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Abstract. Semantic web ontologies are based on crisp logic, and do
not provide well-defined means for expressing uncertainty needed
when modeling the real world. To address this problem, this paper
presents a new probabilistic method to model degrees of subsump-
tion, i.e., overlap between concepts. We propose a notation, based on
set theory, by which concepts can be quantified, and partial subsump-
tion represented in a taxonomy. Based on this notation, a probabilis-
tic method for computing degrees of overlap between the concepts is
presented. Overlap is quantified by transforming the taxonomy into
a Bayesian network. The degree of overlap is a simple, well-defined
measure of conceptual similarity. It can be applied, for example, in
information retrieval to computing the relevance relation of the result
set.

1 UNCERTAINTY IN ONTOLOGIES
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Figure 1. A Venn diagram illustrating countries, areas, their overlap, and
size in the world.

Taxonomic concept hierarchies constitute an important part of the
RDF(S) [2] and OWL [1] ontologies used on the semantic web.
For example, subsumption hierarchies based on the subClassOf or
partOf properties are widely used.
�
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Relations among real life entities are always a matter of degree.
Subsumption hierarchies, on the other hand, are crisp in principle.
Thus, they fail to describe important aspects of real life concepts, and
relations between them. This is an important drawback, that hinders
the usability of ontology based information retrieval systems [12].

For example, the Venn diagram of figure 1 illustrates some coun-
tries and areas in the world. A crisp partOf meronymy cannot express
the simple fact that Lapland partially overlaps Finland, Sweden, Nor-
way, and Russia, or that Russia is to some degree part of both Europe
and Asia. Furthermore, it is not possible to quantify the coverage and
the overlap of the areas involved.

Selected Referred Overlap
Lapland World 26/851 = 0.0306

Europe 26/345 = 0.0754
Asia 0/414 = 0.0
EU 16/168 = 0.0953
Norway 8/36 = 0.2222
Sweden 8/36 = 0.2222
Finland 8/36 = 0.2222
Russia 2/342 = 0.0059

Table 1. The overlap table of Lapland according to figure 1.

To address these foundational problems, this paper presents a
new probabilistic method to represent overlap in taxonomies, and
to compute the overlap between a selected concept and every other
- referred - concept in the taxonomy. In effect, an overlap table
is created for the selected concept. The overlap table can be cre-
ated for every concept of a taxonomy. For example, table 1 present
the overlap table of Lapland based on the the Venn diagram of fig-
ure 1. The Overlap column lists values expressing the mutual over-
lap of the selected concept and the other - referred - concepts, i.e.,�������
	������� ����������������� �!�#"��%$&$&���'�

� �!�#"��%$&$(�)�
� . These values can be used as natu-
ral measure of mutual overlap.

Intuitively, the overlap value has the following meaning: High val-
ues imply, that the meaning of the selected concept approaches the
meaning of the referred one. The value is 0 for disjoint concepts (e.g.,
Lapland and Asia) and 1, if the referred concept is subsumed by the
selected one.

The overlap value is useful, for example, in information retrieval.
Assume that an ontology contains individual products manufactured
in the different countries and areas of figure 1. The user is interested
in finding objects manufactured in Lapland. The overlap values of the
table 1 then tell how well the annotations “Finland”, “EU”, “Asia”,
etc., match with the query concept “Lapland” in a well-defined prob-
abilistic sense, and the hit list can be sorted into an order of relevance



accordingly.
It is mathematically easy to compute the overlap tables, if a Venn

diagram (the sets) is known. In practice, the Venn diagram may be
difficult to create from the modeling view point, and computing with
explicit sets is computationally complicated and inefficient. For these
reasons our method calculates the overlap values from a taxonomic
representation of the Venn diagram.

Our method consists of two parts:

1. A graphical notation by which partial subsumption and concepts
can be represented in a quantified form. The notation can be rep-
resented easily in RDF(S).

2. A method for comoputing degrees of overlap between the con-
cepts of a taxonomy. Overlap is quantified by transforming the
taxonomy first into a Bayesian network [6].

In the following, the graphical notation is presented first, and then
the method for computing overlaps is described. After this an imple-
mentation of the method is described. Finally, related work is dis-
cussed, lessons learned are summarized, and directionss of further
research are outlined.

2 REPRESENTING OVERLAP

In RDFS and OWL a concept class refers to a set of individuals.
Subsumption reduces essentially into the subset relationship between
the sets corresponding to classes [1]. A taxonomy is therefore a set
of sets and can be represented, e.g., by a Venn diagram.

If � and � are sets, then � must be in one of the following rela-
tionships with � .

1. � is a subset of � , i.e. ����� .
2. � partially overlaps � , i.e. ���	��
�����������������������
��
����
������� .

3. � is disjoint from � , i.e. ����� � �
.

Based on these relations, we have developed a simple graph no-
tation for representing uncertainty and overlap in a taxonomy as an
acyclic overlap graph. Here concepts are nodes, and a number called
mass is attached to each node. The mass is a measure of the size of
the set corresponding to the node concept. A solid directed arc from
concept � to � denotes crisp subsumption �!�"� , a dashed ar-
row denotes disjointness ���#� �$�

, and a dotted arrow represents
quantified partial subsumption between concepts, which means that
the concepts partially overlap in the Venn diagram. The amount of
overlap is represented by the partial overlap value

 �&%�')( �+*-,%�')(., .
In addition to the quantities attached to the dotted arrows, also the

other arrow types have implicit overlap values. The overlap value of
a solid arc is 1 (crisp subsumption) and the value of a dashed arc
is 0 (disjointness). The quantities of the arcs emerging from a con-
cept must sum up to 1. This means that either only one solid arc
can emerge from a node or several dotted arcs (partial overlap). In
both cases, additional dashed arcs can be used (disjointness). Intu-
itively, the outgoing arcs constitute a quantified partition of the con-
cept. Thus, the dotted arrows emerging from a concept must always
point to concepts that are mutally disjoint with each other.

Notice that if two concepts overlap, there must be a directed (solid
or dotted) path between them. If the path includes dotted arrows,
then (possible) disjointness between the concepts must be expressed
explicitly using the disjointness relation. If the directed path is solid,
then the concepts necessarily overlap.

For example, figure 2 depicts the meronymy of figure 1 as an over-
lap graph. The geographic sizes of the areas are used as masses and

the partial overlap values are determined based on the Venn diagram.
This graph notation is complete in the sense that any Venn diagram
can be represented by it. However, sometimes the accurate repre-
sentation of a Venn diagram requires the use of auxiliary concepts,
which represent results of set operations over named sets, for exam-
ple ��/0� .
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Figure 2. The taxonomy corresponding to the Venn diagram of figure 1.

3 SOLID PATH STRUCTURE

Our method creates an overlap table (cf. figure 1) for each concept in
the taxonomy. Computing the overlaps is easiest when there are only
solid arcs, i.e., complete subsumption relation, between concepts. If
there is a directed solid path from � (selected) to � (referred), then
overlap 1 �"2�')( ��*	,2�')*	, �32�')(.,2�'4*-, . If the solid path is directed from �
to � , then 1 �&2�')( �+*-,2�')*	, �52�'4*-,2�'4*-, �$6 . If there is not a directed path

between � and � , then 1 � 2�'4( �+*-,27')*-, � 27')89,2�')*	, ��: .
If there is a mixed path of solid and dotted arcs between � and � ,

then the calculation is not as simple. Consider, for example, the rela-
tion between ; �� 	��+<>= and ?A@ in figure 2. To compute the overlap,
we have to follow all the paths emerging from ; �� 	��+<>= , take into
account the disjoint relation between ; �� 	��+<>= and �CBED � , and sum
up the partial subsumption values somehow.

To exploit the simple solid arc case, a taxonomy with partial over-
laps is first transformed into a solid path structure, in which crisp
subsumption is the only relation between the concepts. The transfor-
mation is done by using to the following principle:

Transformation Principle 1 Let � be the direct partial subclass of
� with the partial overlap value 1 . In the solid path structure the par-
tial subsumption is replaced by an additional middle concept, that
represents ���F� . It is marked to be the subclass of both � and � .

For example, the taxonomy of figure 2 is transformed into the solid
path structure of figure 3. The original partial overlaps of Lapland
and Russia are transformed into crisp subsumption by using middle
concepts.

The transformation is specified in algorithm 1. The algorithm pro-
cesses the overlap graph G in a breadth-first manner starting from
the root concept. A concept H is processed only after all of it super
concepts (partial or complete) are processed. Because the graph is
acyclic, all the concept will eventually be processed.

Each processed concept H is written to the solid path structureIKJLI
. Then each arrow emerging from H is processed in the following

way. If the arrow is solid, indicating subsumption, then it is written
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Figure 3. The taxonomy of figure 2 as a solid path structure.

into the solid path structure as such. If the arrow is dotted, indicating
partial subsumption, then a middle concept

< ����� H is added into
the solid path structure. It is marked to be the complete subconcept
of both H and the concept


to which the dotted arrow points in G .

The mass of
< ����� H is �  < ����� H � ��� H � �� .

Data: OverlapGraph T, RootConcept r
Result: SolidPathStructure SPS
SPS := empty;
foreach concept c in T do

foreach complete or partial superconcept p of c in T do
if p connected to its superconcepts through middle con-
cepts in SPS then

mc := the middle concept that c overlaps;
if c complete subconcept of p then

mark c to be complete subconcept of mc in
SPS;

else
newMc := middle concept representing H �  ;
mark newMC to be complete subconcept of c
and mc in SPS;

end
else

if c complete subconcept of p then
mark c as complete subconcept of p in SPS;

else
newMc .= middle concept representing H �  ;
mark newMc to be complete subconcept of c
and p in SPS;

end
end

end
end

Algorithm 1: Creating the solid path structure

However, if


is connected to its superconcepts (partial or com-
plete) with a middle concept structure, then the processing is not as
simple. In that case H has to be connected to one of those middle
concepts. The right middle concept is found by using the dashed ar-
rows emerging from H . The right middle concept �FH is the one that
is not subsumed by a concept that is marked to be disjoint from H in
the overlap graph. This is the middle concept that H overlaps. Notice,

that if the overlap graph is an accurate representation of the underly-
ing Venn diagram, then ��H is the only middle concept that fulfils the
condition.

If H is a complete subconcept of


in the overlap graph G , then H is
marked to be the complete subconcept of �FH I�JLI . If H is a partial
subconcept of


in G , then it connected to ��H with a middle concept

structure.
If H was connected directly to


, instead of �FH , then the informa-

tion conveyed in the dashed arrows, indicating disjointness between
concepts would have been lost. For example, in figure 3 ; �� 	��+<>=
was connected directly to ��	 B BED � , then the information about the
disjointness of ; �� 	��+<>= and �CBED � would have been lost.

4 COMPUTING THE OVERLAPS

Based on the solid path structure, the overlap table values 1 �
J  � � ��� for a selected concept � and a referred concept � could
be calculated by the algorithm 2, where notation 
�� denotes the set
of (sub)concepts subsumed by the concept 
 .

if ���� then
1A� � 6

else � � � � �F� �
if
� � �

then
1A� � :

else

1A� � %�'����.,%�')*	,
end

end

Algorithm 2: Computing the overlap

The overlap table for � could be implemented by going through all
the concepts of the graph and calculating the overlap value according
to the above algorithm. However, because the overlap values between
concepts can be interpreted as a conditional probabilities, we chose
to use the solid path structure as a Bayesian network topology and let
the efficient evidence propagation algorithms developed for Bayesian
networks [6] to take care of the overlap computations. Furthermore,
we saw a Bayesian representation of the taxonomy valuable as such.
The Bayesian network could be used for example in user modelling
[10].

Probabilistically, concepts can be interpreted as boolean binary
variables. If � is the selected concept and � is the referred one, then
the overlap value 1 can be interpreted as the conditional probabilityJ  � ����� 	 ��� � ���)� 	 � � � � � ')(.,�� � ')*	,)�

� � ')*-,)� � 1 , where B  �C� and B  ���
are the sets depicted by the random variables � and � . In the context
of information retrieval the meaning of the conditional probability
could be described as the probability that a person interested data
belonging to category � will also be interested in data belongin to
category � .

The joint probability distribution of the Bayesian network is de-
fined by conditional probability tables (CPT)

J  � � � � � ��� ������� � % �
for nodes with parents ��� � D � 6 ����� < , and by prior marginal proba-
bilities set for nodes without parents. The CPT

J  � � � � � � � ������� � % �
for a node � can be constructed by enumerating the value combina-
tions (true/false) of the parents ��� ��D � 6 ����� < , and by assigning:



J  � ����� 	 ��� � � ��� � ������� � % ��� % � �
<  ��� ����� � � ����� 	 ��� �<  �C�

(1)
The value for the complementary case

J  � ��� � 	 B ��� � � �
� � ������� � % ��� % � is obtained simply by subtracting from 1.

If � has no parents, then
J  � � ��� 	 � � �
	 , where

	
is a very

small non-zero probability, because we want the posterior probabili-
ties to result from conditional probabilities only, i.e., from the overlap
information.

The whole overlap table of a concept can now be determined effi-
ciently by using the solid path structure as a Bayesian network with
its conditional and prior probabilities. By instantiating the selected
concept node and all the concepts subsumed by as evidence (their
values are set “true”), the propagation the algorithm returns the over-
lap values as posterior probabilities of concept nodes.

Notice, that a Bayesian network created in the above method does
not calculate the posterior exactly by the definition of the conditional
probability above. A small inaccuracy, is attached to each value, as
the result of the

	
prior probablity that was given to the parentless

variables. The
	

is result of the fact that a prior probability of zero
can not be given. Despite this small inaccuracy we decided to define
the Bayesian network in the above manner for the following reasons.

The solid path structure, interpreted as a Bayesian network, has
the following usefule characteristics. First, disjoint concepts are d-
separated, overlapping concepts are not. Thus, d-separation can be
taken as an indication of disjointness. Second, the conditional prob-
ability tables can be created easily based on the masses of the con-
cepts.

First, to be able to easily use the the solid path structure as the
topology of the Bayesian network. The CPTs can be calculated di-
rectly based on the masses of the concepts. Second, with this defini-
tion the Bayesian evidence propagation algorithm returns the overlap
values readily as posterior propabilities. We experimented with vari-
ous ways to construct a Bayesian network according to probabilistic
interpretations of the Venn diagram. However, no one of these con-
structions did not answer to our needs as well as the construction
defined above.

Third, in the solid path structure d-separation indicates disjoint-
ness between concepts. We see this as a useful characteristic, because
it makes the simultaneous selection of two or more disjointed con-
cepts possible. If the Venn diagram was taken as the set theoretic
descriptioni of the joint probability distribution, then the disjointness
should be stated explicitly in the Bayesian network.

5 IMPLEMENTATION

The presented method has been implemented as a proof-of-concept.

5.1 Overlap Graph

Overlap graphs are represented as RDF(S) ontologies in the follow-
ing way. Concepts are represented as RDF(S) classes2 The concept
masses are represented using a special Mass class. Its two properties,
subject and mass, that tell the concept resource in question and mass
as a numeric value, respectively. The subsumption relation can be
implemented with a property of the users choice. Partial subsump-
tion is implemented by a special PartialSubsumption class with three
properties: subject, object and overlap. The subject property points

� Actually, any resources including instances could be used to represent con-
cepts.

to the direct partial subclass, the object to the direct partial super-
class, and overlap is the partial overlap value. The disjointness arc is
implemented by the disjointFrom property used in OWL.

5.2 Overlap Computations

The architecture of the implementation can be seen in figure 4. The
input of the implementation is an RDF(S) ontology, the URI of the
root node of the overlap graph, and the URI of the subsumption prop-
erty used in the ontology. Additionally, also an RDF data file that
contains data records annotated according to the ontology may be
given. The output is the overlap tables for every concept in the tax-
onomy extracted from the input RDF(S) ontology. Next, each sub-
module in the system is discussed briefly.

preproces
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Transform

Preprocessed
ontology
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with 
BN 
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Concept

Selected Concept

Figure 4. The architecture of the implementation.

The preprocessing module transforms the taxonomy into a prede-
fined standard form. If an RDF data file that contains data records
annotated according to the ontology is given as optional input, then
the preprocessing module determines the mass of each concepts of
the taxonomy based on these annotations. The value is the number of
direct and indirect instances of the concept. The quantification prin-
ciple is illustrated in figure 5.

a
10+14+16=40

b
10+0.6*10=16

c
10+0.4*10=14

d
10

0.60.4

Figure 5. Quantification of concepts. The number of direct instances of
each concept is 10.

The transformation module implements the transformation algo-
rithm, and defines the CPTs of the resulting Bayesian network. In
addition to the Bayesian network, it creates an RDF graph with an
identical topology, where nodes are classes and the arcs are repre-
sented by the rdf:subClassOf property. This graph will be used by the



selection module that expands the selection to include the concepts
subsumed by the selected one, when using the Bayesian network.

The Bayesian reasoner does the evidence propagation based on
the selection and the Bayesian network. The selection and Bayesian
reasoner modules are operated in a loop, where each concept in the
taxonomy is selected one after the other, and the overlap table is cre-
ated.

The preprocessing, transformation, and selection modules are im-
plemented with SWI-Prolog3. The Semantic Web package is used.
The Bayesian reaoner module is implemented in Java, and it uses
the Hugin Lite 6.34 through its Java API.

6 DISCUSSION

6.1 Related Work

The problem of representing uncertain or vague inclusion in ontolo-
gies and taxonomies has been tackled also by using methods of fuzzy
logic [3, 4, 13] and rough sets [11, 8]. We chose to use crisp set
theory and Bayesian networks, because of the sound mathematical
foundations they offer. The calculations are simple, but still enable
the representation of overlap and vague subsumption between con-
cepts. The Bayesian network representation of a taxonomy is useful
not only for the matching problem we discussed, but can also be used
for other reasoning tasks [10].

The work that is closest to ours is that of Ding et al. [5]. They
present principles and methods to convert an OWL ontology into a
Bayesian network. Their methods are based on probabilistic exten-
sions to description logics [9, 7]. The approach is quite different from
ours, in a number of ways. First, their aim is to create a method to
transform any OWL ontology into a Bayesian network. Our goal is
not to transform existing ontologies into Bayesian networks, but to
create a method by which overlap between concepts could be rep-
resented and computed from a taxonomical structure. However, we
designed the overlap graph and its RDF(S) implementation so, that it
is possible, quite easily, to convert an existing crisp taxonomy to our
extended notation.

Second, in Ding et al.’s approach, probabilistic information must
be added to the ontology by the human modeler that needs to know
probability theory. In our approach, the taxonomies can be con-
structed without virtually any knowledge of probability theory or
Bayesian networks. Third, the created Bayesian network in their ap-
proach is the goal of the work. In our method, the Bayesian network
is merely a background tool to help in uncertainty modeling. Fourth,
the actual transformation of subsumption relations (subclass) is done
quite differently in Ding’s work.

6.2 Lessons Learned

Overlap graphs are simple and can be represented in RDF(S) easily.
Using the notation does not require knowledge of probability or set
theory. The notation enables the representation of any Venn diagram,
but there are set structures, which lead to complicated representa-
tions.

Such a situation arises, for example, when three or more concepts
mutually partially overlap each other. In these situations some aux-
iliary concepts have to be used. We are considering to extend the
notation so that this kind of situations could be represented better.

�

http://www.swi-prolog.org/
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http://www.hugin.com/

On the other hand, we do not think such situations are frequent in
real-world taxonomies.

The Bayesian network structure that is created with the presented
method is only one of the many possibilities. This one was chosen,
because it can be used for computing the overlap tables in a most
direct manner. However, it is possible that in some situations different
Bayesian reprepresentation of the would be better.

We see the principle of modeling uncertainty on the basis of the set
theoretic structure of the concepts as the most valuable contribution
of this work. The actual notations and transformations can be seen as
first guesses on deploying the principle.

6.3 Future Work

We intend to apply the overlap calculation in various realistic appli-
cation situatioins. Also the refinement of the taxonomy language is
considered to enhance its usability. The transformation of the taxon-
omy to alternative Bayesian network structures is an issue of future
work, as well as trying the Bayesian network as a basis for personal-
ization.
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