
Publishing Semantic Web Content as Semantically Linked
HTML Pages

Eero Hyvönen
�

University of Helsinki
Helsinki Institute for Information Technology

(HIIT)

Arttu Valo
Helsinki Institute for Information Technology

(HIIT)
University of Helsinki

Kim Viljanen
Helsinki Institute for Information Technology

(HIIT)
University of Helsinki

Markus Holi
Helsinki Institute for Information Technology

(HIIT)
University of Helsinki

ABSTRACT
The Resource Description Framework RDF is used to describe con-
tent, such as HTML pages and other documents, for the machines
to interpret on the Semantic Web. In contrast, we consider the prob-
lem of rendering RDF content for the human interpreter by trans-
forming RDF descriptions into semantically linked HTML pages.
In our approach, the layout of the pages is described by HTML
templates and the semantic linkage structure of the page repository
is defined in terms of logical rules based on the RDF repository.
The rules are mapped on the HTML level using template tags. This
approach provides a simple method for creating and publishing a
human readable version of RDF content on the web. We present a
tool called SWeHG for generating a static, semantically linked site
of HTML pages from an RDF repository. As a case application, a
web exhibition is generated from a museum photo collection.

1. SCOPE AND MOTIVATION
A key idea of the Semantic Web1[1, 3] is to enrich the web with

metadata describing resources, such as web pages, documents, pho-
tos, and real world objects in a machine understandable format. For
representing the metadata, ontologies and the resource description
framework, consisting of RDF[8] and RDF Schema [2]) specifi-
cations, are commonly used. RDF is intended for the machine to
interpret but the ultimate goal is usually to present the semantic
content in one way or another also in a human readable form. This
is typically done by dynamic HTML pages provided by a semantic
portal2.

The semantic portal approach creates a hindrance for publishing
semantic content on the web from the individual content provider’s
view point. Firstly, only content of certain type conforming to the
portal’s application ontologies can be published. Secondly, the
publication process is dependent on the organization maintaining

�

Address to all authors: University of Helsinki, P.O. Box 26, 00014
UNIV. OF HELSINKI, FINLAND
Email to all authors: firstname.lastname@cs.helsinki.fi
Research group home page: http://cs.helsinki.fi/group/seco/
1http://www.w3.org/2001/sw/
2Cf., e.g., http://www.ontoweb.org, http://www.mindswap.org.

Copyright is held by the author/owner(s).
Reference: Proceedings of XML Finland 2003, Oct 30–31, 2003,
Kuopio, Finland.

the portal application. Most content providers are able to pub-
lish only static web pages with the help of their Internet Service
Provider since they do not have the infrastructure or capabilities
for maintaining a portal of their own. The notion of semantic portal
is in this respect in contrast with the democratic idea of the cur-
rent web, where everybody can publish content easily and indepen-
dently by just maintaining HTML files in a public directory. Third,
the dynamic content in semantic portals cannot usually be found
by search engines as easily as content represented as static HTML
pages.

More and more content will be available in the RDF(S) format in
the future. An important question for the success of the Semantic
Web is how easily everybody can make use of it and how easily
it can be published it in a human readable form on the web. To
address this problem, we propose the idea to transform RDF(S)
content into static HTML pages which can then be published eas-
ily and independently by using the traditional “HTML in a public
directory” -approach.

In the following, we first set constraints for the RDF(S) and
HTML repositories to be used in our scheme. After this the trans-
formation from an RDF(S) repository to an HTML site is discussed
and our experimental SWeHG tool is presented. As an applica-
tion experiment, the RDF(S) repository of photographs [7] of the
Helsinki University Museum3 is transformed into a semantically
linked site of HTML pages. In conclusion, experiences of our re-
search and experimentation are summarized and directions for fur-
ther research outlined.

2. TRANSFORMING RDF(S) TO HTML
Representing content in RDF(S) is becoming more and more

popular. Examples of potential application areas of RDF(S) in-
clude photo archives, artifact collections in museums [5], MP3 mu-
sic repositories, paintings in a gallery, books in a library, entries in
a thesaurus, articles of an encyclopedia, and web pages of a portal
or on the WWW4.

In our approach, an RDF(S) repository is considered on the fol-
lowing conceptual levels. First, on the data level the repository con-
tains the actual data. For example, in a photo repository the photos
3http://www.hwelsinki.fi/museo/
4See e.g. http://dmoz.org for an RDF(S) repository of metadata
about web resources on the WWW.

are data. Second, on the metadata level information about the data
is represented as RDF statements. For example, the metadata of a
photo may indicate the photographer, what the photo depicts etc.
Thirdly, on the ontology level, the vocabulary used at the metadata
level is defined by an RDF Schema. For example, the schema may
tell that the photographer is an instance of the class “Human” and
that the Dublin Core property “cd:creator” is used as the statement
predicate. Fourthly, on the logic rule level, semantic relations be-
tween the resources in the repository are considered. For example,
a binary relation between two photographs may be that they are
taken at the same location, at the same time, but by different pho-
tographers. The data model of an RDF(S) repository simple: a set
of triplets which can be interpreted as a directed graph.

IPage IPage

R R R R R

1 2

R

R R

RRR

1

2
3

4 5 6

2 3 4 5 6

HPage

R1Page Page Page Page Page PageR7

Figure 1: Transforming HTML pages from an RDF(S) reposi-
tory.

Our goal is to generate a semantically linked static HTML page
repository (SHR) from an RDF(S) repository. The SHR consists
the following kind of pages:

1. A home page (HPage) defines the entrance page to the repos-
itory. It is typically defined by a HTML page that contains
frames that are used to show other pages in the SHR.

2. Resource pages (RPage) depict one resource such as an on-
tological concept (e.g., a class) or a piece of data with its
metadata. Each resource that is intended to be shown to the
end-user has a RPage of its own. For example, a photo with
its metadata can be rendered as an RPage.

3. Index pages (IPage) classify RPages along conceptual hier-
archical dimensions. We call such classifications views as
customary in the field of information retrieval [10, 4].

Figure 1 illustrates this RDF2HTML transformation. The RDF(S)
graph is on the left. On the right, the HPage has links to various
IPages classifying the underlying RPages that are related with each
other by semantic links.

In our approach, the RDF2HTML transformation is specified
on two separate levels. Firstly, on the HTML level, the layout of
HPages, IPages, and RPages is specified using layout templates.
The layout can be specified by a layout designer using ordinary
HTML extended with a few additional tags. Programming skills
are not needed. Secondly, on the RDF level, the semantic linkage
between the pages is determined using logical predicates. These
predicates define the semantics of the tags used on the HTML level.
The definitions are provided by an application programmer.

The set of RPages to be generated is constrained by a selector
predicate. It selects resources—context resources—from the RDF
repository. The RPages are generated one after in relation with the

selected context resource. For example, data record resources rep-
resenting the metadata of photographs can be selected as context
resources. In this way, one RPage for each photograph will be gen-
erated.

The HTML pages corresponding to context resources are ren-
dered by evaluating an HTML template. Reference from the HTML
level to the underlying RDF level is made with tags. For exam-
ple, the tag <swehg:getProperty name="year"/> on an
RPage template refers to the “year” property value of the particu-
lar context record at hand. The semantics of the tags, such as the
attribute “year” above, are specified declaratively by logical rules
described in the following section. The advantage of the tag mech-
anism is that the layout designer does not need to know how “year”
is actually implemented by the rule designer.

For example, consider an application containing personal tourist
photograph records. The HPage can be an HTML page containing
frames for RPages and IPages. The photo records can be selected as
context resources and the corresponding RPages render the images
with the metadata, such as the title and photographer. The page
may also contain semantic links to other pages based on logical
rules and the underlying RDF(S) data. Tags for doing this will be
described later. For example, if an RPage depicts the Eiffel tower, it
may have a link “Another tower photo” pointing to another RPage
depicting a tower, e.g., the Tokyo tower.

IPages can be created to index the RPages along different views.
For example, if the underlying RDF(S) ontology has a “Building”
class with subclasses “Tower”, “Castle” etc., this hierarchy can be
rendered to the user on the HTML level by an IPage depicting a
view hierarchy whose leaves are links to RPages depicting towers,
castles, etc. The view is rendered on the IPage by using a special
tag.

3. PREDICATES AND TAGS
The RDF2HTML transformation is based on a set of declarative

logical definitions of selectors, properties, links, and views. The
tags used in generating the HTML pages are based on these logical
definitions. The tags are application independent, but make refer-
ence to the current RDF repository by application specific logical
predicates that are used as tag attribute values. In the following the
idea of logical selectors, properties, links and views is presented on
the RDF level and their use in tags on the HTML level is explained.
The examples are presented in Prolog syntax; our implementation
is based on SWI-Prolog5. Here RDF triples define the predicate
rdf(Subject, Predicate, Object). Notation rdf:type refers to the
type property in the ’rdf’ namespace of the W3C recommenda-
tion6. Underscore “_” means that the value can be anything. For
example, for the variable _:PhotoRecords any namespace will
match.

3.1 Selectors
A selector is defined by a unary predicate that evaluates “true”

for the context resources to be selected. The names of the selec-
tors are user-definable. For example, the selectors photo and
address below evaluate true for instance resources of the corre-
sponding ontology classes. In the latter case, the context resource
is not the address instance itself, but the value of its property rep-
resentedBy. Selectors can be arbitrarily complex Prolog predi-
cates.

PhotoRecord = ’http://example.org/meta#photo’.
AddressClass = ’http://example.org/meta#address’.

5http://www.swi-prolog.org/
6http://www.w3.org/RDF/

photo(URI) :-
rdf_instanceOf(URI, PhotoRecord).

place(URI) :-
rdf_instanceOf(AddressURI, AddressClass),
rdf(AddressURI, _:representedBy, URI).

A selector can be used to define a set of context resources that
should be rendered uniformly by an HTML template. For example,
the HTML template below can be used for generating photo pages
by the selector photo above. Selectors are RDF Schema depen-
dent and have to be defined for different applications separately.

<swehg:templateFor selector="photo"/>
<html>

<body>
<h1> Photo page </h1>
...

</body>
</html>

3.2 Properties
RPages are generated by HTML templates associated with se-

lectors. The corresponding context resources typically have prop-
erties that should be rendered on the generated HTML pages. For
instance, the photograph itself and its title are typical properties of
a photo data record and should be shown on the RPage.

A property
�

is defined as a function
���������
	��	

, where
	

is the set of resources in use. A property in SWeHG is defined by
the swehg_property predicate:

swehg_property(Resource, Namespace,
Property, Value)

The predicate evaluates the unique literal value of a resource
property in the given namespace. For example, the “Title_of_photo”
property of a photograph record can be defined in a generic names-
pace on the RDF-level as follows:

swehg_property(Resource, ’’,
’Title_of_photo’, Value) :-

rdf(Resource, _:title, Value).

The tag <getProperty name="Title_of_photo"/> can
then be used on the HTML template level to render the title of
the context resource at hand. By using the swehg_property-
predicate for naming properties, the HTML tag properties (here
Title_of_photo) can be separated from the application spe-
cific properties on the RDF level (here _:title). By provid-
ing appropriate definitions on the RDF level for the HTML level
Title_of_photo property, the same tags can used for publish-
ing photo repositories based of different RDF schemas.

The HTML level properties are not necessarily direct RDF prop-
erties of the context resource, as in the above example, but the func-
tion definition can be arbitrarily complex. For example, below the
“Resource_location” property is not a property value of the photo
record itself, but the _:name property value of a related _:place
property value. Notice also the re-use of the selector place pred-
icate defined earlier.

swehg_property(Record, ’’,
’Resource_location’, Value) :-

photo(Record),
rdf(Record, _:place, Location),
place(Location),
rdf(Location, _:name, Value).

After defining a property on the RDF level, the given property
name can be used on the HTML level as an attribute value of the
getProperty tag. For example, the tag
<getProperty name="Resource_location"/>
expands into the name of the location at which the photograph

was taken.

3.3 Links
In SWeHG a link is formally defined by the pair ��������������� 	 ����� ,

where ������� �
is the name of the link (a string) and

	 � �!� 	#"$	
is a binary relation in the set of resources

	
in use. Given a context

resource % and a link �����'&(� , the set)������ � ��*���%+� � �-,.&-/ of URIs
is called the link group � of % . Intuitively, a link group defines a
set of named associations from a resource to other resources. Such
associations can be rendered on the HTML level as labeled HTML
links.

A link (or relation) rule is defined with the ternary predicate:

swehg_relation_rule(
TagAttributeName,
HTMLLabel,
PredicateName).

The predicate defines a link name to be used in the HTML tags
(TagAttributeName) and associates it with a label to be used as
the name of the link in the rendered HTML page (HTMLLabel),
and with the name (PredicateName) of some freely definable binary
predicate 0 � % �21 � . This predicate should succeed when the context
resource % has the link to the target 1 .

For example, the predicate

swehg_relation_rule(
’SameLocation’,
’Photos from the Same Place’,
photosWithSameLocation).

ties the tag name SameLocation with the HTML link label
and the predicate that defines the link relation. The photos-
WithSameLocation predicate can be defined as follows:

photosWithSameLocation(Context, Target) :-
photo(Context),
photo(Target),
rdf(Context, _:place, Location),
rdf(Target, _:place, Location),
not(Context == Target).

When the relation rule is applied with respect to the whole re-
source set defined by the selector photo, the result is a group
of links that can be rendered on the HTML page. We can point
out the specific spot of the links on the HTML page with the
<getLinks> tag. For example, the tag

<swehg:getLinks name="SameLocation"
listType="ul"
listStyle="text-color: red; text-size: 10;"/>

on the HTML template for photo RPages expands into an un-
ordered list (ul), where each list item is a link pointing to another
RPage that corresponds to a photograph taken in the same location.
The resulting HTML code is given below (slightly abbreviated):

<ul style="text-color: red; text-size: 10;">

View from Eiffel-tower

Cafe Parisienne
...

Notice that the logical definition of links in this example is sim-
ple but can in principle be arbitrarily complex. This approach pro-
vides a very powerful means for linking different kinds of resources
on the RDF level. Selectors can be used to bring out logical groups
of resources and predicates be used to define the semantic linkage
between the group members. The linkage is rendered on the HTML
level by the <getLinks> tag.

In order to get human readable link labels for individual RPages,
a predicate swehg_label(URI, Label) has to be defined.
This predicate is called always when links are generated. The la-
bels used can, for example, be simply a rdfs:label property
connected to the resource at hand.

3.4 Views
A view is a hierarchical index-like decomposition of category

resources where each category is associated with a set of subcate-
gories and additional individuals of the categories. A view is de-
fined in an HTML template by specifying 1) the root resource se-
lector, 2) a binary subcategory relation predicate, and 3) a binary
relation predicate that maps the hierarchy categories with the in-
dividuals used as leaves in the view. A view is rendered on the
HTML level with the tag <swehg:getView> that has the com-
pulsory attributes selector, branches, and leaves, respec-
tively. For example, the tag

<swehg:getView
selector="buildings"
branches="subclass"
leaves="photoOf"
listType="ul" target="dataPane"/>

expands in any context into a hierarchical unordered list (ul) of
categories. The predicate definitions could be following ones:

Building = ’http://example.org/meta#building’.
buildings(URI) :-

rdf(URI, rdf:type, Building).

subclass(SuperCategory, SubCategory) :-
rdf(SubCategory, rdfs:subClassOf, SuperCategory).

photoOf(Class, Record) :-
rdf(Instance, rdf:type, Class),
rdf(Record, dc:subject, Instance).

Here the selector selects the class building as the root
of the view. The view hierarchy is expanded along the
rdfs:subClassOf property that is used in RDFS for represent-
ing class hierarchies. The photoOf predicate relates each leaf %
of this class tree with a set of photo record resources. They are used
as the leaf categories of % in the final view rendered on the HTML
page. Given the above specifications, a view hierarchy represented
by hierarchical unordered lists (ul) is generated in HTML. When
the end-user clicks a link, the corresponding RPage is shown. The
frame in which the linked page is rendered can be selected by the
optional the attribute target.

The definition of a view in terms of a selector, a branching rela-
tion, and a leaf relation yields in general all permutations of view
trees. Only the first one found is used as the view. What view is
obtained first can be controlled by defining the predicates carefully.
The final structure of the view can also be controlled with the help
of an additional tag attribute orderBy whose value is an order-
ing criterion defined as a binary predicate. By using this attribute,
the categories in the view can be listed in alphabetical or in any
user-defined order.

For another example, assume that there is a partOf meronymy
of location concepts (e.g., Paris _:partOf France in the

knowledge base. We would like to render the meronymy as an
index from the root class place by using the getView tag in the
following way:

<swehg:getView
selector="place"
branches="hasPart"
leaves="photoOfLocation"
listType="ul" target="dataPane"

/>

If a photograph record is annotated using the property arc
_:place from the photo data record to a location resource, then
the predicates in the tag can be defined in the following way:

hasPart(SuperCategory, SubCategory) :-
rdf(SubCategory, _:partOf, SuperCategory).

photoOfLocation(Location, DataRecord) :-
photo(DataRecord),
rdf(DataRecord, _:place, Location).

Based on these definitions, it is possible to generate a location
index hierarchy for any location concept (root) and link the photo
RPages related to each index class entry.

4. GENERATION PROCESS

4.1 Generation Procedure
The process for transforming an RDF(S) repository into an

HTML page repository is defined by the algorithms 1 and 2. The
input of the procedure is 1) a set of HTML templates, 2) an RDF(S)
repository, and 3) the logical rules for selectors, properties, links,
and views. The output is an HTML page repository conforming to
the templates.

The process is based on generating pages using the HTML tem-
plates one after another. If a template is associated with a selector,
then it is expanded into a set of RPage HTML pages corresponding
to the selected context resources, else it is expanded once without
reference to context resources. In the latter case, the HPage and
IPages are created. When generating an HTML page, the tags are
expanded into HTML by the procedure � in the ways described in
the previous section.

Data: Templates T, RDF(S) repository R
HTMLPageRepository H = empty;
foreach Template t in T do

if T has a selector rule S then
foreach RDF Resource r in R do

if S(r) == true then
h = createHTMLpage(r, t);
add h to H;

end
end

end
else

h = createHTMLpage(T);
add h to H;

end
end

Algorithm 1: Main procedure for the RDF2HTML transforma-
tion

RDF(S)
repository

HTML
templates

Processing
instructions

Prolog
predicates

Page content XML

Layout
XSL

 HTML
pages

Link
Analysis
report
HTML

INPUT OUTPUT

Template
processor

XML page
generator

Linkage
analyzer

XSL
transformer

SWeHG

Figure 2: Internal architecture of SWeHG.

Algorithm: createHTMLpage

Data: Template t, Context Resource r
Result: HTML page
HTML H = ”;
foreach Tag in t do

switch type of Tag do
case getProperty

h = executeRule(getProperty, r)

case getLinks
h = executeRule(getLinks, r)

case getView
h = executeRule(getView)

end
H = H + h;

end
return H;

Algorithm 2: Algorithm createHTMLpage for rendering an
HTML template

An example of an IPage template is given below:

<swehg:templateFor language="fi"/>
<html>
<body>
<h1>Building index</h1>

<swehg:getView
selector="buildings"
branches="subclass"
leaves="photoOf"
orderby="order_alphabetically"
listtype="ul"/>

</body>
</html>

The following template for RPages could be used for rendering
the images using the HTML img-tag and links to related RPages:

<swehg:templateFor selector="photo"
language="fi"/>

<html>
<body>

<h2><swehg:getProperty name="Title_Of_Photo"/></h2>
<p><img src="<swehg:getProperty

name="PhotoURL"/>" /></p>
<h3>Photos from the same place:</h3>
<swehg:getLinks predicate="sameLocation"

listtype="ul"/>
</body>
</html>

4.2 Analysis of Results
The layout of the pages in the HTML page repository can be

checked fairly easily by browsing the pages. A more difficult ques-
tion is whether the generated linkage between the pages matches
the designer’s expectations. It would be difficult and time consum-
ing to verify this by just browsing the pages one by one because the
amount of pages generated can be quite large. Furthermore, pages
that have no links pointing to them would never be found in this
way.

To support the linkage analysis, SWeHG generates as a side ef-
fect of the transformation process an additional analysis report in
HTML. The analysis points out linkage problems such as pages
linked to no other pages. By reviewing the analysis, the user to
determine more easily whether the templates and the underlying
predicates are working correctly.

4.3 Prototype Implementation
We have implemented a prototype tool SWeHG for transforming

RDF repositories into HTML pages. The system implements the
template tags (properties, links, and views), predicate definition fa-
cilities, the page generator, and an site analyzer as described in the
previous sections.

SWeHG automatically generates a frameset as the HPage. This
page has on the left a narrow frame for each IPage template. On
the remaining space on the right, there is a larger view area frame
for the RPages.

Figure 3 illustrates the HPage of an application with two
IPages depicting an alphabetical list of photographs (“Aakkostettu
hakemisto”) and a classified index (“Luokiteltu hakemisto”). On
the RPage on the left, a photograph is seen with some metadata and
recommended links to other photos.

Figure 2 depicts the architecture of our implementation. The

main program is a Perl script which first builds an XSLT template
out of the HTML template using the module “Template processor”.
This module also writes out a set of “processing instructions” into
a separate Prolog source code file. These instructions link template
tags with the Prolog predicates used in them as attribute values.
The module “XML page generator” is a Prolog program that ap-
plies the predicates used in the HTML tags with respect the RDF(S)
repository according to the processing instructions. The result is a
set of XML files describing the page contents. These XML files
are then transformed using Apache Xalan and with the help of the
XSLT templates generated earlier into the final HTML pages. The
intermediate XML files are also used as a basis for the “Linkage
analyzer” module that tries to identify unlinked pages, empty link
groups and other anomalies. The analysis results are represented in
HTML.

5. TEST CASE: MUSEUM PHOTO
ARCHIVE

A couple of HTML repositories have been generated to test and
evaluate the usability of the RDF2HTML transformation method
presented in this paper and its implementation SWeHG. This section
presents one of our test cases, the generation of a virtual exhibition
of the Helsinki University Museum7 photo archive.

The archive contains 629 photographs about the promotion cer-
emonies of the University of Helsinki. The content of the archive
was transformed into RDF(S) format in an other application project
[6] and was used as it is by SWeHG. The domain knowledge con-
sists of six ontologies with 329 promotion-related concept classes,
such as “Person” and “Building”, 125 properties, and 2890 in-
stances (individuals), such as “Linus Torvalds” and the “Entrance
of Cathedral of Helsinki”.

In the photo annotation schema, the subject of a photograph is
represented by a collection of ontology classes and individuals that
appear on the image8. For example, if Linus Torvalds appears in a
photo on a particular street, then the photo record is related directly
with the corresponding person and street instances with a property
corresponding to dc:subject. However, the relation between
photos and subjects can be indirect, as well, involving traversal
through several RDF arcs in the underlying knowledge base. For
example, Linus Torwalds is present in a photograph as a Honorary
Doctor. Then only an instance of such a role is associated with the
image and the person instance in not directly linked with the image
but with the role instance. SWeHG predicate definition facility is
very handy in hiding such annotation schema specific details from
the HTML designer: the persons can be associated with images ei-
ther directly or indirectly through roles or by other mechanism by
defining a single predicate for the relation.

By publishing the archive as a web site generated by SWeHG
provides the end-users two with two services. Firstly, the photos
can be easily indexed along different orthogonal views based on the
ontologies. The view indices provide an overview of the repository
contents and can be used for finding photos of interest. Secondly,
the hidden semantic associations between the photos can be made
made explicit to the user and can be used as the basis for browsing
the photos.

Figure 3 presents a browsing view to the photo exhibition gener-
ated for the Helsinki University Museum. On the left, two frames
containing index views are seen: an alphabetical index and a classi-

7http://www.helsinki.fi/museo/
8The annotations also include other metadata, such as the photog-
rapher, free text descriptions and some technical information of the
images etc.

fied index based on concepts and subconcepts. In the frame on the
right, a selected photo with recommended links to related photos is
rendered. In this case, links to photos about the previous and later
happenings in the promotion sequence are seen.

Figure 4 depicts a portion of the result from the analyzer. On
this page the number of in-coming and out-going links can be seen
for each RPage together with a status explanation. The analyzer
has found out that with the predicate definitions used the page with
label “Aikaisempien yleisten ...” is not connected with any other
page or index. Furthermore, the page “Airueet” has one incoming
and two outgoing links but was not included in any index. This kind
of connectivity information is vital when debugging the system.

6. DISCUSSION

6.1 Benefits Obtained
This paper argued that there should be a publication method for

content on the Semantic Web that is independent from semantic
portal providers. Such a method could be created based on the cus-
tomary “HTML in a public directory” approach, but requires that
the content in semantic web formats, such as RDF(S), can be trans-
formed easily into a set of HTML pages. To approach the prob-
lem, a method and a prototype tool SWeHG were developed for
transforming RDF(S) repositories automatically into HTML page
repositories. The system is based on a tagging mechanism that sep-
arates the HTML design from the underlying logical rules based on
RDF.

Our initial experiences indicate that the presented approach fea-
sible. HTML templates can be created fairly easily and can be
adapted to different RDF repositories. The idea of using logic and
Prolog for defining the semantics of the tags seems very powerful.
Complicated semantic link relations and views can be defined with
a few lines of code.

6.2 Static vs. Dynamic Pages
The HTML pages generated by SWeHG are static and created in

a batch process before publishing them on the web server. This
approach has the following benefits when compared to dynamic
HTML applications:

� Simple independent publication. Static pages can be pub-
lished easily on the web.

� Search engines can access and index the content more easily.
For example, if a museum collection is published in this way,
individual artifact pages can soon be found by Google and
other engines.

� Static pages can be served efficiently. Dynamically gener-
ated HTML pages may not scale up with large or complex
RDF(S) repositories and inference mechanisms. In SWeHG
complicated inferences and links can be computed before-
hand and hence online processing is not needed.

� Security and control. Creating dynamic web applications
requires always special attention to security issues. Inputs
from user users must be checked, firewalls must be config-
ured when connecting the public web servers to operative
internal systems, etc. When dealing with static pages such
security difficulties are do not arise.

� It is easy to control what data is published when it is repre-
sented as explicit HTML pages.

Figure 3: The entry page of a photo exhibition generated with SWeHG.

Figure 4: An analysis page created by SWeHG.

� Properties of the resulting HTML page set can be analyzed
and tested easily when they are generated explicitly. The
linkage analyzer of SWeHG provides an example of this.

On the other hand, the static approach also has its limitations:

� The static pages can not adapt their content dynamically to
different users or patterns of usage. Dynamic systems can
have, for example, an internal state and remember how they
have been used.

� Dynamic systems can be connected more easily with other
services providing additional online functionality.

� If the RDF(S) repository, the rules, or the HTML tem-
plates change, the site has to be regenerated usually from the
scratch. Dynamic systems can adapt better to such changes.

� If the RDF(S) repository is large and many templates are
used, then the number of generated pages can be large .

6.3 Related work
Our work was inspired by the idea of semantic portals. However,

we wanted to create a “poor man’s” approach to publish semantic
RDF(S) content on the web without dependency with a particular
semantic portal service provider and an application.

The idea of using tags in SWeHG is to separate the design of the
layout from internal implementation issues. This idea is similar in
tag languages, such as JSP9[11], PHP10, and ASP11. However, in
our case the semantics of the tags are defined by logical predicates
and the underlying RDF(S) data. Furthermore, the tag approach is
used for generating static pages instead of dynamic ones.

The idea of linking pages with semantic associations is related to
that of Topic Maps [9]. However, in our case the linkage structure is
not given by an explicit topic map, but is inferred by logical linking
predicates that reveal both explicit and implicit associations in the
underlying RDF(S) knowledge base.

6.4 Further work
More work and testing is needed in order to evaluate the usabil-

ity of SWeHG in practice and in determining what additional fea-
tures may be needed in the system. It seems like a handy tool in
the hands of the people who created it, but more user experiments
with predicate and template designers that have not been involved
in developing SWeHG themselves are needed. We plan to apply
the system next to the RDF collection repositories created from the
databases of several museums in the “MuseumFinland” semantic
portal project [5].

Acknowledgements
Before the prototype described in this paper, an initial version of
SWeHG was created by a student software engineering project con-
ducted at the Helsinki University, Department of Computer Sci-
ence during spring 2003. In addition to the authors, the initial pro-
gramming team included Mikko Kiesilä, Ville Komulainen, Ritva
Köppä-Laitinen, and Joonas Muhonen.

7. REFERENCES
[1] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic

web. Scientific American, 284(5):34–43, May 2001.
9http://java.sun.com/products/jsp/

10http://www.php.net
11http://msdn.microsoft.com/asp/

[2] D. Brickley and R. V. Guha. Resource Description
Framework (RDF) Schema Specification 1.0, W3C
Candidate Recommendation 2000-03-27, February 2000.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

[3] D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster,
editors. Weaving the Semantic Web. The MIT Press, 2002.

[4] M. Hearst, A. Elliott, J. English, R. Sinha, K. Swearingen, ,
and K.-P. Lee. Finding the flow in web site search. CACM,
45(9):42–49, 2002.

[5] E. Hyvönen, M. Junnila, S. Kettula, S. Saarela, M. Salminen,
A. Valo, and K. Viljanen. Publishing collections in the
Finnish Museums on the Semantic Web protal – first results.
In Proceedings of the XML Finland 2003 conference.
Kuopio, Finland, 2003.

[6] E. Hyvönen, S. Saarela, and K. Viljanen. Ontogator:
combining view- and ontology-based search with semantic
browsing. In Proceedings of the XML Finland 2003
conference. Kuopio, Finland, 2003.

[7] E. Hyvönen, A. Styrman, and S. Saarela. Ontology-based
image retrieval. Number 2002-03 in HIIT Publications,
pages 15–27. Helsinki Institute for Information Technology
(HIIT), Helsinki, Finland, 2002. http://www.hiit.fi.

[8] O. Lassila and R. R. Swick (editors). Resource description
framework (RDF): Model and syntax specification. Technical
report, W3C, February 1999. W3C Recommendation
1999-02-22, http://www.w3.org/TR/REC-rdf-syntax/.

[9] Steve Pepper. The TAO of Topic Maps. In Proceedings of
XML Europe 2000, Paris, France, 2000.
http://www.ontopia.net/topicmaps/materials/rdf.html.

[10] A. S. Pollitt. The key role of classification and indexing in
view-based searching. Technical report, University of
Huddersfield, UK, 1998.
http://www.ifla.org/IV/ifla63/63polst.pdf.

[11] G. Shachor, A. Chase, and Magnus Rydin. JSP Tag
Libraries. Manning Publications Co., 2001.

