are sorted based on the values of this property. Second, one may
need a way to filter unnecessary resources away from the user interface. For exam-
ple, the ontology is typically created partly before the actual annotation work and
may have more classes and details than were actually needed. Then empty cate-
gories should be pruned out. A hierarchy may also have intermediate classes that
are useful for knowledge representation purposes but are not very natural categories
to the user. Such categories should be present internally in the search hierarchies
but should not be shown to the user. Third, the names for categories need to be
specified. For example, the label for a person category should be constructed from

27

the last and first names represented by distinct property values.

5.2 Semantic link rules

Links can be created in various ways [30]. In our work, we have been considering
the following alternatives:

• User profile-based recommendations are based on information collected by ob-
serving the user, or in some cases by asking the user to explicitly define the
interest profile. Based on the user’s profile, recommendations are then made to
the user either by comparing the user’s profile to other users’ profiles (collab-
orative filtering/recommending) or by comparing the user’s profile to the un-
derlying document collection (content-based recommending). The strength of
user profile-based recommendations is that they are personalized and hence serv-
ing better the user’s individual goals. In MUSEUMFINLAND we decided not to
use profiles due to following reasons: First, a precondition for personalization is
that the users can be identified which was considered not feasible in MUSEUM-
FINLAND. Second, profiling is difficult because many users use the system per-
haps only once in their lifetime. Finally, it is difficult to identify whether the
user likes or dislikes the current data without asking the user to rate every image
explicitly. A weakness of collaborative filtering is that explaining the recommen-
dations to the user can be difficult, because they are mostly based on heuristic
measures of the similarity between user profiles and database contents, and on
the user’s actions.

• With similarity-based recommendations we refer to the possibility to compare
the semantical distance between the metadata of resources. The nearest resources
are likely to be of more interest and could be recommended to the user. A diffi-
culty of this recommendation method is how to measure the semantical distance
between metadata. The most similar RDF card may not be the most interesting
one but rather just another similar artifact. One method is to use the count of
common or intersecting annotation resources as a distance measure [34].

• The idea of rule-based recommendations is that the domain specialist explicitly
describes the notion of “interesting related resource” with generic logic rules.
The system then applies the rules to the underlying knowledge base in order
to find interesting resources related to the selected one. This method has sev-
eral strengths. Firstly, the rule can be associated with a label, such as “Other
artifacts used in event x”, that can be used as the explanation for the recommen-
dations found. It is possible to deduce the explanation label as a side effect of
applying the rule. Semantic linking rules are described by the domain specialist.
The rules and explanations are explicitly defined and are not based on heuris-
tic measures, which could be difficult to understand and motivate. Secondly, the
specialist knows the domain and may promote the most important relations be-
tween the resources. However, this could also be a weakness if the user’s goals

28

and the specialists thoughts about what is important do not match, and the user is
not interested in the recommendations. Thirdly, the rule-based recommendations
do not exclude the possibility of using other recommendation methods but pro-
vides an infrastructure for applying any rules. For example, the recommendation
rules could perhaps be learned by observing the users actions and then used in
recommending images for the current or future users.

In a precursor system [20] of MUSEUMFINLAND, we implemented and tested a
profile-based and similarity-based recommendation system that recommended se-
mantically similar resources. The recommendations were not static but were modi-
fied dynamically by maintaining a user profile and a history log of image selections.
Then a rule-based semantic linking system was implemented due to the benefits dis-
cussed above and is in use in MUSEUMFINLAND. This link system is described in
more detail in the next section.

6 Architecture and implementation

MUSEUMFINLAND has been implemented by using a tool called ONTO-
VIEWS 17 [25]. This tool was developed during the project but has later been ap-
plied to creation of other semantic portals as well [22, 25].

ONTOVIEWS consists of the three major components shown in figure 11:

(1) The logic server ONTODELLA provides the system with reasoning services,
such as category view projection and dynamic semantic link recommenda-
tions.

(2) The search engine ONTOGATOR is a generic view-based RDF search engine,
responsible for the multi-facet search functionality of the system.

(3) The third component ONTOVIEWS-C binds the services of ONTOGATOR and
ONTODELLA together, and provides the user interfaces.

More thorough overviews of the three components are given in the following sub-
sections.

6.1 ONTODELLA rule framework

A prototype rule framework called ONTODELLA has been developed to provide a
logic engine for defining and executing the View and Linking rules of figure 10.

17 The software is available at http://www.cs.helsinki.fi/group/seco/museums/dist/ in open
source.

29

Fig. 11. The components of ONTOVIEWS.

ONTODELLA is a multi-threaded web server which provides remote access to exe-
cute the rules in the framework. The web server and the rule execution framework
are written using SWI Prolog 18 and its readily available HTTP libraries. For the
mobile user interface, ONTODELLA has been extended to provide simple point-of-
interest search based on geo-coordinates available from the mobile phone.

ONTODELLA provides services for view creation, semantic link generation, and
geolocation search. View creation is done by a separate process before starting
MUSEUMFINLAND due to the long time required to execute the hierarchy and pro-
jection rules, and due to the size of the view trees. Linking services and geolocation
search are run dynamically on request. In below, these services are explained in
more detail.

6.1.1 View creation service

View creation service provides necessary hooks for executing the hierarchy and
projection predicates. The view creation algorithm traverses the ontologies by us-
ing the given predicates dynamically in a depth-first search. The resulting view
structure is serialized in RDF/XML according to a model derived from the An-
notea Bookmark Schema 19 . This structure is used by ONTOGATOR as the basis
for the view-based search. An example of a view category is given below:

<ogt:Category>
<rdfs:label xml:lang="fi">Tapahtuma</rdfs:label>
<rdfs:label xml:lang="en">Action</rdfs:label>
<ogt:projectionOf rdf:resource="http://www.seco.org/MAO#prosessit"/>
<fms:rootcatid>0</fms:rootcatid>
<rdf:type>
<rdf:Description rdf:about="http://www.seco.org/MAO#MAOconcept">

<rdfs:label xml:lang="fi">MAOconcept</rdfs:label>
</rdf:Description>

</rdf:type>
<ogt:subCategories rdf:parseType="Collection">

18 http://www.swi-prolog.org
19 http://www.w3.org/2003/07/Annotea/BookmarkSchema-20030707

30

<!-- ... subcategories’ ogt:Category-elements within ... -->
</ogt:subCategories>
<ogt:topicOf rdf:parseType="Collection">
<rdf:Description rdf:about="http://www.seco.org/annotaatiot#taulu_Inst_0"/>
<rdf:Description rdf:about="http://www.seco.org/prosessi#Prosessi_Inst_18888"/>
<rdf:Description rdf:about="http://www.seco.org/prosessi#Prosessi_Inst_58888"/>
<!-- ... more items classified into the category ... -->

</ogt:topicOf>
</ogt:Category>

The structure of the serialized categories uses anonymous RDF nodes to rep-
resent the view category tree and its projected leaf resources. Each category
has as its properties an RDF collection containing the subcategory information
(ogt:subCategories) and an RDF collection listing out the URIs of the ac-
tual resources that have been projected to this specific category (ogt:topicOf).
All resource properties may have alternative labels (rdfs:label) with respec-
tive language information added to them, and the same category resource can
be visualized using different labels depending on the application. The property
ogt:projectionOf refers to the original ontology resource corresponding to the
category. The property ogt:topicOf lists the projection of the category, i.e., re-
sources that belong directly to the category. In addition, all root categories have the
property fms:rootcatid whose value is an integer identifier. It is used by the user
interface for ordering the roots.

The projected resources of a category are represented as Bookmark instances. Each
bookmark has its properties and labels listed out like with categories discussed
above. A bookmark of the category example above is listed below for illustration:

<bm:Bookmark
rdf:about="http://www.seco.org/prosessi#Prosessi_Inst_18888">
<ogt:projectionOf
rdf:resource="http://www.seco.org/prosessi#Prosessi_Inst_18888"/>

<rdfs:label xml:lang="fi">Kullervon tarina</rdfs:label>
<fms:MAOprosessi>
<rdf:Description rdf:about="http://www.seco.org/MAO#kertomukset">

<rdfs:label xml:lang="fi">kertomukset</rdfs:label>
</rdf:Description>

</fms:MAOprosessi>
<fms:kuvaus>Kullervon tarina on kertomus huono-onnisesta Kullervosta.
</fms:kuvaus>
<rdf:type>
<rdf:Description rdf:about="http://www.seco.org/prosessi#YhdistelmaProsessi">

<rdfs:label xml:lang="fi">prosessi:YhdistelmaProsessi</rdfs:label>
</rdf:Description>

</rdf:type>
</bm:Bookmark>

6.1.2 Semantic link service

ONTODELLA also provides a dynamic semantic link service based on linking rules.
In response to a semantic linking service request with a given URI, the framework
calls for all defined semantic link rules. Each link rule can be arbitrarily complex
and is defined by a domain specialist. A linking rule is described by a predicate of
the form

31

predicate(Sub jectURI,TargetURI,Explanation)

that succeeds when the two resources Sub jectURI and TargetURI are to be linked.
The variable Explanation is then bound to an explanatory label (string) for the link.

In the following, one of the more complex rules — linking items related to a com-
mon event— is presented as an example:

related_by_event(Subject, Target, Explanation) :-

ItemTypeProperty =
’http://www.cs.helsinki.fi/seco/ns/2004/03/artifacts#item_type’,

ItemTypeToEventRelatingProperty =
’http://www.cs.helsinki.fi/seco/ns/2004/03/mapping#related_to_event’,

% check that both URIs correspond in fact to artifacts
isArtifact(Subject), isArtifact(Target),
% and are not the same
Subject \= Target,

% find all the item types the subject item belongs to
rdf(Subject, ItemTypeProperty, SubjectItemType),
rdfs_transitive_subClassOf(SubjectItemType,SubClassOfSubjectItemType),

% find all the events any of those item types are related to
rdf(SubClassOfSubjectItemType, ItemTypeToEventRelatingProperty,
Event),
% and events they include or are part of
(
rdfs_transitive_subClassOf(Even, SubOrSuperClassOfEvent),
DescResource=TransitiveSubOrSuperClassOfEvent;
% or
rdfs_transitive_subClassOf(SubOrSuperClassOfEvent, Event),
DescResource=Event;

),

% find all item types related to those events
rdf(TargetItemType, ItemTypeToEventRelatingProperty,
SubOrSuperClassOfEvent),
% and all their superclasses
rdfs_transitive_subClassOf(SuperClassOfTargetItemType,
TargetItemType),

% don’t make uninteresting links between items of the same type
SuperClassOfTargetItemType \= SubjectItemType,
not(rdfs_transitive_subClassOf(SuperClassOfTargetItemType,
SubjectItemType)), not(rdfs_transitive_subClassOf(SubjectItemType,
SuperClassOfTargetItemType)),

% finally, find all items related to the linked item types
rdf(Target, ItemTypeProperty, SuperClassOfTargetItemType),

list_labels([DescResource], RelLabel),
Explanation=[commonResources(DescResource), label(fi:RelLabel)].

The rule goes over several ontologies, first discovering the object types of the ob-
jects, then traversing the object type ontology, relating the object types to events,
and finally traversing the event ontology looking for common resources. Additional
checks are made to ensure that the found target is an artifact and that the subject
and target are not the same resources. Finally, information about the relation is col-
lected, such as the URI and the label of the common resource, and the result is
returned as the link label.

32

Each rule returns as a result a (possibly empty) set of associated URIs with explana-
tory labels. The results are grouped according to the rule which generated them and
according to the resource that caused the linking. For example, in a rule providing
links to collection items manufactured at the same place, the URI of the shared
place can be returned as the link causing resource.

ONTODELLA returns the results in XML form that is transformed into HTML by
the component ONTOVIEWS-C. In the user interface, the result groups form clas-
sified collections of links that can be presented under classification titles subtitled
by link causing resources. For example, in the lower right corner of figure 8 there is
the title Objects related to the same theme (“Samaan aiheeseen liittyviä esineitä”)
and under it two subtitles corresponding to two link causing resources: Concepts of
time (“ajan käsitteet”) and Spinning (“kehruu”). Under the latter subtitle, the first
link “jakkara:kehruujakkara” (Spinning chair) points to the web page of a chair
used in spinning.

Besides using the subject, also the relation and object parts of the query can be
provided as parameters to ONTODELLA linking service. For example, if only a
relation URI (i.e., a rule identifier) is given to the semantic links service, then the
result will be the set of all semantic links provided by that rule. This might be
useful, for example, when debugging the results of new rules.

For every request, all semantic linking rules are evaluated anew so that a maximal
number of different links can be generated and are freshly deduced. ONTODELLA

provides a mechanism to limit the maximum number of link results, too.

6.1.3 Geolocation search

The Geolocation search gets as input a set of coordinates. In response, the service
returns a fixed length ordered list of the location resources nearest to the coordi-
nates, and a corresponding list of bookmarks annotated with the coordinates.

Our current implementation only allows spot coordinate annotation of the searched
resources. This scheme is sufficient for resources annotated with precise coordi-
nates, such as ancient burial sites and fortresses out in the field. Many museum
objects are, however, often annotated only with a more generic location of variable
size and unspecified form, such as the Lapland area. Mapping coordinates onto such
ontological categories is not supported in MUSEUMFINLAND yet. For a production
quality system, the coordinate to resource mapping service should be implemented
in a more generic setting, e.g. within a GIS system.

33

6.2 ONTOGATOR search engine

ONTOGATOR defines and implements an RDF-based query interface that is used to
separate view-based search logic from the user interface. The interface is defined as
an OWL 20 ontology 21 , and is based on selectors that can be used to query for both
view category hierarchies and the projection resources of their categories based on
various criteria, such as category, keyword, and geolocation-based constraints. The
query is represented in XML/RDF form.

The search result of ONTOGATOR is expressed as an RDF-tree that conforms to a
fixed order XML-structure. This allows us to use also XML tools such as XSLT to
process the results more easily. Since the search results are used in building user
interfaces, every resource is tagged with an rdfs:label.

Figure 12 illustrates what happens in an ONTOGATOR search. The query on the left
calls for bookmarks that 1) belong to a subcategory S of a view category hierarchy
2 and 2) contain a given keyword. The results on the right are grouped according
to an independent additiona view hierarchy with the root category G. Grouping is
based on the next sublevel of G as in figure 5. Those bookmarks found that do not
belong in the grouping hierarchy are returned in the ungrouped category U . In the
user interface, the results can be shown in groups 1.1, 1.2, and U .

S1.21.1

G

1.2.1

2.2

2

2.1.1

Keyword

2.1.2

1.21.1

G U

Category Bookmark

Fig. 12. A keyword plus category selector search with results grouped into an independant,
partially cut hierarchy

The RDF query interface allows many options to filter, group, cut, annotate, and
otherwise modify the results. An example of a simple ONTOGATOR query in
RDF/XML-format is given below. There are three facet selectors each of which
specify a category selection, such as %07%04. The result is an intersection of the
extensions of these categories. Additional facet selector properties are set to for-
mulate the result, such as ogt:maxBookmarks that limits the number of bookmarks
returned (cf. the explanatory comments in the code).

20 http://www.w3.org/OWL/
21 http://www.cs.helsinki.fi/group/seco/ns/2004/03/ontogator#

34

<ogt:FacetSelector
rdf:about="http://museosuomi.cs.helsinki.fi/internal/ogtQuery#bookmarksByCategory">
<ogt:incSubCategories>DIRECT</ogt:incSubCategories>
<!-- ˆcut grouping hierarchy to one sublevelˆ -->
<ogt:category>%07%04</ogt:category> <!-- selected category -->
<ogt:maxBookmarks ogt:limit="8"/> <!-- return only 8 bookmarks -->
<ogt:maxSubCategories ogt:limit="8"/>
<!-- ˆand a maximum of 8 subcategoriesˆ -->
<ogt:incBookmarkProperty
rdf:resource="http://.../ns/2004/03/18-itemcard#www_pictureurl"/>

<!-- ˆinclude this bookmark property in the resultˆ -->
...
other options
...
<ogt:constraint rdf:parseType="Collection">
<rdf:Description
rdf:about="http://museosuomi.cs.helsinki.fi/internal/ogtQuery#s%00%0A"/>

<rdf:Description
rdf:about="http://museosuomi.cs.helsinki.fi/internal/ogtQuery#s%07%04"/>

</ogt:constraint>
</ogt:FacetSelector>
<ogt:FacetSelector ogt:category="%00%0A"
rdf:about="http://museosuomi.cs.helsinki.fi/internal/ogtQuery#s%00%0A"/>
<ogt:FacetSelector ogt:category="%0704"
rdf:about="http://museosuomi.cs.helsinki.fi/internal/ogtQuery#s%07%04"/>

An example of a result to a query in RDF/XML format is presented below. It is a
hierarchic facet view tree with categories that are associated with bookmarks and
additional useful information, such as the number of hits in a category. The tree
contains the search result information that is needed for constructing the search
result page in HTML on the user interface.

<ogt:Facet>
<ogt:facetSelector
rdf:resource="http://museosuomi.cs.helsinki.fi/internal/ogtQuery#bookmarksByCategory"/>
<!-- ˆthe facet selector responsible for generating this resultˆ -->
<ogt:bookmarkHits>5</ogt:bookmarkHits> <!-- a total of 5 bookmarks returned -->
<!-- results are returned grouped in a tree hierarchy, in this case

under the facet "Situation of use", under the category "Acts affecting the item"
-->
<ogt:subCategories rdf:parseType="Collection">
<ogt:Category ogt:catid="%07%04" rdfs:label="Acts affecting the item">

<ogt:bookmarkHits>5</ogt:bookmarkHits>
<ogt:subCategoryOf ogt:catid="%07" rdfs:label="Situation of use"/>
<ogt:hasRoot>
<ogt:Category ogt:catid="%07" rdfs:label="Situation of use"/>

</ogt:hasRoot>
<ogt:subCategories rdf:parseType="Collection">
<ogt:Category ogt:catid="%07%04%07" rdfs:label="Modification">
<ogt:bookmarkHits>1</ogt:bookmarkHits>
<ogt:subCategoryHits>1</ogt:subCategoryHits>
<ogt:topicOf rdf:parseType="Collection">
<!-- the only bookmark associated with this category -->
<bm:Bookmark rdfs:label="Ceramic receptible"

rdf:about="...ns/2004/03/18-esinekortti#LahtiLKM_LHM_LHM_ES_2000057_1">
<fms:www_pictureurl>
.../Museo/Lahti/kuvat/LKM_LHM_LHM_ES_2000057_1.jpg

</fms:www_pictureurl>
</bm:Bookmark>

</ogt:topicOf>
</ogt:Category>
<ogt:Category ogt:catid="%07%04%08" rdfs:label="Cleaning">
...

</ogt:Category>
</ogt:subCategories>
<ogt:subCategoryHits>2</ogt:subCategoryHits>

35

<ogt:topicOf rdf:parseType="Collection"/>
<ogt:directBookmarkHits>0</ogt:directBookmarkHits>
<!-- there were no direct bookmarks in "Acts affecting the item" -->

</ogt:Category>
</ogt:subCategories>
<ogt:subCategoryHits>1</ogt:subCategoryHits>
<ogt:topicOf rdf:parseType="Collection"/>
<ogt:remainder>0</ogt:remainder>
<!-- there were no bookmarks that could not be grouped under "Acts affecting the item" -->

</ogt:Facet>

6.3 ONTOVIEWS-C

The user interface, interaction and control component of ONTOVIEWS, ONTO-
VIEWS-C is built on top of the Apache Cocoon framework 22 . Cocoon is a frame-
work based wholly on XML and the concept of pipelines constructed from different
types of components, as illustrated in figure 13. A pipeline always begins with a
generator, that generates an XML-document. Then follow zero or more transform-
ers that take an XML-document as input and output a document of their own. The
pipeline always ends in a serializer that serializes its input into the final result, such
as an HTML-page, a PDF-file, or an image. It is also possible for the output of
partial pipelines to be combined via aggregation into a single XML-document for
further processing. Execution of these pipelines can be tied to different criteria, e.g,
to a combination of the request URI and requesting user-agent.

Fig. 13. The components of a Cocoon pipeline.

In ONTOVIEWS-C, all of the intermediate components produce not only XML, but

22 http://cocoon.apache.org/

36

valid RDF/XML. Figure 14 depicts two pipelines of the ONTOVIEWS-C system.
The pipe lines look alike, but result in quite different pages, namely in the search
result page seen in figure 5 (and another similar page used for depicting results
of the keyword search), and in the item page seen in figure 8. This is due to the
modular nature of the pipelines, which makes it possible to split a problem into
small units and reuse components.

Every pipeline that is tied to user interaction web requests begins with a user state
generator that generates an RDF/XML representation of the user’s current state.
While browsing, the state is encoded wholly in the request URL, which allows
for easy bookmarking and also furthers the possibilities of using multiple servers.
This user state is then combined with system state information in the form of facet
identifiers and query hit counts, and possible user geolocation based information.
This information is then transformed into appropriate queries for the Ontogator and
Ontodella servers depending on the pipeline.

In the Search Page pipeline on the left, an Ontogator query returning grouped
hits and categories is created. In the Item Page pipeline on the right, Ontogator
is queried for the properties and annotations of a specific item and its place in the
result set, while Ontodella is queried for the semantic links relating to that item.
The Ontogator search engine is encapsulated in a Cocoon transformer, while the
Ontodella transformer is actually a generic Web Services transformer that creates
a HTTP-query from its input, executes it, and creates SAX events from the HTTP-
response. The RDF/XML responses from the search engines are then given to user
interface transformers depending on the pipeline and the device that originated the
request. These transform the results into appropriate XHTML or to any other for-
mat, which is then run through an internationalization transformer for language
support and serialized. Most of the transformations into queries and XHTML are
implemented with simple XSLT-stylesheets. In this way, changes to layout are very
simple to implement, as is the creation of new interfaces for different media. The
mobile interface to MUSEUMFINLAND discussed earlier was created in this way
quite quickly.

All of the transformer components can also be made available for use in other web
applications as Web Services, by creating a pipeline that generates XML from an
HTTP-query and returns its output as XML. In this way, other web applications
could make use of the actual RDF-data contained in the system, querying the On-
togator and Ontodella servers directly for content data in RDF/XML-format. It also
provides a way of distributing the processing in the system to multiple servers. For
example, ONTOVIEWS-C instances running Ontogator could be installed on mul-
tiple servers, and a main ONTOVIEWS-C handling user interaction could distribute
queries among these servers in a round-robin fashion to balance load.

37

Search Query XSLT

Ontogator Transformer

Search Page User Interface XSLT

XHTML Serializer

Internationalization Transformer

User State Generator

Facet Root Query Generator

Ontogator Transformer

Pre-Query Transformer

Ontogator Transformer

User State Combining Transformer

Ontodella Transformer

Nearest
Locations

System Facets

Hit Count
for Main Query

Item Query XSLT

Ontogator Transformer

Item Page User Interface XSLT

XHTML Serializer

HTTP Request

Internationalization Transformer

Search Page Item Page

User State Subpipeline

User State
Subpipeline

User State Subpipeline

Ontodella Transformer

Recommendation
Links

Item Properties and
Annotations

Fig. 14. Two Cocoon pipelines used in ONTOVIEWS-C.

7 Discussion

7.1 Contributions

MUSEUMFINLAND demonstrates the power semantic web technologies to solving
interoperability problems of heterogeneous museum collections when publishing
them on the web. The power of the application comes from the use of ontologies
and logic:

Exact definitions By using ontologies, the museums can define the concepts used
in cataloging in a precise, machine understandable way.

Terminological interoperability The terms used in different institutions can be
made mutually interoperable by mapping them onto common shared ontologies.
The ontologies are not used as a norm for telling the museums what terms to
use, but rather to make it possible to tolerate terminological variance as far as the
terminology mapping from the local term conventions to the global ontology is
provided.

Ontology sharing Ontologies provide means for making exact references to the
external world. For example, in MUSEUMFINLAND, the location ontology (vil-

38

lages, cities, countries, etc.) and the actor ontology (persons, companies, etc.) is
shared by the museums in order to make the right and interoperable references.
For example, two persons who happen to have the same name should be disam-
biguated by different URIs, and a person whose name can be written in many
ways, should be identified by a single URI to which the alternative terms refer.

Automatic content enrichment Ontological class and individual definitions, cul-
tural and common sense rules, view projection rules, semantic linking rules, and
consolidated metadata enrich collection data semantically.

Intelligent services Ontologies can be used as a basis for intelligent services to
the end-user. In MUSEUMFINLAND, the view-based multi-facet search engine is
based on the underlying ontological structures and the semantic link recommen-
dation systems reveals to the end-user the underlying semantical context of the
collection items and their mutual relations.

A semi-automatic content creation process [19, 18] was developed for the museums
for transforming their databases into RDF conforming to the shared ontologies. A
problem encountered here was that the original museum collection metadata was
not systematically annotated, which resulted in manual work when populating the
term ontology. The homonymy problem encountered when mapping literal data
values to ontology resources was another major problem, but resulted in less man-
ual work than terminology creation. The semi-automatic annotation tools Termi-
nator and Annomobile proved out to be decent programs for the purposes of the
project. The annotation process could be fully automated if the collection cata-
loging systems were enhanced with datafields for storing URIs in addition to literal
descriptions.

A technical innovation of MUSEUMFINLAND is to combine benefits of the multi-
facet view-based search paradigm [28, 9] with semantic web ontology techniques
and reasoning. Logic rules were used for separating the semantic search and link
generation services from the underlying domain specific ontologies and (meta)data.
In this way, we could separate the generic parts of the system into the tool ONTO-
VIEWS [25] that has been applied to other application domains as well. The prize
of the adaptability is that somebody has to create the view and link rules in Prolog,
which can be a difficult task if the input data is not directly suitable for generating
the needed projections and links.

When using ONTODELLA, the rules for creating category trees and projections
were fairly easy to formulate and verify. The idea of semantic link rules appeared
to be a good concept if you know exactly what kind of link rules you want and the
data enables the reasoning of those links. We set out to create “intriguing” semantic
links for the end-user. However, subjectivity of intrigueness made it difficult 1) to
choose what semantic link rules to create, 2) to evaluate the “intrigueness” of the
rule, and 3) to order the resulting links based on their relevance.

39

The use of the Cocoon-based implementation of the ONTOVIEWS appeared to be
a good solution compared to our previous test implementations [20, 14, 17], since
it is eminently portable, extendable, modifiable, and modular. This flexibility is a
direct result of designing the application around the Cocoon concepts of transform-
ers and pipelines, in contrast to servlets and layout XSLT. We have used ONTO-
VIEWS in the creation of a semantic yellow page portal [22], and (using a later
version of the tool) a test portal based on the material of the Open Directory Project
(ODP) 23 . These demonstrations are based on ontologies and content different from
MUSEUMFINLAND. With the ODP material, the ONTOGATOR and ONTOVIEWS-
C subparts of the system were tested to scale up to 2.3 million data items and
275,000 view categories with search times of less then 5 seconds on an ordinary
PC server.

The use of XSLT in most of the user interface and query transformations makes
it easy to modify the interface appearance and to add new functionality. However,
it has also led to some quite complicated XSLT templates in the more involved
areas of user interaction logic, e.g., when (sub-)paging and navigating in the search
result pages. In using XSLT with RDF/XML there is also the problem that the same
RDF triple can be represented in XML in different ways but an XSLT template
can be only tied to a specific representation. In our current system, this problem
can be avoided because the RDF/XML serialization formats used by each of the
subcomponents of the system are known, but in a general web service environment,
this could cause complications. However, the core search engine components of
ONTOVIEWS would be unaffected even in this case because they handle their input
with true RDF semantics.

7.2 Related work

Lots of research has been done in annotating web pages or documents using man-
ual or semiautomatic techniques and natural language processing, for example
CREAM and Ont-O-Mat by[7] and the SHOE Knowledge Annotator [10]. Sto-
janovic et al. [33] present an approach that resembles ours in trying to create a
mapping between a database and an ontology, but they haven’t tackled the questions
of integrating many databases or using global and local terminology to make the
mapping inside a domain. Also [8] addresses the problems of mapping databases to
ontologies, but their way of doing the mapping is very different from ours, trying to
get the data dynamically out of the database and involving the database owner. In
[31] a related concepts-terms-data model has been used to define different elements
used for creating an ontology out of a thesaurus.

The idea of linking collection items with semantic associations was inspired by
Topic Maps [26]. However, in our case the links are not given by a map but are

23 http://www.dmoz.org/

40

determined by logical inference using the underlying RDF(S) ontology and RDF
metadata. Another application of this idea to generating semantically linked static
HTMl sites from RDF(S) repositories is presented in [12]. Logic and dynamic link
creation on the semantic web has been discussed, e.g. in the work on Open Hy-
permedia [6, 3], and in the Promoootori system [17]. In the HyperMuseum [35],
collection items are also semantically linked with each other. Here linking is based
on shared words in the metadata and their linguistic relations, such as synonymy
and antonymy. In contrast, our system is not based on words but on ontological
references in the underlying RDF(S) knowledge base and the links can be defined
freely in terms of logical ruels. The idea of annotating cultural artifacts with on-
tologies has been explored, e.g., in [11]. Other ontology-related approaches used
for indexing cultural content include Iconclass 24 [37] and the Art and Architecture
Thesaurus 25 [27].

Much of the web user interface and user interaction logic of MUSEUMFINLAND

is based on Flamenco’s multi-facet search [9]. In ONTOVIEWS, however, several
extensions to this baseline have been added, such as the tree view of categories (fig-
ure 6), the seamless integration of concept-based keyword and geolocation search,
extended navigation in the result set, and semantic browsing. The easy addition of
these capabilities was made possible by basing the system on RDF.

7.3 Towards a more versatile cultural semantic portal

We are investigating how new kinds of cultural RDF material, conforming to dif-
ferent ontologies, can be imported into MUSEUMFINLAND. In the next version
of the system called “CultureSampo”, more versatile annotation schemas will be
used based on events and processes that take place in the society. CultureSampo
will contain, e.g., photographs, paintings, folk lore, videos, external web pages,
and documents in addition to the artifacts and historical sites present in the current
version of MUSEUMFINLAND.

References

[1] D. Brickley and R. V. Guha. Resource Description Framework (RDF) Schema
Specification 1.0, W3C Candidate Recommendation 2000-03-27, February
2000. http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

[2] Stefan Decker, Michael Erdmann, Dieter Fensel, and Rudi Studer.
Ontobroker: Ontology based access to distributed and semi-

24 http://www.inconclass.nl/
25 http://www.getty.edu/research/conducting research/vocabularies/aat/

41

structured unformation. In DS-8, pages 351–369, 1999. cite-
seer.nj.nec.com/article/decker98ontobroker.html.

[3] P. Dolong, N. Henze, and W. Neijdl. Logic-based open hypermedia for the
semantic web. In Proceedings of the Int. Workshop on Hypermedia and the
Semantic Web, Hypertext 2003 Conference, Nottinghan, UK, 2003.

[4] J. English, M. Hearst, R. Sinha, K. Swearingen, and K.-P. Lee. Flexible search
and navigation using faceted metadata. Technical report, University of Berke-
ley, School of Information Management and Systems, 2003. Submitted for
publication.

[5] D. J. Foskett. Thesaurus. In Encyclopaedia of Library and Information Sci-
ence, Volume 30, pages 416–462. Marcel Dekker, New York, 1980.

[6] C. Goble, S. Bechhofer, L. Carr, D. De Roure, and W. Hall. Conceptual open
hypermedia = the semantic web? In Proceedings of the WWW2001, Semantic
Web Workshop, Hongkong, 2001.

[7] S. Handschuh, S. Staab, and F. Ciravegna. S-cream - semi-automatic creation
of metadata. In Proceedings of EKAW 2002, LNCS, pages 358–372, 2002.

[8] S. Handschuh, S. Staab, and R. Volz. On deep annotation. In Proceedings of
International World Wide Web Conference, pages 431–438, 2003.

[9] M. Hearst, A. Elliott, J. English, R. Sinha, K. Swearingen, and K.-P. Lee.
Finding the flow in web site search. CACM, 45(9):42–49, 2002.

[10] J. Hefflin, J. Hendler, and S. Luke. Shoe: A knowledge representation lan-
guage for internet applications. Technical report, Dept. of Computer Science,
University of Maryland at College Park, 1999.

[11] L. Hollink, A. Th. Schereiber, J. Wielemaker, and B.J. Wielinga. Semantic
annotations of image collections. In Proceedings KCAP’03, Florida, 2003.

[12] E. Hyvönen, M. Holi, and K. Viljanen. Designing and creating a web site
based on RDF content. In Proceedings of WWW2004 Workshop on Applica-
tion Design, Development, and Implementation Issues in the Semantic Web,
New York, USA. CEUR Workshop Proceedings, Vol-105, 2004. http://ceur-
ws.org.

[13] E. Hyvönen, M. Junnila, S. Kettula, E. Mäkelä, S. Saarela, M. Salminen,
A. Syreeni, A. Valo, and K. Viljanen. Finnish Museums on the Semantic
Web. User’s perspective on MuseumFinland. In Proceedings of Museums and
the Web 2004 (MW2004), Seleted Papers, Arlington, Virginia, USA, 2004.
http://www.archimuse.com/mw2004/papers/hyvonen/hyvonen.html.

[14] E. Hyvönen, M. Junnila, S. Kettula, S. Saarela, M. Salminen,
A. Syreeni, A. Valo, and K. Viljanen. Publishing collections in
the Finnish Museums on the Semantic Web portal – first results.
In Proceedings of the XML Finland 2003 conference. Kuopio, Fin-
land, 2003. http://www.cs.helsinki.fi/u/eahyvone/publications/ xmlfin-
land2003/FMSOverview.pdf.

[15] E. Hyvönen, S. Kettula, V. Raatikka, S. Saarela, and Kim Viljanen. Semantic
interoperability on the web. Case Finnish Museums Online. In Hyvönen and
Klemettinen [16], pages 41–53. http://www.hiit.fi/publications/.

[16] E. Hyvönen and M. Klemettinen, editors. Towards the semantic web and web

42

services. Proceedings of the XML Finland 2002 conference. Helsinki, Fin-
land, number 2002-03 in HIIT Publications. Helsinki Institute for Information
Technology (HIIT), Helsinki, Finland, 2002. http://www.hiit.fi/publications/.

[17] E. Hyvönen, S. Saarela, and K. Viljanen. Application of ontology-based tech-
niques to view-based semantic search and browsing. In The semantic web:
research and applications. First European Semantic Web Symposium, ESWS
2004, Heraklion, Greece. Springer–Verlag, Berlin, May 2004. 92–106.

[18] E. Hyvönen, M. Salminen, and M. Junnila. Annotation of heterogeneous
database content for the semantic web. In Proceedings of the 4th Interna-
tional Workshop on Knowledge Markup and Semantic Annotation (SemAnnot
2004), Hiroshima, Japan, November 2004.

[19] E. Hyvönen, M. Salminen, S. Kettula, and M. Junnila. A content creation pro-
cess for the Semantic Web. In Proceeding of OntoLex 2004: Ontologies and
Lexical Resources in Distributed Environments, May 29, Lisbon, Portugal,
2004.

[20] E. Hyvönen, A. Styrman, and S. Saarela. Ontology-based image retrieval. In
Hyvönen and Klemettinen [16], pages 15–27. http://www.hiit.fi/publications/.

[21] O. Lassila and R. R. Swick (editors). Resource description framework (RDF):
Model and syntax specification. Technical report, W3C, February 1999. W3C
Recommendation 1999-02-22, http://www.w3.org/TR/REC-rdf-syntax/.

[22] M. Laukkanen, K. Viljanen, M. Apiola, P. Lindgren, and E. Hyvönen. To-
wards ontology-based yellow page services. In Proceedings of WWW2004
Workshop on Application Design, Development, and Implementation Issues
in the Semantic Web, New York, USA. CEUR Workshop Proceedings, Vol-
105, 2004. http://ceur-ws.org.

[23] R. L. Leskinen, editor. Museoalan asiasanasto. Museovirasto, Helsinki, Fin-
land, 1997.

[24] A. Maedche, S. Staab, N. Stojanovic, R. Struder, and Y. Sure. Semantic por-
tal — the SEAL approach. Technical report, Institute AIFB, University of
Karlsruhe, Germany, 2001.

[25] E. Mäkelä, E. Hyvönen, S. Saarela, and K. Viljanen. Ontoviews—a tool
for creating semantic web portals. In Proceedings of the 3rd International
Semantic Web Conference (ISWC 2004), Hiroshima, Japan, pages 797–811.
Springer–Verlag, Berlin, November 2004.

[26] Steve Pepper. The TAO of Topic Maps. In Proceedings of XML Europe 2000,
Paris, France, 2000. http://www.ontopia.net/topicmaps/materials/rdf.html.

[27] T. Peterson. Introduction to the Art and Architechure thesaurus, 1994.
http://shiva.pub.getty.edu.

[28] A. S. Pollitt. The key role of classification and indexing in view-
based searching. Technical report, University of Huddersfield, UK, 1998.
http://www.ifla.org/IV/ifla63/63polst.pdf.

[29] V. Raatikka and E. Hyvönen. Ontology-based semantic meta-
data validation. In Hyvönen and Klemettinen [16], pages 28–40.
http://www.hiit.fi/publications/.

[30] J. Ben Schafer, Joseph A. Konstan, and John Riedl. E-commerce recommen-

43

dation applications. Data Mining and Knowledge Discovery, 5(1/2):115–153,
2001.

[31] D. Soergel, B. Lauser, A. Liang, F. Fisseha, J. Keizer, and S. Katz. Reengi-
neering thesauri for new applications: the agrovoc example. Journal of Digital
Information, (4), 2004.

[32] J. Sowa. Knowledge Representation. Logical, Philosophical, and Computa-
tional Foundations. Brooks/Cole, 2000.

[33] L. Stojanovic, N. Stojanovic, and R. Volz. Migrating data-intensive web sites
into the semantic web. In Proceedings of the ACM Symposium on Applied
Computing SAC-02, Madrid, 2002, pages 1100–1107, 2002.

[34] Nenad Stojanovic, Rudi Studer, and Ljiljana Stojanovic. An approach for the
ranking of query results in the semantic web. In Dieter Fensel, Katia Sycara,
and John Mylopoulos, editors, Proceeedings of the second international se-
mantic web conference ISWC2003, Sanibel Island, Florida, number 2870 in
LNCS, pages 500–516. Springer–Verlag, Berlin, 2003.

[35] Peter Stuer, Robert Meersman, and Steven De Bruyne. The Hy-
perMuseum theme generator system: Ontology-based internet support
for active use of digital museum data for teaching and presenta-
tions. In D. Bearman and J. Trant, editors, Museums and the
Web 2001: Selected Papers. Archieves & Museum Informatics, 2001.
http://www.archimuse.com/mw2001/papers/stuer/ stuer.html.

[36] Mark van Assem, Maarten R. Menken, Guus Schreiber, Jan Wielemaker, and
Bob Wielinga. A method for converting thesauri to RDF/OWL. In Pro-
ceeedings of the third international semantic web conference ISWC2004, Hi-
roshima, Japan. Springer–Verlag, Berlin, October 2004.

[37] J. van den Berg. Subject retrieval in pictorial information systems. In Pro-
ceedings of the 18th international congress of historical sciences, Montreal,
Canada, pages 21–29, 1995. http://www.iconclass.nl/texts/history05.html.

44

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

