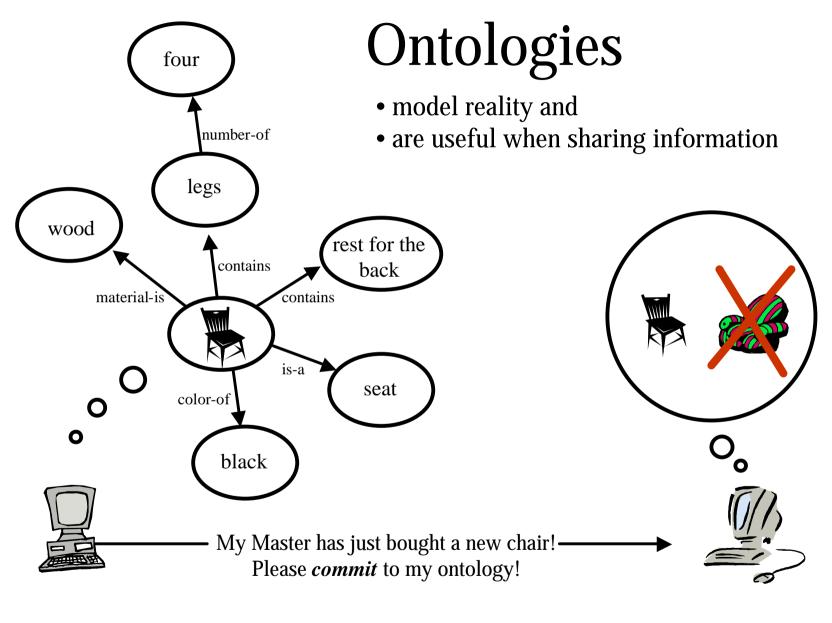

Ontologies


Aki Kivelä - Semantic Web – Seminar University of Helsinki, Department of Computer Science 2nd November 2001

Presentation structure


- What problems ontologies try to solve?
- Defining ontologies
- Components of ontologies
- Different perspectives to ontologies
- Semantic web and ontologies

Problems communicating ideas? Sharing the same vocabularity?

Problems communicating ideas? Sharing the same vocabularity?

Defining ontology

An ontology is *an explicit specification* of a *conceptualization* (T. R. Gruber)

- An explicit specification
 - means that it is written using logic or other *formal language*.
- Conceptualization
 - is a semantic *structure which encodes the rules* constraining the structure *of reality*.

Components of ontologies

- Vocabularity of terms
 - Objects, concepts, words; Employee, Company
- Precise specification of what those terms mean
 - Relationships between objects; Employee of the Company
 - Attributes and properties; SSN of the Employee
 - Constraints; Each Emplyee can have only a single SSN

Different perspectives to ontologies

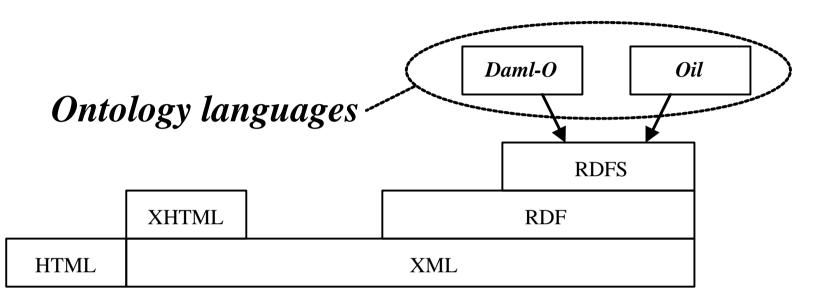
- The Philosophical perspective
- The Linguistics perspective
- The Knowledge Representation perspective
- Pragmatic perspective

The Philosophical perspective

- The Ontology The science of being as such
- The Ontology tries to answer questions:
 - What is being?
 - What are the features common to all beings?
- Long history, Aristotle (*Metaphysics*)
- Different than the ontology in computer science!

The Linguistic perspective

- Terminological ontologies
 - Concepts are *words*
 - Large amount of concepts (>100 000)
 - Only few relation types (*is-a*)
 - Concepts apply small number of relations (*sparse*)
 - Concepts and relations rarely formally defined
- Ontology can be seen as a *thesaurus* or a *taxonomy*
- Usage in language processing


The Knowledge Representation perspective

- Conceptual ontologies
 - Concept vocabularity (not only dictionary words)
 - Small number of concepts (<10 000)
 - Rich set of relation types
 - Concepts apply many different relations (*dense*)
 - Concepts and relations formally defined (*logic*)
- Ontology can be seen as a *knowledge base*
- Usage in
 - Modelling reality (Qualitative modelling)
 - Language engineering
 - Information modelling, integration, retrieval and extraction
 - Sharing information

Pragmatic perspective

- What are ontologies for?
 - I want to understand it \rightarrow *Modelling reality!*
 - I want to understand you \rightarrow *Sharing information!*
 - I want my questions answered \rightarrow *Query processing!*
 - I want to think it again \rightarrow *Re-using knowledge!*

Semantic web and ontologies

- Usage
 - Access via Internet \rightarrow *Sharing information*
 - DTD & Schema type document validation \rightarrow *Semantic validation*
 - Information stored in ontology \rightarrow *Query prosessing*

Wrap-up

- Ontologies
 - Model reality
 - Are useful when sharing information
- Ontology components are
 - Vocabularity of terms
 - Precise specification of what those terms mean
- There exists a multiple different perspectives to ontologies
 - Philosophical perspective
 - Linguistics perspective
 - Knowledge representation
- Semantic web
 - DAML-O and OIL are ontology languages built on RDFS.

For more information see

http://www.formalontology.it http://www.ontology.org http://www.kr.org/top/ http://www-ksl.stanford.edu http://www.ladseb.pd.cnr.it http://www.a.org/2001/sw/ http://www.w3.org/2001/sw/ http://www.cs.utexas.edu/users/mfkb/related.html

Keywords for search machines

Ontology, ontologies Knowledge representation