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Abstract. Information retrieval systems have to deal with uncertain knowledge
and query results should reflect this uncertainty in some manner. However, Se-
mantic Web ontologies are based on crisp logic and do not provide well-defined
means for expressing uncertainty. We present a new probabilistic method to ap-
proach the problem. In our method, degrees of subsumption, i.e., overlap be-
tween concepts can be modeled and computed efficiently using Bayesian net-
works based on RDF(S) ontologies. Degrees of overlap indicate how well an in-
dividual data item matches the query concept, which can be used as a well-defined
measure of relevance in information retrieval tasks.

1 Ontologies and Information Retrieval

A key reason for using ontologies in information retrieval systems, is that they enable
the representation of background knowledge about a domain in a machine understand-
able format. Humans use background knowledge heavily in information retrieval tasks
[7]. For example, if a person is searching for documents about Europe she will use
her background knowledge about European countries in the task. She will find a doc-
ument about Germany relevant even if the word ’Europe’ is not mentioned in it. With
the help of an appropriate geographical ontology also an information retrieval system
could easily make the above inference. Ontologies have in fact been used in a number
of information retrieval system in recent years [15, 10, 11].

Ontologies are based on crisp logic. In the real world, however, relations between
entities often include subtleties that are difficult to express in crisp ontologies. For ex-
ample, consider the case of representing the relationships between geohgraphical areas
in the world with a partonomy where each concept represents an area in the world.
We will run into difficulties, because RDFS [2] and OWL [1] do not provide standard
ways to express the facts that Germany covers a much larger part of the area of Europe
than Andorra, or that Russia is a part of both Asia and Europe, for example. In addi-
tion, the information system itself can be a source of uncertainty, as the indexing of
the documents is often inexact. These representational shortcomings could hinder the
performance of the information retrieval system and produce wrong search results.

This paper presents a new method to approach the above problems. The method is
based on the modeling of degrees of overlap between concepts. In the following we



first introduce the principles of our method. Then a notation that enables the represen-
tation of degrees of overlap between concepts in an ontology is presented after which
a method for doing inferences based on the notation will be described. Then our im-
plementation of the method is discussed, and finally conclusions are drawn and related
work discussed. These paper is an extended version of [9]. For a more detail presenta-
tion of the method see [8].

2 Modeling Uncertainty in Ontologies
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Fig. 1. A Venn diagram illustrating countries, areas, their overlap, and size in the world.

The Venn diagram of figure 1 illustrates some countries and areas in the world.
A crisp partonomy cannot represent the partial overlap between the geographical area
Lapland and the countries Finland, Sweden, Norway, and Russia, for example. Further-
more, it is not possible to quantify the coverage and the overlap of the areas involved.

According to figure 1, the size of Lapland is 26 units, and the size of Finland is 36
units. The size of the overlapping area between Finland and Lapland is 8 units. Thus,
8/26 of Lapland belongs to Finland, and 8/36 of Finland belongs to Lapland. On the
other hand, Lapland and Asia do not have any overlapping area, thus no part (0) of
Laplan is part of Asia, and no part of Asia is part of Lapland. If we want a partonomy
to be an accurate representation of the ’map’ of figure 1, there should be a way to make
this kind of inferences based on the partonomy.



Our method enables the representation of overlap in concept hierarchies, including
class hierarchies and partonomies, and the computation of overlap between a selected
concept and every other, i.e. referred concept in the hierarchy. The overlap value is
defined as follows:

Overlap = |Selected∩Referred|
|Referred| ∈ [0, 1].

An overlap table is created for the selected concept. The overlap table can be created
for every concept of a hierarchy.

Intuitively, the overlap value has the following meaning: The value is 0 for disjoint
concepts (e.g., Lapland and Asia) and 1, if the referred concept is subsumed by the
selected one. High values lesser than one imply, that the meaning of the selected concept
approaches the meaning of the referred one.

The overlap value between the selected concept (e.g. Lapland) and the re-
ferred concept (e.g. Finland) can in fact be written as the conditional probability
P (Finland′|Lapland′) whose interpretation is the following: If a person is interested
in data records about Lapland, what is the probability that the annotation “Finland”
matches her query? X ′ is a binary random variable such that X ′ = true means that
the annotation “X” matches the query, and X ′ = false means that “X” is not a match.
This conditional probability interpretation of overlap values will be used in section 4 of
this paper.

It is mathematically easy to compute the overlap tables, if a Venn diagram (the sets)
is known. In practice, the Venn diagram may be difficult to create from the modeling
view point, and computing with explicit sets is computationally complicated and inef-
ficient. For these reasons our method calculates the overlap values from a hierarchical
representation of the Venn diagram.

Our method consists of two parts. First, a graphical notation by which partial sub-
sumption and concepts can be represented in a quantified form. The notation can be
represented easily in RDF(S). Second, a method for computing degrees of overlap be-
tween the concepts of a hierarchy. Overlap is quantified by transforming the concept
hierarchy first into a Bayesian network [4].

3 Representing Overlap

As shown in the above section, a partonomy can be represented as a Venn diagram. Also
class hierarchies, i.e. taxonomies can be reprsented in the same manner. This follows
from the fact that in RDFS and OWL a class refers to a set of individuals. Subsump-
tion reduces essentially into the subset relationship between the sets corresponding to
classes [1]. A taxonomy is therefore a set of sets and can be represented, e.g., by a Venn
diagram.

If A and B are sets, then A must be in one of the following relationships to B.

1. A is a subset of B, i.e. A ⊆ B.
2. A partially overlaps B, i.e. ∃x, y : (x ∈ A ∧ x ∈ B) ∧ (y ∈ A ∧ y 6∈ B).
3. A is disjoint from B, i.e. A ∩ B = ∅.

Based on these relations, we have developed a simple graph notation for represent-
ing uncertainty and overlap in a concept hierarchy as an acyclic overlap graph. Here



concepts are nodes, and a number called mass is attached to each node. The mass of con-
cept A is a measure of the size of the set corresponding to A, i.e. m(A) = |s(A)|, where
s(A) is the set corresponding to A. A solid directed arc from concept A to B denotes
crisp subsumption s(A) ⊆ s(B), a dashed arrow denotes disjointness s(A)∩s(B) = ∅,
and a dotted arrow represents quantified partial subsumption between concepts, which
means that the concepts partially overlap in the Venn diagram. The amount of overlap
is represented by the partial overlap value p = |s(A)∩s(B)|

|s(A)| .
In addition to the quantities attached to the dotted arrows, also the other arrow types

have implicit overlap values. The overlap value of a solid arc is 1 (crisp subsumption)
and the value of a dashed arc is 0 (disjointness). The quantities of the arcs emerging
from a concept must sum up to 1. This means that either only one solid arc can emerge
from a node or several dotted arcs (partial overlap). In both cases, additional dashed arcs
can be used (disjointness). Intuitively, the outgoing arcs constitute a quantified partition
of the concept. Thus, the dotted arrows emerging from a concept must always point to
concepts that are mutally disjoint with each other.

Notice that if two concepts overlap, there must be a directed (solid or dotted) path
between them. If the path includes dotted arrows, then (possible) disjointness between
the concepts must be expressed explicitly using the disjointness relation. If the directed
path is solid, then the concepts necessarily overlap.

For example, figure 2 depicts the partonomy of figure 1 as an overlap graph. The
geographic sizes of the areas are used as masses and the partial overlap values are deter-
mined based on the Venn diagram. This graph notation is complete in the sense that any
Venn diagram can be represented by it. However, sometimes the accurate representa-
tion of a Venn diagram requires the use of auxiliary concepts, which represent results of
set operations over named sets, for example s(A) \ s(B), where A and B are ordinary
concepts.
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Fig. 2. The taxonomy corresponding to the Venn diagram of figure 1.

4 Solid Path Structure

Our method creates an overlap table for each concept in the concept hierarchy. Com-
puting the overlaps is easiest when there are only solid arcs, i.e., complete subsumption



relation, between concepts. If there is a directed solid path from A (selected) to B (re-
ferred), then overlap o = |s(A)∩s(B)|

|s(B)| = m(A)
m(B) . If the solid path is directed from B to

A, then o = |s(A)∩s(B)|
|s(B)| = m(B)

m(B) = 1. If there is not a directed path between A and B,

then o = |s(A)∩s(B)|
|s(B)| = |∅|

m(B) = 0.
If there is a mixed path of solid and dotted arcs between A and B, then the calcu-

lation is not as simple. Consider, for example, the relation between Lapland and EU
in figure 2. To compute the overlap, we have to follow all the paths emerging from
Lapland, take into account the disjoint relation between Lapland and Asia, and sum
up the partial subsumption values somehow.

To exploit the simple solid arc case, a hierarchy with partial overlaps is first trans-
formed into a solid path structure, in which crisp subsumption is the only relation be-
tween the concepts. The transformation is done according to the following principle:

Transformation Principle 1 Let A be the direct partial subconcept of B with overlap
value o. In the solid path structure the partial subsumption is replaced by an additional
middle concept, that represents s(A)∩s(B). It is marked to be the complete subconcept
of both A and B, and its mass is o · m(A).
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Fig. 3. The taxonomy of figure 2 as a solid path structure.

For example, the partonomy of figure 2 is transformed into the solid path structure
of figure 3. The original partial overlaps of Lapland and Russia are transformed into
crisp subsumption by using middle concepts. The transformation algorithm processes
the overlap graph in a breadth-first manner starting from the root concept. A concept
is processed only after all of its super concepts (partial or complete) are processed.
Because the graph is acyclic, all the concepts will eventually be processed. For a more
detailed description of the transformation algorithm see [8].

5 Computing the Overlaps

Recall from section 2 that if A is the selected concept and B is the referred one, then
the overlap value o can be interpreted as the conditional probability



P (B′ = true|A′ = true) =
|s(A) ∩ s(B)|

|s(B)|
= o, (1)

where s(A) and s(B) are the sets corresponding to the concepts A and B. A′ and
B′ are boolean random variables such that the value true means that the corresponding
concept is a match to the query, i.e, the concept in question is of interest to the user.

Based on the above, we chose to use the solid path structure as a Bayesian network
topology. In the Bayesian network the boolean random variable X ′ replaces the concept
X of the solid path structure. The efficient evidence propagation algorithms developed
for Bayesian networks [4] to take care of the overlap computations. Furthermore, we
saw a Bayesian representation of the taxonomy valuable as such.

The joint probability distribution of the Bayesian network is defined by condi-
tional probability tables (CPT) P (A′|B′

1, B
′
2, . . . B

′
n) for nodes with parents B′

i, i =
1 . . . n, and by prior marginal probabilities set for nodes without parents. The CPT
P (A′|B′

1, B
′
2, . . . B

′
n) for a node A′ can be constructed by enumerating the value com-

binations (true/false) of the parents B′
i, i = 1 . . . n, and by assigning:

P (A′ = true|B′
1 = b1, . . . B

′
n = bn) =

∑

i∈{i:bi=true}

m(Bi)

m(A)
(2)

The value for the complementary case P (A′ = false|B′
1 = b1, . . . B

′
n = bn)

is obtained simply by subtracting from 1. The above formula is based on the above
definition of conditional probability. The intuition behind the formula is the following.
If a user is interested in Sweden and in Finland, in the Bayesian network both Finland
and Sweden will be set “true”. Thus, the bigger the number of European countries
that the user is interested in, the bigger the probability that the annotation “Europe”
matches her query, i.e., P (Europe′ = true|Sweden′ = true, F inland′ = true) >
P (Europe′ = true|Finland′ = true).

If A′ has no parents, then P (A′ = true) = λ, where λ is a very small non-zero
probability, because we want the posterior probabilities to result from conditional prob-
abilities only, i.e., from the overlap information.

The whole overlap table of a concept can now be determined efficiently by using the
Bayesian network with its conditional and prior probabilities. By instantiating the nodes
corresponding to the selected concept and the concepts subsumed by it as evidence
(their values are set “true”), the propagation algorithm returns the overlap values as
posterior probabilities of nodes. The query results can then be ranked according to these
posterior probabilities.

First, to be able to easily use the the solid path structure as the topology of the
Bayesian network. The CPTs can be calculated directly based on the masses of the con-
cepts. Second, with this definition the Bayesian evidence propagation algorithm returns
the overlap values readily as posterior propabilities. We experimented with various ways
to construct a Bayesian network according to probabilistic interpretations of the Venn
diagram. However, none of these constructions answered to our needs as well as the
construction described above.



Third, in the solid path structure d-separation indicates disjointness between con-
cepts. We see this as a useful characteristic, because it makes the simultaneous selection
of two or more disjointed concepts possible.

6 Implementation

The presented method has been implemented as a proof-of-concept. In the implemen-
tation overlap graphs are represented as RDF(S) ontologies in the following way. Con-
cepts are represented as RDFS classes1 The concept masses are represented using a
special Mass class. It has two properties, subject and mass that tell the concept resource
in question and mass as a numeric value, respectively. The subsumption relation can be
implemented with a property of the users choice.

Partial subsumption is implemented by a special PartialSubsumption class with
three properties: subject, object and overlap. The subject property points to the direct
partial subclass, the object to the direct partial superclass, and overlap is the partial
overlap value. The disjointness arc is implemented by the disjointFrom property used
in OWL.

The input to the system is an RDF(S) ontology, the URI of the root node of the
overlap graph, and the URI of the subsumption property used in the ontology. The
output is the overlap tables for every concept in the taxonomy extracted from the input
RDF(S) ontology. Next, each submodule in the system is discussed briefly.

The preprocessing module transforms the taxonomy into a predefined standard
form. The transformation module implements the transformation algorithm, and de-
fines the CPTs of the resulting Bayesian network. In addition to the Bayesian network,
it creates an RDF graph with an identical topology, where nodes are classes and the
arcs are represented by the rdf:subClassOf property. This graph will be used by the
selection module that expands the selection to include the concepts subsumed by the
selected one, when using the Bayesian network. The Bayesian reasoner does the evi-
dence propagation based on the selection and the Bayesian network. The selection and
Bayesian reasoner modules are operated in a loop, where each concept in the taxonomy
is selected one after the other, and the overlap table is created.

The preprocessing, transformation, and selection modules are implemented with
SWI-Prolog2. The Semantic Web package is used. The Bayesian reaoner module is
implemented in Java, and it uses the Hugin Lite 6.33 through its Java API.

7 Discussion

7.1 Lessons Learned

Overlap graphs are simple and can be represented in RDF(S) easily. Using the notation
does not require knowledge of probability theory. The concepts can be quantified auto-
matically, based on data records annotated according to the ontology, for example. The

1 Actually, any resources including instances could be used to represent concepts.
2 http://www.swi-prolog.org/
3 http://www.hugin.com/



notation enables the representation of any Venn diagram, but there are set structures,
which lead to complicated representations.

Such a situation arises, for example, when three or more concepts mutually par-
tially overlap each other. In these situations some auxiliary concepts have to be used.
However, we have not met such situations in geospatial ontologies.

The Bayesian network structure that is created with the presented method is only
one of the many possibilities. This one was chosen, because it can be used for computing
the overlap tables in a most direct manner.

7.2 Related Work

The problem of representing uncertain or vague inclusion in ontologies and taxonomies
has been tackled also by using methods of fuzzy logic [21] and rough sets [19, 17]. With
the rough sets approach only a rough, egg-yolk representation of the concepts can be
created [19]. Fuzzy logic, allows for a more realistic representation of the world.

Straccia [18] presents a fuzzy extension to the description logic
SHOIN(D)corresponding to the ontology description language OWL DL. It en-
ables the representation of fuzzy subsumption for example.

Widyantoro and Yen [20] have created a domain-specific search engine called
PASS. The system includes an interactive query refinement mechanism to help to find
the most appropriate query terms. The system uses a fuzzy ontology of term associ-
ations as one of the sources of its knowledge to suggest alternative query terms. The
ontology is organized according to narrower-term relations. The ontology is automati-
cally built using information obtained from the system’s document collections.

The fuzzy ontology of Widyantoro and Yen is based on a set of documents, and
works on that document set. However, our focus is on building taxonomies that can be
used, in principle, with any data record set. The automatic creation of ontologies is an
interesting issue by itself, but it is not considered in this paper. At the moment, better
and richer ontologies can be built by domain specialists than by automated methods.

The fuzzy logic approach is critisized because of the arbitrariness in finding the
numeric values needed and mathematical indefiniteness [19]. In addition, the represen-
tation of disjointness between concepts of a taxonomy seems to be difficult with the
tools of fuzzy logic. For example, the relationships between Lapland, Russia, Europe,
and Asia are very easily handled probabilistically, but in a fuzzy logic based taxonomy,
this situation seems complicated. There is not a readily available fuzzy logic operation
that could determine that if Lapland partly overlaps Russia, and is disjoint from Asia,
then the fuzzy inclusion value between Europe and Lapland∩Russia is 1 even though
Russia is only a fuzzy part of Europe.

We chose to use crisp set theory and Bayesian networks, because of the sound
mathematical foundations they offer. The set theoretic approach also gives us means
to overcome to a large degree the problem of arbtrariness. The calculations are simple,
but still enable the representation of overlap and vague subsumption between concepts.
The Bayesian network representation of a taxonomy is useful not only for the matching
problem we discussed, but can also be used for other reasoning tasks [14].

Ding and Peng [3] present principles and methods to convert an OWL ontology
into a Bayesian network. Their methods are based on probabilistic extensions to de-



scription logics [13, 5]. The approach has some differences to ours. First, their aim is to
create a method to transform any OWL ontology into a Bayesian network. Our goal is
not to transform existing ontologies into Bayesian networks, but to create a method by
which overlap between concepts could be represented and computed from a taxonomi-
cal structure. However, we designed the overlap graph and its RDF(S) implementation
so, that it is possible, quite easily, to convert an existing crisp taxonomy to our extended
notation. Second, in the approach of Ding and Peng, probabilistic information must be
added to the ontology by the human modeler that needs to know probability theory. In
our approach, the taxonomies can be constructed without virtually any knowledge of
probability theory or Bayesian networks.

Also other approaches for combining Bayesian networks and ontologies exist.
Gu [6] present a Bayesian approach for dealing with uncertain contexts. In this ap-
proach probabilistic information is represented using OWL. Probabilities and condi-
tional probabilities are represented using classes constructed for these purposes. Mitra
[16] presents a probabilistic ontology mapping tool. In this approach the nodes of the
Bayesian network represents matches between pairs of classes in the two ontologies to
be mapped. The arrows of the BN are dependencies between matches.

Kauppinen and Hyvönen [12] present a method for modeling partial overlap be-
tween versions of a concept that changes over long periods of time. The approach differs
from ours in that we are interested in modelling degrees of overlap between different
concepts in a single point of time.
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