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Abstract

Presence-absence (0-1) observations are special in that often the absence of evi-
dence is not evidence of absence. Here we develop an independent factor model,
which has the unique capability to isolate the former as an independent discrete
binary noise factor. This representation then forms the basis of inferring missed
presences by means of denoising. This is achieved in a probabilistic formalism, em-
ploying independent Beta latent source densities and a Bernoulli data likelihood
model. Variational approximations are employed to make the inferences tractable.
We relate our model to existing models of 0-1 data, demonstrating its advantages
for the problem considered, and we present applications in several problem domains,
including social network analysis and DNA fingerprint analysis.
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1 Introduction

Binary data repositories arise from areas as diverse as social sciences, bioin-
formatics, or forensics research. The processing of binary data requires ap-
propriate tools and methods for tasks such as exploratory analysis, feature
construction and denoising. These necessarily must follow the specific distri-
butional characteristics of the data and cannot be accomplished with tools
that exist for continuous valued data analysis.

In particular, in binary data, a ’1’ encodes the presence whereas a ’0’ the
absence of an evidence. It is common sense, however, that more often than not,
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the absence of evidence is not evidence of absence (Martin Rees). For example,
the pixels of corrupted black & white images, the usage of words in natural
language, the presence-absence patterns of social relationships or the entries
of a matrix of detections of any kind all typically share this characteristic. In
other binary data sets in turn, the absence of evidence is also an evidence of
absence — e.g. in clean b&w raster images, the pixels that are present and
those that are absent on the image, together define the content of the image.
(i) How can we find out whether a given 0-1 data set has such anomalies?
(ii) How can we restore a likely ’original’? Currently there is no automated
method available to answer these questions, and this is what we tackle in this
paper.

We regard (i) as a source separation problem: Besides content-bearing inde-
pendent factors, we also need to isolate an independent factor that represents
absence of evidence but not evidence of absence. If successful, this representa-
tion forms a basis for approaching the second part of the problem, (ii), which
is essentially a data denoising problem. Note, the order is important here,
since the existence of noise is not easily detectable, as the noisy observations
are still discrete binary.

Previous successes of factor models and in particular Independent Compo-
nent Analysis (ICA) (Hyvärinen et al., 2001) make it an important statis-
tical principle worthy of investigation for tackling both explanatory analysis
and denoising problems. However, the ICA literature has been developed for
continuous valued observation signals by large, and the particular questions
outlined above have never been addressed in the context of 0-1 data. Work
on ICA methods for binary observations has been very scarce (Himberg et
al., 2001; Buntine & Jakulin, 2004) despite their wide potential applicability,
and related methods for discrete data in general and binary data in particular
are mostly developed outside the ’mainstream’ ICA community (Singliar &
Hauskrecht (2006)).

Several authors have considered the case of binary sources in the ICA liter-
ature, most recently e.g. Diamantars & Papadimitriou (2006) and Li et al.
(2003) who give algorithms for the under-determined case of less sensors than
sources. There are two major differences from this setting though, which make
these methods inappropriate for the problem the we consider here: First, the
unknown components are binary but the noisy observations are real-valued due
to the Gaussian noise assumed. As the authors point out, it is then an easy
matter to determine whether there is noise or not in the data. By contrary,
our observations are always binary. Hence our algorithm needs to be successful
in separating out the noise component in order to reveal its presence. This is
exactly the problem that we tackle. The noise component is obviously non-
Gaussian, still, we will see from the presented applications that it is a very
frequently occurring type of noise in real-world 0-1 data. Yet, it was never

2



explicitly noticed in the 0-1 data analysis literature. Secondly, our setting is
not under-determined but over-determined. The number of sensors in our case
corresponds to the number of samples collected (e.g. number of images, num-
ber of text documents, number of nodes in a graph etc.). Although the sample
size may be small, it is assumed that the number of components is smaller. In
addition, contrarily to methods that seek discrete binary sources, in this work,
the sources will be allowed to take continuous values in the interval [0,1]. That
is, rather than black & white, we will seek a grey-scale representation.

In the sequel, we formalise the problem by formulating a specific form of
ICA model for multivariate binary observations. An early version appears in
(Kabán & Bingham, 2006). We employ a probabilistic framework and make
use of the variational methodology to make the inference tractable. Numerical
experiments will demonstrate the working of our approach and its advantages
over other models of 0-1 data, for the problems considered. Application exam-
ples demonstrate the use and the added value of our approach in application
areas where ICA methods have not been previously applied / applicable, such
as graph or network analysis and DNA fingerprint analysis. A MatLab imple-
mentation is available from http://www.cs.bham.ac.uk/~axk/bBICA.m.

1.1 A binary independent factor model with Beta Sources

Consider an independent factor model for multivariate i.i.d. binary data xn, n =
1, ..., N , where N is the number of observations. A general form of the proba-
bility of a datum vector xn under an independent factor model, in probabilistic
terms, is the following.

P (xn) =
∫

P (xn|b)
K
∏

k=1

p(bk)dbk (1)

Here bk, k = 1, ..., K represent hidden ’source’ (component or factor) variables
that are assumed to be independent a priori, and b = (b1, ..., bK)T .

The observations are multivariate binary vectors xn = (x1n, ..., xtn, ..., xTn)T

with T samples and N will denote the number of observation (features),
n = 1, ..., N . It is well known from statistics (see e.g. McCullogh & Nelder
(1983)) that the modelling of binary observations requires a distribution that
is zero outside the set of the two distinct possible values. Hence, e.g. a Gaussian
likelihood model (as emplyed in most of the previous ICA methods) would not
be appropriate in this case and for this reason we employ a conditionally in-
dependent Bernoulli likelihood model. This is parameterised by a mean vector
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that takes the form of a mixture of K components:
∑K

k=1 atkbkn.

P (xn|bn) =
T
∏

t=1

(
K

∑

k=1

atkbkn)xtn(1 −
K

∑

k=1

atkbkn)1−xtn (2)

The conditional independence is a standard assumption in latent variable mod-
elling, meant to force the data dependences to be represented in the latent
space. The parameters atk in (2) are the mixing coefficients of the factor model,
and the mixture

∑

k atkbkn represents the mean parameter of the Bernoulli like-
lihood 1 . More intuitively, the data xn is approximated by the combination of
factors

∑

k atkbkn, which is indeed the familiar modelling assumption of linear
factor models. In both (1) and (2), the conditioning on the parameters atk is
implicit.

The bulk of the design of any factor model, is the specification of the source
prior distributions. These determine the statistical characteristics of the sources
that we aim to infer. Here we employ independent Beta latent prior densities
(Bernardo & Smith, 2001).

p(bk) = B(bk|α
0
k, β

0
k) =

Γ(α0
k + β0

k)

Γ(α0
k)Γ(β0

k)
(1 − bk)

β0

k
−1b

α0

k
−1

k (3)

where α0
k and β0

k are strictly positive hyperparameters. In the experiments
reported, we have set both α0

k and β0
k to 1/2, which is the uninformative prior.

The domain of definition of the Beta density is bk ∈ [0, 1],∀k , which is desir-
able for our purposes, since we may be able to interpret the inferred factors
as grey-scale representations of the binary data. Interpretability of the com-
ponents is one of the most important and desirable aspects of independent
factor models in general, and this is also what we aim to achieve and exploit
in this work. In addition, the particularly flexible shape (see Figure 1) of the
Beta density is advantageous for the required density modelling.
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Fig. 1. The Beta density with various parameters.

1 For the ease of notations, indices (e.g. in sums or products) are always denoted
by small characters and their upper limits by the associated capital letter. Unless
indicated otherwise, indices run from 1 to their upper limit.
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The mixing process that we will assume is a convex-linear one, so that the
mixing coefficients are all non-negative and satisfy

∑

k atk = 1, for all data-
features t = 1 : T . This choice is not arbitrary, since then it follows that
∑

k atkbkn ∈ [0, 1], as a convex combination of bk ∈ [0, 1]. Therefore we do not
need any further nonlinear transformation to obtain the mean parameter of the
Bernoulli likelihood. This is an essential difference from both logistic models
(Tipping, 1999; Schein et al., 2003) and other so-called multiple-cause models
for binary data (Saund, 1995). While nonlinear models are also of interest
and we will employ them in our comparisons, by the above model design we
seek the two possible observation events, 0-s and 1-s, to be interchangeable
within the model, and this would not be possible if a nonlinearity is applied
to non-negative variables.

2 Inference and estimation

In order to make the problem tractable, we will employ the well-known Jensen-
inequality to lower bound the data probability, and we make use of the factorial
posterior approximation (Jordan, 1999) to simplify the computations:

logP (xn) = log
∫

P (xn|bn)
∏

k

B(bkn|α
0
k, β

0
k)dbkn (4)

≥
∑

t

〈logP (xtn|bn)〉∏
k

q(bkn) +
∑

t,k

〈logB(bkn|α
0
k, β

0
k) − log q(bkn)〉q(bkn)

where
∏

k q(bkn) is the factorial variational posterior and 〈.〉 is the expectation
operator.

Now, due to the Bernoulli likelihood, the integral in the first term is still
intractable. Therefore further lower bound is created as follows. The convexity
constraint imposed on the mixing proportions comes in useful, as the log of
the likelihood term can be rewritten and lower bounded:

logP (xtn|bn) = log

{

(
∑

k

atkbkn)xtn(1 −
∑

k

atkbkn)1−xtn

}

= log

{

∑

k

atkb
xtn

kn (1 − bkn)1−xtn

}

≥
∑

k

Qtn(k|xtn) log
atkb

xtn

kn (1 − bkn)1−xtn

Qtn(k|xtn)

(5)

Here Qtn(k|xtn) ≥ 0,
∑

k Qtn(k|xtn) = 1 is a discrete variational distribution
with values in {1, ..., K}, where K denotes the number of components.
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Replacing (5) into (4), the obtained lower bound is now tractable to compute
and will be referred to as Lbound:

Lbound(xn) =
∑

t,k

Qtn(k|xtn)
{

log atk + 〈log bxtn

kn (1 − bkn)1−xtn〉 − logQtn(k|xtn)
}

+
∑

k

{

〈logB(bk|α
0
k, β

0
k) − log q(bkn)〉

}

(6)

where 〈.〉 denotes expectation w.r.t. q(bkn).

2.1 Variational EM solution

By maximising Lbound, a generalised EM algorithm with partial E-steps (Jor-
dan, 1999; Attias, 2000) can be derived. In the variational E-step, the mix-
ing coefficients atk are kept fixed and we compute the variational posteriors
Qtn(k|xtn) and q(bkn) in order to make the bound as tight as possible. In
the M-step, we maximise Lbound as a function of mixing coefficients atk, while
keeping the variational posteriors fixed. Each of these two steps is guaranteed
not to decrease the bound.

2.1.1 Variational E-step

Straightforward variational optimisation (Appendix A.1) yields the optimal
form for the variational posteriors. The optimal functional form for q(bkn)
turns out to be a Beta density,

q(bkn) = B(bk|αkn, βkn) (7)

with variational parameters

αkn = α0
k +

∑

t

xtnQtn(k|xtn = 1); βkn = β0
k +

∑

t

(1 − xtn)Qtn(k|xtn = 0)

(8)

Further,

Qtn(k|xtn) ∝ atk(e
〈log bkn〉)xtn(e〈log(1−bkn)〉)1−xtn (9)

where the required variational posterior expectations in (9) are evaluated as
〈log bkn〉 ≡ Eq(bkn)[log bkn] = ψ(αkn) − ψ(αkn + βkn) and 〈log(1 − bkn)〉 ≡
Eq(bkn)[log(1 − bkn)] = ψ(βkn) − ψ(αkn + βkn).
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Note these two posterior quantities are interdependent. Therefore (8) and (9)
need to be alternated in an inner loop within the variational E-step.

It is also convenient to notice that the expression of Qtn(k|xtn) may be re-
placed into (8) so that the somewhat burdensome multi-dimensional matrix
(9) needs not be stored. Hence, the obtained variational E-step equivalently
can be accomplished by iterating the following two updates. We typically ob-
served convergence within 5–6 iterations or less.

αkn =α0
k + e〈log bkn〉

∑

t

xtnatk
∑

k′ atk′e〈log b
k′n〉

(10)

βkn = β0
k + e〈log(1−bkn)〉

∑

t

(1 − xtn)atk
∑

k′ atk′e〈log(1−b
k′n)〉

(11)

2.1.2 M-step

The estimation of the mixing coefficients is now carried out. Maximising Lbound

w.r.t. atk under the constraint that
∑

k atk = 1 (Appendix A.2) and combining
with the expression of Qtn(k|xtn), yields the update equation below.

atk ∝ atk

{

∑

n

xtn
∑

k′ atk′e〈log b
k′n〉

e〈log bkn〉 +
1 − xtn

∑

k′ atk′e〈log(1−b
k′n)〉

e〈log(1−bkn)〉

}

(12)

The algorithm is then to iterate the variational E-step and the M-step to
convergence.

2.2 Variational Bayesian solution

So far, the mixing coefficients atk have been treated as free parameters. There-
fore the likelihood bound Lbound is not suitable for selecting the optimal num-
ber of components. To overcome this, we may place a prior over the mixing
coefficients. Because of the convexity constraint that we imposed (see Sec.2.),
a Dirichlet density is appropriate. The model then resembles some analogies
with generative aspect models for count-based data (Blei et al., 2003; Bun-
tine & Jakulin, 2004; Marlin, 2003), which have been quite popular recently
for text document analysis and collaborative filtering, but have never been
applied to either denoising problems or 0-1 data analysis. We have set the
Dirichlet hyperparameter to 1 in all our experiments, in order to encourage a
uniform spread of the mixing coefficients.

Since now there are no free parameters left in the model, the optimal number
of components can be determined by choosing the model order that max-
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imises the log of the data evidence bound (Jordan, 1999) (see Appendix B.1).
Alternatively, we may initialise the model with a relatively large number of
components and the priors will drive the unnecessary components to extinc-
tion. From our experiments we found this latter procedure more convenient
for two reasons: It does not require us to repeat the runs for several candidate
number of components. Secondly, we don’t have much information about the
tightness of the bound and have observed the evidence bound as a criterion for
model selection may occasionally underestimate the number of components in
this model.

Nevertheless, the priors are necessary for performing a Bayesian model selec-
tion. The modification brought to the previously presented estimation proce-
dure is that now a variational M-step is required. This is derived analogously
to the variational E-step. Details are given in Appendix B.2. It should be
mentioned, that the variational Bayesian estimation methodologies have a rel-
atively long successful history with various independent factor models over
continuous valued data (Lappalainen, 1999; Attias, 2000), as well as a number
of other latent variable models (Beal & Ghahramani, 2006).

3 Analyst input and posterior data reconstruction

Perhaps the greatest reason for the popularity of ICA methods for exploratory
data analysis is that the independent components are often easier to compre-
hend and interpret by humans separately, rather than in their mixture. This
has been exploited in numerous applications, most notably in the context of
medical signal denoising (Jung et al., 2000). Once the independent signals of
different genuine and artifact sources are separated from the data, artifact-
corrected signals may be derived by eliminating the contributions of the arti-
fact sources. Our methodology is conceptually similar, although the formalism
differs according to our probabilistic framework.

Let us denote the posterior expectations obtained from our algorithm by 〈atk〉
and 〈bkn〉 respectively: 〈bkn〉 = Eq(bkn)[bk] =

∫

dbkbkB(bk|αkn, βkn) = αkn

αkn+βkn

and analogously 〈atk〉 = γtk
∑

k′
γ

tk′
— when a Dirichlet prior was employed, or

otherwise we work with the estimates atk. These are themselves discrete prob-
abilities, so that

∑

k〈atk〉 = 1. After inspecting the independent components
〈bk〉, the elimination of undesired components may now be accomplished by
specifying a probability value, P (u|k), for each component k, and using these
to modify our unsupervised estimates.

Let us denote by Pt(k) the posterior expectations 〈atk〉, for the Bayesian ver-
sion or simply the estimates atk in the variational EM version. In both cases,
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Bayes rule will provide the post-processed data representation.

〈atk〉postproc := Pt(k|u) =
Pt(k)P (u|k)

∑

k′ Pt(k′)P (u|k′)
(13)

Typically P (u|k) = 0 will be specified for components that are capturing
undesirable noise factors, while P (u|k) = 1 will specify a clearly meaningful
component. It is easy to see that having a value of P (u|k) = 0 implies that
〈atk〉postproc = 0,∀t. This essentially means that we remove the components
rated as noise and re-normalise the mixing coefficients atk′ , k′ 6= k of the
remaining ones.

Naturally, the formalism straightforwardly permits also the specification of
analyst inputs at more detailed levels. E.g. nothing prevents us from specifying
a separate set of probabilities, P (u|k, t), for each t. However, we may typically
expect human experts to feed back on the level of entire components, since
those are hoped to provide some interpretable representations.

For computing the posterior data reconstruction, we re-express the post-
processing described, in terms of a conditional posterior q(at|u) := D(at|γt ◦
P (u|.)), whose expectation is exactly 〈atk|u〉 = 〈atk〉postproc. Here, D denotes
the Dirichlet distribution, ◦ denotes element-wise product and u is the ran-
dom vector of u|k when k = 1 : K. Then the posterior probability that a data
entry is reconstructed as a 1 is the following (Appendix C)

P (x̂tn = 1|X,u) =
∑

k

〈atk|u〉〈bkn〉 (14)

and so the binary reconstruction is given by thresholding this value.

4 Experiments and evaluation

4.1 A toy experiment

We generated a simple toy data set from the model, with K = 3, of size
T = 150 and N = 30. The log evidence bound is monitored against iterations
till convergence, on the left hand plot of Figure 2. As expected, a monotonic
increase can be observed. We have set the maximum number of inner loops
for both the variational E and M steps to 10 and each of these inner loops
is stopped earlier if the change in log evidence is less then 10−3. The values
are monitored with two different symbols for the variational E and M steps
respectively, so it can nicely be seen how the inner loops get shorter over
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Fig. 2. Left: The monotonically increasing log evidence bound versus iterations: ’o’:
within variational E-steps, ’x’: within variational M-steps. Right: The log evidence
bound peaks at K=3, which is the correct number of components in the toy data
set.

time, towards convergence. On the right-hand plot of Figure 2, we see the
converged log likelihood bound for different trials of model orders in the range
2–6. The peak is at K = 3, and so the model order is correctly recovered. At
more than 3 components, the extra components are automatically eliminated:
Their posterior equals to their prior and the expectation of the associated
mixing coefficients goes to zero.

The subsequent experiments demonstrate the working of our model, together
with detailed quantitative evaluation on semi-synthetic data. It should be
noted that — similarly to other ’blind’ separation models and methods — the
approach presented is aimed to be a ’generic’ tool for analysing and denois-
ing binary data. It is nearly certain that for any specific application area, an
improved refinement could be made, e.g. by employing more domain-specific
dependency structure within the priors instead of our independent Beta pri-
ors. Such specific tailoring is outside the scope of this paper. Instead, the
experiments that follow are meant to demonstrate that given a 0-1 data set,
our method succeeds at identifying binary noise and restoring a more likely
original.

4.2 Restoration of corrupted binary images

A data set of handwritten digit images 2 is employed in the subsequent ex-
periments. The subset ’0’–’4’ is employed, which has 200 examples for each
digit, which totals T = 1, 000 instances. The number of pixels on each image
is N = 15 × 16 = 240. We artificially created a corrupted version of this data
set, by simulating a uniformly varying process of degradation, which turns off

2 http://www.ics.uci.edu/mlearn/MLSummary.html
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some of the pixels that were initially ’on’. Fifteen randomly chosen examples
are shown from the initial data set, along with their corrupted version, on
Figure 3. We run the variational Bayesian version of our method for 500 outer
iterations and with a maximum of inner loops set to 5. Figure 4 then shows
the ICA representation obtained 3 : Several components can clearly be recog-
nised as typical digits, and one other, ’blank’ component separates out the
corruption factor. Inspecting the mixing proportions for the data instances
shown earlier, it is clear that the white component is present in exactly those
images that suffered a degradation.

To remove the noise component, we apply the procedure described earlier.
The results can be followed on Figure 5: The grey-scale posterior reconstruc-
tion of the data has indeed filtered out the degradation factor and presents a
smoothed reconstruction of the initial clean data. On this plot, the grey levels
correspond to probabilities of pixels being ’on’. Thresholding these proba-
bilities at 0.5 gives us the binary reconstruction of the data shown on the
right-hand plot. The degradation has now been eliminated.

Fig. 3. Examples of clean (left) and corrupted (right) images.
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Fig. 4. Left: The components estimated from the corrupted binary image data set;
Right: The mixing coefficients associated with the examples shown on the right
hand plot of Figure 3. The mixing coefficients associated with the noise component
are highlighted in light colour.

A comparative set of experiments has then been conducted in order to as-
sess the performance of our method in reconstructing the clean data from its
corrupted version. We included a comprehensive set of binary data analysis
methods in this comparison: mixtures of Bernoulli (MB), Bernoulli (logis-
tic) PCA (Tipping, 1999) (LPCA), our binary ICA with and without post-

3 Unnecessary components, which have their posterior equal to their prior (thus
look completely grey) are not shown.
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Fig. 5. Reconstructed grey-scale (left) and binary (right) images after
post-processing.

processing (BICA-postproc and BICA respectively), and a Bernoulli version
of non-negative matrix factorisation (Lee & Seung, 2000), that we created
for the purpose of this comparison (BNMF). For the latter, a shifted and
rescaled sigmoid nonlinearity was used, which transforms the non-negatively
constrained factors and mixing proportions into the [0,1] interval. Figure 6
shows the representations created by these other models. None of the meth-
ods except BICA was able to separate out the noise factor. In consequence no
obvious correction post-processing is applicable to the other methods. Figure
7 shows their grey-scale reconstruction obtained. Despite some smoothing, the
corrupted images are still of low quality.

Fig. 6. The representation (factors) created by other competing binary factor mod-
els. From left to right: MB, LPCA and BNMF.

Fig. 7. The reconstructed grey-scale images by other competing binary factor mod-
els. From left to right: MB, LPCA and BNMF.

For a first quantitative assessment, we split the data in two halves: 500 cor-
rupted images were used for training and another 500 corrupted images formed
an independent test set. We will refer to denoising the training set as ’weak
denoising’ whereas denoising the previously unseen test set (both the training
and testing sets are corrupted in this case) will be referred to as ’strong de-
noising’. Note that the variational Bayesian version of our algorithm, that has
a prior postulated on atk can be used for strong denoising: For the previously
unseen data instances, the variational parameters of the variational posterior
q(at) are estimated. To differentiate between this and the variational EM ver-
sion of our model, BICA will refer to our model estimated by variational EM
and bBICA will stand for the variational Bayesian version.

The post-processing was performed as described earlier and to automate the
process, for this particular data set, a threshold of 0.1 was employed: If the
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Fig. 8. The effect of post-processing on the denoising performance of BICA and
bBICA.

average of a component, i.e.
∑

n〈bkn〉/N is below this threshold then the com-
ponent is removed. This worked well in this experiment although of course
using human expertise may potentially further improve the results, especially
in cases when we do not know beforehand what average statistics the useful /
noisy components might have.

Figure 8 shows the beneficial effect of the proposed post-processing for both
BICA and bBICA. For the latter, strong denoising is also demonstrated on the
plot. On these plots, and throughout, the performance is measured in terms of
the area under the average expected ROC curve of all instances (in sample for
week denoising, out of sample for strong denoising) (AUC) 4 (Fawcett, 2004)
of the posterior reconstruction. More precisely, the posterior reconstruction of
pixels in image regions where the clean image is white were merged together
to produce the average expected ROC curve and the area under this ROC
curve is plotted against the number of components in the range 3–25. Note
the clean data is not used anywhere else, only for evaluation.

We see the two versions of our algorithm perform similarly on weak denoising
and they are accurate over a wide range of model orders. It is also notable
that the strong denoising results are no inferior in this experiment.

We compare the denoising performance of our approach to other binary factor
models. Figures 9-10 show this comparison in terms of weak and strong denois-
ing respectively. As we can see, the proposed post-processing, by the removal
of the automatically separated noise component, BICA becomes the most suc-
cessful in this exercise – comparable with the nonlinear and time-consuming
LPCA at grey-scale reconstruction and net superior at binary reconstruction.
Note that LPCA scales cubically per iteration, due to a matrix inversion re-

4 For binary reconstruction AUC = 1− (fp + fn)/2, where fp is the false positive
rate and fn is the false negative rate.
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Fig. 9. Comparison of bBICA with other binary factor models on weak denoising.
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Fig. 10. Comparison of bBICA with other binary factor models on strong denoising.

quired at each iteration. Furthermore, finding a suitable threshold to obtain
an accurate binary reconstruction would require further computations. It is
also instructive to inspect the extent to which the models ’get fooled’ to re-
construct the corrupted data sets. This is shown on Figure 11. Clearly, LPCA
is the most accurate in this, due to its flexibility, while our post-processing
strategy, as we have seen, results in a poorer reconstruction of the erroneous
data in favour of the never seen clean data.

4.2.1 Varying the training set size

It is an important issue to study the variation of these results with the training
set size. In our next experiment we vary the size of the training set and measure
the noise removal capability of the model in corrupted digit data. Of the
total of 1,000 datum instances, 200, 300, . . . , 900 were sampled randomly for
training and the rest used for testing. The number of components was chosen as
K = 10 throughout this experiment, as the earlier experiments demonstrated
that the choice of K is not crucial. As before, we measure the post-processed
model’s ability to reconstruct the noiseless data, at the zero (white) entries of
the training set (weak denoising) and test set (strong denoising) respectively.
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Fig. 11. Comparison of the models for ’verbatim’ reconstruction of the corrupt data
sets. All models get fooled to some extent. However, our post-processing strategy,
reduces the accuracy of reconstructing the erroneous data in favour of reconstructing
the never seen clean data.
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Fig. 12. Varying the training set size (horizontal axis) in noise removal of handwrit-
ten digits. Vertical axis: AUC.

Figure 12 shows the variation as a function of the training set size. The error
bars show the mean and one standard deviation over the 10 bootstrap repeats
for each training set size tested. As one would expect, we see that the weak
denoising performance of both bBICA and BICA improves at larger training
set sizes and the performance of bBICA at test data (strong denoising) levels
up after a training set size of cca. 500 instances.

One may then wonder what happens when the training set gets small, where
one may expect to encounter a larger variation. On the other hand, in the
case of a small training set, the form of the model and the priors matter much
more — a more appropriate model (in terms of the purpose of the modelling)
can be expected to have a greater advantage. Furthermore, it is interesting
to see the variation comparatively with the other models and to assess the
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Fig. 14. Strong denoising on small size data set (N=125).

statistical significance of the differences between methods.

To provide an insight into this issue, Figures 13-14 show the variation of weak
and strong denoising respectively, when both the training and test set size is
as small as N = 125. For this experiment, both sets were sampled randomly
from the previously employed larger (500 + 500) sets (training and testing
sets are disjoint, of course) and repeats were performed in the range K = 9 to
K = 19. All these results were then collected together for each model in turn
and these distributions are shown on the plots of Figures 13-14. Apparently,
the advantage of our approach is more pronounced in this setting. A pairwise
application of the Kolmogorov-Smirnov test has indicated the difference in
performance of post-processed BICA and bBICA and the performance of all
other models is significant for both weak and strong denoising (the p-value
has been of the order 10−9). No significant difference was detected between
BICA-post and bBICA-post on weak denoising.
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Table 1
Clustering and classification results on DNA fingerprints, in terms of the number of
correct matches with the true class labels and the total matches given in percentage:
The leave-one-out (L-O-O) classification results are taken from Wilbur et al. (2002)
and represent the best results they obtained on this data. Despite our bBICA is an
unsupervised method, the agreement with the true class labels is higher.

Class1 Class2 Class3 Class4 Total Accuracy(%)

True 23 22 22 22 89 -

L-O-O classif 22 18 22 17 79 88%

bBICA 23 19 22 19 83 93%

Bernoulli mixtures 23 17 22 0 62 69%

5 Applications

In this section we present examples of real-world application areas where our
method may be used, and its added value over existing alternative 0-1 data
analysis models and methods. In principle, it can be used whenever the data
under study consists of multivariate 0-1 vectors.

5.1 Identification treatment groups from DNA fingerprints

Microbial community fingerprints are intensely studied in agriculture, e.g. in
the context of optimising the productivity of the soil. They can be repre-
sented as binary vectors Wilbur et al. (2002), where the observations are pres-
ence/absence indicators of microbial populations across a number of samples
is different treatment groups. We use data from Wilbur et al. (2002), where
the objective was to investigate the impact of different agronomic treatments
on the microbial community structure of corn in rizosphere. This consists of
T = 89 samples from 4 different treatment groups, over N = 84 microbial
populations. See Wilbur et al. (2002) for details. In Wilbur et al. (2002), four
different feature selection and classification combinations were devised and
applied to this data. These are supervised methods, that use class label in-
formation at the training stage. Their best results, in terms of the number
of correct classifications in leave-one-out testing, are listed in Table 1, along
with the true number of instances in each class — 10 instances are misclassi-
fied in total. Now we apply bBICA to the same data set, without using any
feature selection or any other preprocessing, and without making use of class
information. In order to avoid possible spurious local optima, we repeated our
algorithm 50 times, selecting the best local optimum of the data evidence.
The obtained factorisation is shown in Figure 15. Differently from some of the
other examples given, no noise component is detected in this data, meaning
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Fig. 15. The bBICA decomposition of DNA fingerprints discovers the four treatment
groups.

that the absence of evidence of any of the microbial populations most proba-
bly represents an evidence of its absence. Moreover, it is quite apparent from
the figure, that the mixing coefficients of bBICA discover four distinct classes.
After an appropriate permutation of the components (by computing the con-
fusion matrix), we find a remarkable correspondence between the strongest
component and the true class labels, as given in Table 1. Note, the number of
mismatches is 6, which is lower than that previously found with the best su-
pervised method. The results of a Bernoulli mixture clustering (selected based
on highest likelihood from 50 repeats to avoid local optima) is also shown as a
baseline in the table. The Bernoulli mixture confuses the classes 3 and 4 and
displays a rather poor match with the true treatment groups. In addition, the
bBICA components represent the characteristic presence-absence patterns of
microbial populations associated with the four discovered treatment groups,
and thus naturally reveal information about the impact of the various treat-
ments.

As described above, this result was obtained by selecting, from multiple ran-
dom restarts, the run that obtained the highest evidence bound (i.e. the best
local optimum). To see how well this unsupervised, model-based criterion
works, it is also interesting to inspect the correlation between the converged
evidence bound values and the clustering accuracy. Figure 16 (left hand plot)
shows the scatter-plot from 20 repeats. We observe the existence of spurious
local optima at some distance from the better ones. But more importantly,
we find a significant positive correlation between these two quantities — evi-
dence bound and the cluster accuracy in terms of a good match with the true
class labels. Hence, by selecting the model that achieves a better optimum in
terms of evidence bound is also likely to be a model that produces a better
match with the true class labels — which means the model is well suited for
describing this data. The right hand plot displays the posterior mean mixing
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Fig. 17. Distributions of the cluster accuracy results when the initial number of
components is varied. The best results with different initial K are comparable.

coefficients corresponding to the result with highest evidence (seen also in Fig.
15) as a 3D plot. We see the misclassified points are actually not that far from
their correct class.

Finally, we also tested the model for initial values of K other than the true
number of clusters. When K was initialised to a larger number (e.g. we tried
K = 12 and K = 16), the model tended to settle at a final number of com-
ponents larger than 4. To somehow quantify these results, we then assigned
each component the class of the majority of its data, using the posterior es-
timates of the mixing proportions. This evaluation strategy was previously
used in Constantinopoulos et al (2006) to match up the clusters identified by
a Bayesian model with a smaller number of true classes. It turns out that the
best results in terms of evidence bound are comparable despite the differences
in K, as shown in Figure 17. In other words, the components tend to subdivide
the true treatment groups, without confusing them.
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Fig. 18. Visual display of the posterior expectations of the mixing coefficients esti-
mated from the Monks network data set.

5.2 Finding groups and identifying opportunities from social networks

Graphs or network models are widely used to represent relations between in-
teracting entities — e.g. epidemic networks, computer networks, gene networks
and social networks, to name just a few. In a social network, each node repre-
sents a person or a social group and each link or edge has information about
a relationship. Here we will focus on 0-1 relations, i.e. two nodes are either
connected or they are not. We consider the edges are directed, that is, if a
node has a link to another node, the converse is not implied. There has been
a lot of interest in modelling and analysing network data in general and social
networks in particular — see e.g. Handcock & Raftery (2007); Kabán & Wang
(2006); Singliar & Hauskrecht (2006) for some recent studies. However, we
know of no applications of ICA approaches to this problem.

For a first example, we took the Monks network used in Handcock & Raftery
(2007), which received much attention in the social networks literature. It de-
scribes the social relations between 18 monks in an isolated American monastery
(see Handcock & Raftery (2007) and references therein for details on the data
and its previous uses). There are 3 main groups: the young turks (T) (7 mem-
bers), the loyal opposition (L) (5 members) and the outcasts (O) (3 members).
In addition, 3 monks wavered between L and T. We run bBICA, in 50 ran-
domly initialised repeats to avoid local optima and selected the run with best
log evidence. In Figure 18 we show the posterior expectations of the inferred
mixing proportions — since K=3 in this case, these can be easily visualised.
The markers reflect the true labels for the convenience of visual evaluation.
Recall, W is in fact a combination of L and T. We see the three groups are
well separated and there is a good agreement with the true structure of the
data. Two out of the three wavers are indeed situated between the groups of
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L and T. It should be stressed, this latter property is not exhibited by cluster-
ing methods, which, by contrary, tend to divide the data into disjoint groups;
e.g. the clustering result in Berchtold & Raftery (2002), for the same data,
has grouped two of the wavers with the group of ’L’-s and one other with the
group of ’O’-s. Therefore, our bBICA model is more than a clustering method;
it can preserve some of the topology of the network nodes.

After this illustrative example on the rather small and clean, previously well-
studied Monks network, in the sequel, we analyse a real world social net-
work, collected from an Internet Relay chat room. Initially, the data is a
temporal sequence of 25,355 contributions made by 844 participants. For a
topic-independent analysis of the social relations, the sequence of ID-s may
be analysed (Kabán & Wang (2006)). Contrarily to this previous study, here
we represent the ID sequence as a binary graph, in order to infer the under-
lying components of the presences and absences of relationships (rather than
their ’strengths’). Since this is a real-world example, we anticipate that apart
from components that correspond to clear groups or communities, there will
be noise components as well. As we will see, the noise components of this bi-
nary representation are very useful to identify and can be interpreted in this
context as missed opportunities. The removal of such components will reveal
links that are less evident when the noise component is present.

The nodes of our chat network are the 844 unique ID-s. We construct the
binary graph in two ways. A first order graph will have a ’1’ whenever a con-
secutive contribution of a pair of participants exists in the sequence. This is
a very crude representation, since the intended order of contributions may
interleave in practice and random temporal delays may be present. Therefore,
our second (and more realistic) approach is to pre-process the sequence using
the mixed transition Markov model of Berchtold & Raftery (2002), i.e. to infer
the intended connections by taking into account transitions situated at deeper
temporal lags. The maximum lag was set to 8, which should be sufficiently
long to recover delays that are due to differences in typing speed or those due
to network bandwidths limitations. At each time point, the most probable
posterior lag is obtained and these are used for reconstructing the graph of
transition frequencies. These are then made binary, so that non-zero frequen-
cies correspond to presence and zero frequencies to absence of relationships
between the nodes of our graph.

Our bBICA decomposition came up with K=18 components for the first-
order graph and K=15 for the second version of the graph. Based on these, we
can reorder the nodes such that those nodes whose highest mixing coefficient
is the same will be next to each other. Optionally, we can also order the
components in the descending order of the sum of presence probabilities in
their presence-absence pattern. Figure 19 shows the two binary graph matrices
with reordered nodes. The revealed structure is rather interesting, and it gives
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Fig. 19. Left: The reordered first-order network; Right: The reordered network when
mixed-transition preprocessing was used.

an entirely different alternative view from models that are based on connection
frequencies (such as the one in Kabán & Wang (2006)). Recall, for both graphs,
the nodes and edges are untouched, only the ordering of the nodes is done
using the results of bBICA. From the left hand plot of Figure 19 we see that
bBICA separates out those nodes that form groupings and those which don’t.
Apparently, only about half of the participants form groupings in the first-
order graph. At some closer inspection, unsurprisingly, it turns out that there
are a number ’noise’ components, dominated by high probability of absence,
and for the remainder of participants, one of these noise components is the
most dominant.

The right-hand figure shows results for the second version of the graph. As we
can see, the amount of noise here is less. However, inevitably, noise components
still do exist. In fact, one of the most important strengths of our model is to be
able to separate these out so they can be identified, appropriately interpreted
and the information obtained from this can be appropriately used. Figure 20
shows the actual decomposition, i.e. the matrices of posterior expectations 〈a〉
and 〈b〉 respectively. The former are the mixing coefficients, the latter are the
beta components (characteristic presence-absence probability patters). White
corresponds to 0 and black to 1. The components are ordered w.r.t.

∑

n〈bkn〉,
and the nodes are ordered by their strongest component. We see four almost
entirely white components (12-15 on the right-hand plot).

In the context of social network analysis, a ’white’ component means a linking
pattern dominated by absence. All nodes have some nonzero mixing coeffi-
cients corresponding to white components (rows 12-15 in the left-hand plot),
since it is inevitable that some links that could have been present were actu-
ally not (missed opportunities). However, we see there are also nodes whose
dominant component is a white one (see columns 690-844 in rows 12-15).
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Fig. 20. The posterior expectations obtained from the bBICA decomposition. Left:
〈a〉; Right: 〈b〉.

These are the ones for which a noise-removal will most dramatically change
the mixing weights (recall, the mixing coefficients get renormalised in this op-
eration). Removing the noise components identified from the whole network
implies therefore that the links to the active components (communities) are ex-
panded. This can be used for identifying opportunities that are not so evident
otherwise, and guiding participants towards a suitable active community.

5.3 Expansion of short text messages

A final experiment considers binary coded text. That is, each text document
or message is represented as a vector of size equal to the size of a common
dictionary, having an entry of 1 for words that are present and an entry of 0
for words that are absent. This encoding has been used in text categorisation,
in the context of Naive Bayes classification (McCallum, 1998) and has consis-
tently been found inferior to multinomial-based encodings. Interestingly, none
of the existing literature on this subject seems to realise how noisy a binary
encoding of text is. It is intuitively evident that only a small fraction of the
words that could be used to express a topic are actually present in each of the
documents. Moreover, some documents are really short.

We apply bBICA to analysing a subset from the 20Newsgroups collection 5 ,
which contains short Usenet messages from 4 different topics of discussion:
’sci.crypt’, ’sci.med’, ’sci.space’ and ’soc.religion.christian’ A number of 100
documents from each newsgroup were sampled and binary term by document
matrix was created using the Bow toolkit 6 over a 100 words dictionary.

Unsurprisingly, a bBICA analysis of this data consistently returns at least one
blank factor. This factor is a ’semantic noise’ inherent in the language. Remov-

5 http://www.cs.cmu.edu/ textlearning/
6 http://www.cs.cmu.edu/˜mccallum/bow/
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Table 2
Expansion of randomly picked documents from the training set. The first line gives
the list of words that are actually present in the document, followed by the list of 16
most likely expected additional words along with their reconstruction probabilities.

atho church rutger god sin word peopl

christian 0.52 bibl 0.34 faith 0.34 christ 0.33 jesu 0.32 accept 0.32 agre 0.31 love 0.29 speak 0.28

scriptur 0.27 truth 0.26 man 0.24 clh 0.24 teach 0.22 geneva 0.22 religion 0.22

decrypt den chip enforc escrow clipper kei encrypt

system 0.66 govern 0.60 public 0.60 secur 0.54 peopl 0.52 comput 0.40 algorithm 0.28 secret 0.27

nsa 0.26 devic 0.26 access 0.25 scheme 0.24 trust 0.23 cryptographi 0.22 pgp 0.22 privaci 0.19

man sternlight secret escrow

peopl 0.46 system 0.42 kei 0.33 encrypt 0.31 govern 0.31 public 0.31 chip 0.30 clipper 0.28 secur 0.27

comput 0.22 space 0.19 access 0.18 nasa 0.17 effect 0.15 orbit 0.15 algorithm 0.15

henri space effect

peopl 0.36 nasa 0.33 system 0.31 orbit 0.30 man 0.25 cost 0.22 launch 0.20 mission 0.18 flight 0.17

shuttl 0.16 medic 0.16 moon 0.15 solar 0.15 spacecraft 0.13 doctor 0.13 toronto 0.12

orbit space cost peopl

nasa 0.33 system 0.29 man 0.24 launch 0.20 mission 0.18 flight 0.17 shuttl 0.16 henri 0.16

moon 0.15 pat 0.15 solar 0.15 effect 0.13 spacecraft 0.13 access 0.13 spencer 0.12 toronto 0.12

space

peopl 0.40 system 0.26 nasa 0.25 orbit 0.23 man 0.20 cost 0.17 effect 0.16 launch 0.15

pat 0.15 access 0.14 mission 0.14 flight 0.13 shuttl 0.13 henri 0.12 moon 0.11 solar 0.11

ing the blank component has the effect of expanding the text with semantically
related words. There is no objective way of quantifying this semantic related-
ness, however Tables 2-3 give a random sample of messages together with their
expansion, as computed for examples of the training set and a small hold-out
test set respectively.

By inspection, we find the words on the expansion list are semantically strongly
related to the words which are actually present in the documents. Although
we cannot quantify this semantic relatedness directly, after removing the noise
factor we computed the clustering error w.r.t. the true class labels and found
a remarkable agreement, the mismatch was 5.75% in average. Having detected
and realised this semantic noise gives an additional insight into why binary
text encodings have not been so fruitful in text categorisation in their basic
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Table 3
Expansion of documents from a hold-out set.

spirit scriptur clh church love accept agre effect peopl

god 0.51 christian 0.51 rutger 0.45 word 0.37 bibl 0.34 faith 0.34 christ 0.33 jesu 0.31

speak 0.28 truth 0.26 man 0.24 atho 0.22 teach 0.22 geneva 0.21 religion 0.21 sin 0.18

bibl clh church geneva rutger speak god christian public peopl

word 0.44 faith 0.41 christ 0.40 jesu 0.38 accept 0.37 agre 0.37 love 0.34 scriptur 0.33

truth 0.31 man 0.28 atho 0.26 teach 0.26 religion 0.26 sin 0.21 spirit 0.21 passag 0.20

pain medic patient physician doctor effect

peopl 0.53 diseas 0.41 treatment 0.38 medicin 0.37 symptom 0.31 food 0.31 med 0.30 diet 0.29

clinic 0.27 infect 0.24 syndrom 0.23 diagnos 0.22 system 0.22 accept 0.18 access 0.12 word 0.11

encrypt algorithm

peopl 0.49 system 0.36 kei 0.30 public 0.29 govern 0.29 chip 0.28 clipper 0.26 secur 0.25 comput 0.20

escrow 0.20 access 0.19 effect 0.15 pat 0.14 secret 0.13 nsa 0.13 devic 0.12 scheme 0.12 space 0.11

jesu geneva rutger christ christian

peopl 0.67 god 0.49 word 0.35 church 0.34 bibl 0.33 faith 0.32 accept 0.30 agre 0.30

love 0.27 speak 0.27 scriptur 0.26 truth 0.25 man 0.24 clh 0.23 atho 0.21 teach 0.21

syndrom symptom medicin medic diseas med doctor peopl

effect 0.68 patient 0.45 treatment 0.38 physician 0.32 food 0.31 diet 0.29 pain 0.28 clinic 0.28

infect 0.25 diagnos 0.22 system 0.21 accept 0.18 access 0.12 word 0.11 chip 0.11 agre 0.08

pgp public kei encrypt

peopl 0.50 system 0.50 govern 0.43 chip 0.42 clipper 0.40 secur 0.39 escrow 0.30 comput 0.30

access 0.22 algorithm 0.20 secret 0.20 nsa 0.19 devic 0.19 scheme 0.18 trust 0.17 cryptographi 0.16

orbit lunar spacecraft moon nasa

space 0.60 system 0.41 man 0.37 cost 0.33 launch 0.32 mission 0.28 flight 0.27 shuttl 0.26

henri 0.25 peopl 0.24 solar 0.23 spencer 0.19 toronto 0.18 vehicl 0.17 zoo 0.17 satellit 0.17

form. Denoising of text data may provide interesting new avenues and could
also be used e.g. for query expansion in query-based search engines.
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6 Conclusions

We have devised a variational method for the factorisation of 0-1 data, em-
ploying independent Beta latent densities. This model is particularly suited
for denoising problems, as shown in a set of comparative experiments. We
also demonstrated the use and good performance of our approach on a num-
ber novel application domains, including social network analysis and DNA
fingerprint analysis. The method may have further applications. In particular,
since missing value patterns are binary vectors, the method devised here could
be investigated for modelling non-ignorable missing data mechanisms in con-
junction with other appropriate data models being employed for the observed
data.
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A Variational EM solution

A.1 Inference

A.1.1 Computing q(bkn)

Taking functional derivative from Lbound(xn) −
∑

k λk(
∫

q(bkn)dbk − 1) w.r.t.
the variational density function q(bkn) and setting it to the identically null
function, we obtain the optimal form of this function. The last term is a
Lagrangian term, with Lagrange multipliers λk,to ensure proper normalisation
of the obtained variational density.

∂Lbound

∂q(bkn)
=

∑

t

Qtn(k|xtn) log
{

bxtn

kn (1 − bkn)(1−xtn)
}

+ logB(bkn|α
0
k, β

0
k)

− log q(bkn) − 1 − λk (A.1)

= log
{

b

∑

t|xtn=1
xtnQtn(k|xtn=1)

kn (1 − bkn)
∑

t|xtn=0
(1−xtn)Qtn(k|xtn=0)

}

+ logB(bkn|α
0
k, β

0
k) − log q(bkn) − 1 − λk = 0 (A.2)

Isolating log q(bkn) and exponentiating both sides, we obtain
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q(bkn) ∝

∝B(bkn|α
0
k, β

0
k) b

∑

t|xtn=1
xtnQtn(k|xtn=1)

kn (1 − bkn)
∑

t|xtn=0
(1−xtn)Qtn(k|xtn=0)

∝ b
α0

k
−1

kn (1 − bkn)β0

k
−1 b

∑

t|xtn=1
xtnQtn(k|xtn=1)

kn (1 − bkn)
∑

t|xtn=0
(1−xtn)Qtn(k|xtn=0)

= b
α0

k
+
∑

t|xtn=1
xtnQtn(k|xtn=1)−1

kn (1 − bkn)
β0

k
+
∑

t|xtn=0
(1−xtn)Qtn(k|xtn=0)−1

∝B(bkn|αkn, βkn) (A.3)

where

αkn =α0
k +

∑

t|xtn=1

xtnQtn(k|xtn = 1) (A.4)

βkn = β0
k +

∑

t|xtn=0

(1 − xtn)Qtn(k|xtn = 0) (A.5)

Hence, the optimal free-form factorial variational posteriors are Beta densities.

A.1.2 Computing Q

Solving the stationary equations
∑

n L
bound(xn)+

∑

n,t,xtn
νn,t,xtn

(
∑

k Qtn(k|xtn)−
1) yields:

∂Lbound

∂Qtn(k|xtn)
= log atk + 〈log bxtn

kn (1 − bkn)1−xtn〉 − logQtn(k|xtn) − 1 − νn,t,xtn

⇒ Qtn(k|xtn) ∝ atk(e
〈log bkn〉)xtn(e〈log(1−bkn)〉)1−xtn (A.6)

with the normalisation being
∑

k′ atk′(e〈log b
k′n〉)xtn(e〈log(1−b

k′n)〉)1−xtn , so that
indeed the constraints are satisfied.

From the above, we also have

Qtn(k|xtn = 0)∝ atk(e
〈log(1−bkn)〉)1−xtn (A.7)

Qtn(k|xtn = 1)∝ atk(e
〈log bkn〉)xtn (A.8)

which are required in (A.4) and (A.5) respectively. Using these, and making
the normalisation factor explicit, Qtn(k|xtn) can also be expressed as

Qtn(k|xtn) ∝ atk

{

xtne
〈log bkn〉

∑

k′ atk′e〈log b
k′n〉

+
(1 − xtn)e〈log(1−bkn)〉

∑

k′ atk′e〈log(1−b
k′n)〉

}

(A.9)
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A.2 Estimation of the mixing parameters

To obtain a maximum likelihood estimate of the mixing matrix, we solve the
stationary equation of atk from

∑

n L
bound(xn) +

∑

t µt(
∑

k atk − 1), where µt

are Lagrange multipliers.

∂Lbound

∂atk

=
∑

n

Qtn(k|xtn)/atk − µt = 0 (A.10)

Multiplying both sides by atk, we obtain

∑

n

Qtn(k|xtn) − µtatk = 0 ⇒ atk ∝
∑

n

Qtn(k|xtn) (A.11)

Summing over k and using the constraint that
∑

k atk = 1, the normalisation
factor is found to be

∑

k,tQtn(k|xtn) = T .

B Variational Bayesian solution

B.1 The evidence bound

logP (X) =

= log
∫ ∫

∏

n

[P (xn|bn,A)
K
∏

k=1

p(bkn)dbkn]
T
∏

t=1

D(at|γ
0)dat ≥ Ebound(X)

=
∑

n,t,k

Qtn(k|xtn)
{

〈log atk〉 + 〈log bxtn

kn (1 − bkn)1−xtn〉 − logQtn(k|xtn)
}

+
∑

n,k

{

〈logB(bkn|α
0
k, β

0
k) − log q(bkn)〉

}

+
∑

t

{

〈logD(at|γ
0) − log q(at)〉

}

(B.1)

where D denotes the Dirichlet distribution, A stands for all mixing variables
(a1, ...,at, ...,aT ) and 〈.〉 denotes expectation w.r.t. q(bkn) or q(at), as appro-
priate.

B.2 Computing the variational posteriors of the mixing coefficients

We take functional derivative from E bound(X) −
∑

t λ̃t(
∫

q(at)dat − 1) w.r.t.
the variational distribution qt(a), where λ̃t are Lagrange multipliers to ensure
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proper normalisation. This is:

∂

∂q(at)
=

∑

n

∑

k

Qtn(k|xtn) log atk + logD(at|γ
0) − log q(at) − 1 − λ̃t

=
∑

k

log a
∑

n
Qtn(k|xtn)

tk + logD(at|γ
0) − log q(at) − 1 − λ̃t (B.2)

Isolating log q(at) and exponentiating both sides, we get

q(at)∝D(at|γ
0)

∏

k

a
∑

n
Qtn(k|xtn)

tk (B.3)

∝
∏

k

a
γ0

k
−1

tk

∏

k

a
∑

n
Qtn(k|xtn)

tk =
∏

k

a
γ0

k
+
∑

n
Qtn(k|xtn)−1

tk

∝D(at|γ
0
k +

∑

n

Qtn(k|xtn)) (B.4)

Hence, the optimal variational posterior mixing distributions are Dirichlet
densities, with variational parameters

γtk ≡ γ0
k +

∑

n

Qtn(k|xtn) (B.5)

B.3 Computing Q

The computation of Qtn(k|xtn) follows the same route as before, and formally
the only difference is that now instead of the parameters atk we have e〈log atk〉

throughout.

C Posterior data reconstruction

The posterior probability that a data entry is reconstructed as a 1 can be
expressed using the Bernoulli likelihood and the model posteriors. For the
model estimated by the variational Bayes procedure, this is the following.

P (x̂tn = 1|X,u) =
∫ ∫

P (x̂tn = 1|b,at)
∏

k

q(bkn)dbkq(at|u)dat (C.1)

=
∫ ∫

∑

k

atkbkq(bkn)dbkq(at|u)dat (C.2)

=
∑

k

〈atk|u〉〈bk〉 (C.3)
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