
Visualising Social Network Activity on Mobile Browsers

Christoffer Björkskog

Helsinki June 4, 2008

Master’s Thesis

UNIVERSITY OF HELSINKI
Department of Computer Science

Faculty of Science Department of Computer Science

Christoffer Björkskog

Visualising Social Network Activity on Mobile Browsers

Master’s Thesis June 4, 2008 65 pages + 5 appendix pages

Web 2.0, mobile media, visualisation, user interfaces, service aggregation, mobile AJAX

Online social communication and contribution is very common today. There are
many different online social networks and it is difficult to follow the activities in
all. In this thesis we study whether online social activities can be aggregated and
visualised in a graspable way on mobile Web browses using AJAX technologies.

We have created Funnelry, a social media mashup application, designed to fetch the
online activities of the user’s friends from different services and present them in a
filtered list view on mobile web browsers.

This thesis comes to the conclusion that it is currently possible to visualise these
activities on certain mobile browsers using AJAX technologies. It is possible that in
a near future most mobile Web browsers will support these technologies. Clustering
and filtering out data that is not interesting to the user is needed when there is a
great deal of online activities going on.

ACM Computing Classification System (CCS):
H.3.5 [Online Information Services],
H.4.3 [Communications Applications],
H.5.1 [Multimedia Information Systems],
H.5.2 [User Interfaces]

Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 Social Media Services and Web 2.0 2

2.1 Social Media Services . 2

2.2 Web 2.0 . 6

3 Capabilities of Mobile Web Browsers 8

4 Web Usability 10

4.1 Usability . 10

4.2 Web Usability . 11

4.3 Mobile Web Usability . 12

4.4 Usability and Data Visualisation . 15

5 Service Aggregation 25

5.1 Techniques . 25

5.2 Syndication and Aggregation . 31

5.3 Mashups . 32

6 Implementation of Funnelry 40

6.1 Example Scenarios . 40

6.2 Specifications . 41

6.3 Architecture . 43

6.4 User Interface Prototype . 47

6.5 Implementation . 48

6.5.1 Navigation . 48

6.5.2 Visualising Activities . 53

6.6 Loading Times . 56

6.7 Lessons Learned . 58

iii

7 Conclusion 59

8 Acknowledgements 59

References 60

Appendices

A Acid2 Test

B Acid3 Test

C AJAX Code Sample

D Google Maps API Code Sample

E Loading Times

1 Introduction

Human beings are social creatures with an ability to work together in groups, cre-
ating value that is greater than the sum of its parts [WM08]. Many online services
exist where users can contribute with content and communicate with each other.
For example, many people have an online diary where they publish their thoughts.
According to a questionnaire targeted at American Internet users, social and pro-
fessional networking sites have increased in popularity, people remix online content,
categorise, or "tag", online content and upload photos, videos and content they have
produced [Pew08]. A great deal of content is being viewed and produced by online
users, and communication over the Internet in different forms is happening all the
time [WM08]. People use different social networking services to keep up with their
friends. However, it becomes difficult to follow the activities in all of them when
there are a large number of services that a person’s friends are active in.

Mobile phones are closely connected to persons as well as to a global network
[CtHS06]. Social networking on mobile phones may enhance social activities when
the context of the users is taken into account. However, displaying a great deal of
content on mobile devices may be difficult because of the limited screen size of the
phone [Noi05].

The aim of this thesis is to see whether online social activities can be aggregated and
viewed in a user friendly way on mobile web browsers. Funnelry is a prototype devel-
oped for the Helsinki Institute for Information Technology (HIIT) designed to aggre-
gate and display social activity on mobile browsers, and is the software part of this
thesis. Funnelry visualises online activity using Extensible HyperText Markup Lan-
guage (XHTML), Cascading Style Sheets (CSS), Document Object Model (DOM)
manipulation and client side scripting (JavaScript), fetching data as JavaScript Ob-
ject Notation (JSON) feeds using XMLHttpRequests (XHR).

The structure of the thesis is as follows:

In Chapter 2, a background on social media services and Web 2.0 is described. These
are phenomena that have emerged during recent years and have changed the way
the Internet is used. Social networking on mobile devices is introduced.

In Chapter 3, the limitations and strengths of mobile devices as a platform for social
networking are discussed, and the capabilities of modern mobile web browsers needed
to run dynamically changing Rich Internet Applications (RIA) are examined.

In Chapter 4, principles for usability, visualisation and models for perception are

2

introduced. Two examples of visualising large amounts of data on mobile devices
with small and very small displays are presented.

Chapter 5 introduces service aggregation, which involves gathering information from
different sources into one. Syndication, a method of providing a computer read-
able version of content through RSS (Really Simple Syndication), is introduced.
Mashups, combining elements from different services into new services are presented.
Techniques enabling mashups, such as RSS and AJAX, are presented.

Chapter 6 describes Funnelry, a mobile social media mashup that combines and
filters online activities from user’s online social networks on a mobile web browser.

Chapter 7 summarises the results of this thesis and takes a glimpse at what to expect
in the near future of the mobile web.

2 Social Media Services and Web 2.0

2.1 Social Media Services

During the last ten years, the web has matured both technologically and in usage
[WM08]. The focus is on user contribution, collaboration, communication and social
networking [O’R05, WM08]. Web applications that enable these activities are called
social software [CtHS06].

The web and social software enable social networking in ways that were previously
unattainable, providing opportunities for collaboration and communication between
people online [WM08]. A social network is defined as a group of three or more per-
sons sharing information with each other, such as a scout troop, church, university
or any other socially structured relationship [WM08]. Social networking is influenc-
ing how the web is used and is causing a major shift in the function and design of
the Internet.

The use of social software has increased tremendously in the past few years [CtHS06].
People contribute and communicate using blogs, social networking and tagging sys-
tems, while they continue to use existing socially oriented software such as news-
groups, bulletin boards and collaborative filtering systems.

Many of the popular social networks grow through word of mouth, which is the
natural behaviour of people telling others about products or services that are either
good or bad [WM08]. A survey showed that from 2005 to 2006 the number of daily

3

online social network users, based on American Internet users aged between 18 and
29, increased from 4% to 31% [Pew08]. Data from this survey, summarised in Table
1, shows statistics of American Internet users’ activities on the web.

There are different kinds of online social media services and networks. The following
is a brief introduction to a few of them.

Facebook (facebook.com) connects users with friends, fellow students and peers
enabling them to keep in touch, upload photos and to share links and videos.

Orkut (orkut.com) is similar to Facebook and is popular in Brazil, India and the
USA.

MySpace (myspace.com) is an online community and a meeting place for friends
similar to Orkut and Facebook.

YouTube (youtube.com) allows people to upload videos and share them across
websites, mobile devices and e-mail. Users can rate and comment videos and
reply to them with a video of their own. Users can also create channels and
playlists. In the previously mentioned survey, 70% of American Internet users
in ages 18 to 29 answered that they watch videos on video sharing sites, and
30% of the users had done it the previous day [Pew08]. Within the same
age group, 36% said that they have shared online content they have made
themselves such as videos, photos, artwork or stories.

Flickr (flickr.com) is a service where users can upload their digital photos. It allows
users to share these photos with the world, their friends or family. Images
can be uploaded from various photo managing software on the users’ home
computers, the web or mobile devices. The survey of American Internet users
found that, in ages 18 to 29, 51% have uploaded images to the Internet for
others to see [Pew08]. In ages 30 and older the percentage was around 30.

Digg (digg.com) is a place where people discover and share web content recommen-
dations. If users like the content they can "digg" it, increasing the number of
diggs for that content. The greater the number of diggs the content receives,
the more visible it becomes and is therefore likely to receive more traffic. Users
can also "bury" content, thereby decreasing the number of diggs. In ages 18
to 29, 78% of American Internet users said that they can go online for no
particular reason, and almost 40% had gone online for no particular reason

4

American Internet users: Asked 18-29 30-49 50-64 65+

Dec 07 91% 94% 91% 90% Read or send e-mail

 Yesterday 62% 65% 57% 45%

Dec 07 75% 73% 68% 55% Get news online

 Yesterday 37% 41% 32% 26%

Feb-Mar 07 86% 88% 77% 62% Look for info about a hobby or an interest

 Yesterday 34% 30% 26% 17%

Feb-Apr 06 78% 64% 53% 43% Go online for no particular reason

 Yesterday 39% 28% 21% 15%

Aug 06 54%* 36%* 36%* 28%* Send instant messages tom someone who is

online at the same time

Yesterday 20%* 9%* 5%* 1%*

Sept 05 40% 20% 14% 9% Take part in chat rooms or online discussions

 Yesterday 9% 4% 1% *%

Aug 06 50%** 34%** 26%** 23%** Play online games

 Yesterday 13%** 8%** 9%** 8%**

Create content for the Internet such as helping

build a website, create online diaries, post on

bulletin boards or participate in online

communities

Mar 04 25% 21% 11% 4%

Sept 05 33% 28% 26% 24% Search info about a person you know or might

meet

Yesterday 7% 5% 6% 3%

Create or work on your online journal or blog Dec 07 24% 11% 4% 2%

Read someone else’s online journal or blog Jan 06 52% 37% 34% 23%

Sept 07 37% 34% 29% 20% Rated a product/service using an online rating

system

Yesterday 5% 3% 2% 4%

Aug 07 49%* 8%* 4%* 1%* Use online social or professional networking

sites

Yesterday 31%* 4%* 2%* 0%*

Feb-Mar 07 25% 16% 14% 6% Remix online material into your own creation

 Yesterday 5% 2% 3% 1%

Aug 06 14%* 12%* 12%* 4%* Download a podcast

Dec 06 32% 31% 23% 18% Categorize or tag content like photos, news,

stories or blog posts

Yesterday 10% 6% 4% 5%

Dec 07 70% 51% 30% 16% Watch a video on a video sharing site

 Yesterday 30% 14% 7% 4%

Feb-Mar 07 44% 38% 31% 26% Look for information on Wikipedia

 Yesterday 11% 8% 5% 6%

Create an avatar or online representation of

yourself

Feb-Mar 07 19% 9% 2% 2%

Upload photos to a website so you can share

them online

Aug 06 51%** 34%** 30%** 35%**

Post review about a product you bought or

service you received

Sep 07 32% 34% 27% 18%

Share something online that you created

yourself such as your own artwork, photos,

stories or videos

Dec 07 36% 18% 15% 15%

Post comments to an online newsgroup, web

page, blog or photo site

Dec 07 35% 21% 14% 12%

Table 1: Table over the online activities of American Internet users [Pew08]. Users
where asked whether they have performed certain Internet activities. For some
activities, the users were asked whether they had performed the activity the previous
day.

5

the previous day [Pew08]. Services similar to Digg can be useful for finding
interesting web content when surfing the net for no particular reason.

del.icio.us (del.icio.us) is a collection of users’ favourite links. Users can share
favourites with friends, family, co-workers and the del.icio.us community. The
del.icio.us service can be used to find new content that others have added as
favourites. Typical favourites are about technology, entertainment and infor-
mation users find useful. Users can see how many have bookmarked a certain
link, and the principle is similar to Digg in that the more people bookmark it,
the more likely it is that people check it out.

Updating to a network of friends using the Internet is evolving into a human method
of social interaction [WM08]. Immediately after the killings at Virgina Tech in April
2007 many students used online social networks such as Facebook to let their friends
know that they were not harmed. Virginia Tech students updated their status and
put messages on their personal pages saying "I’m all right", "I’m safe" or "I’m
coming home". The communications during and after the incident showed that
social networking is an important part of communication.

Some people are active in many different networks because their friends are active in
different networks (such as Facebook, Myspace or Orkut) or there may be different
networks providing different services and features to the user such as Flickr, YouTube
and del.icio.us. Different social networking sites such as Facebook and Myspace are
not interconnected, meaning that users may need to maintain several accounts in
order to keep in touch with friends that are active in one or the other, which may
become difficult and time consuming for the users [NKHS07].

As social software gets integrated into our mobile phones, the use of social software
is likely to take a significant leap forward [CtHS06]. This is because our phones
are closely connected to ourselves as well as to a global network. Programs can be
created that enable users to undertake social computing when they are in a social
context. Mobile phones have the potential to bring ubiquitous and social computing
to everyday users because they are available to most people in developed countries.

Counts et al. [CtHS06], claims that mobile social software give birth to the following
research questions:

• How will mobile social software change the way people interact and socialise
with each other? A study of Japanese teenagers’ use of text messages showed

6

that they use text messages to accomplish social convergence, or micro-coordination
[ID05], where an initial general meeting place and time is set, for example
"Shibuya, noon", after which several status updates are received until the
actual meeting occurs.

• How will the emerging availability of location services change social software?
Examples where location information can be used include social networking
and recommendation systems. The users can be notified when a friend is
nearby. Alternatively, the system can notify, for instance, that people in your
social network recommend a different Italian restaurant than the one you are
entering. Location is one context attribute of the user. The major factor
that differentiates mobile social software from its desktop counterpart is the
increased use of context. Another question is how to incorporate context into
mobile social software?

• How much information should be made known about a users context to his
social network? Where is the border where the benefit of context information
is outweighed by the users’ loss of privacy? Finding a good way to determine
this is an important question. How does this vary depending on the social
context of the user?

Progress in mobile technologies has made mobile phones a convenient platform for
Web 2.0 applications [NKHS07]. Not all social web applications can be used on
mobile devices due to limitations in bandwidth, memory, screen size and keypad
size. An average Myspace or Facebook page exceeds 1Mb in size, and according
to Natchetoi et al. [NKHS07], not even the most advanced smart phone can render
pages of that size. In order to test this last statement, we tried to view a profile page
on Facebook, using a Nokia E61i mobile phone with an empty cache. The profile
page designed for mobile phones rendered nicely, but when we tried to view the full
page, an error message saying that the memory was full emerged (when 2.4MB had
been loaded), and the page was not rendered completely.

2.2 Web 2.0

The new way in which the Internet is being used, with user contributed data, social
networks and rich user interfaces, is called Web 2.0. It consists of features found
in services that survived the dot-com bubble crash in 2001, and is focused around
users, communication and synergy [O’R05].

7

One of the most popular Web 2.0 services are blogs. A blog is a popular medium
for ordinary people to publish content. Blogs are personal websites that contain
diary-like entries presented in a reverse chronological order where people publish
and share their ideas, stories or any other content they want to share [Ham05].
Blogs are increasing rapidly in popularity. The Technorati website [Tec08], which
currently tracks activities in over 112 million blogs, report that every day there are
over 175,000 new blogs created and that bloggers generate over 1.6 million blog
entries a day. One of the things that has made blogs popular is RSS (Really Simple
Syndication) [O’R05]. RSS enables users to subscribe to the content of a site by
represents it in a machine readable format. Another reason for the popularity of
blogs is that they enable visitors to comment on the blog posts, which creates a
sense of community and encourages discussion. Visitors may return to the same
blog post several times in order to see what other people have commented. The
survey mentioned in Section 2.1 showed that 35% of American Internet users aged
18 to 29 have posted comments in online newsgroups, web pages, blogs or photo
sites [Pew08].

In the Web 2.0 era, software is treated as a service and not as a product, which
means that they need to be maintained frequently [O’R05]. For instance, Google
must constantly crawl the web for new pages and updates. They must continuously
filter out spam links and any attempts to manipulate their results. At the same
time their service must respond to hundreds of millions of asynchronous queries
while simultaneously matching them with appropriate advertisements. Web 2.0
products are developed in the open, where new features emerge monthly, weekly
and sometimes daily. Services such as Gmail, Google Maps, Flickr, and del.icio.us
are likely to bear a "Beta" logo for long periods of time. Sometimes Flickr deploys
new builds every half hour. This shows that Web 2.0 applications use a different
release cycle compared to traditional software [O’R05].

Web 2.0 applications rely heavily on user-provided data. However, the protection
of intellectual property limits data re-use and prevents experimentation. O’Reilly
suggests using licences with few restrictions so that data can be re-used, "hacked"
and "remixed" [O’R05]. According to the user study mentioned in Section 2.1, 25%
of American Internet users aged between 18 and 39 said that they have remixed
online content into a creation of their own [Pew08].

8

3 Capabilities of Mobile Web Browsers

Mobile web browsers, as well as the devices they reside on, can differ in functionality,
performance, maturity and accessibility [NKHS07]. If content is not very readable
it causes a negative user experience. Content designed for desktop browsers may be
distorted, or otherwise unsuitable for viewing on mobile devices.

Many modern mobile phones are equipped with useful features for social networking,
such as a built in camera, GPS (Global Positioning System), Bluetooth connected
devices and sensors. The problem is that current browsers do not support these
kinds of input. Natchetoi et al. [NKHS07] suggest that a new type of mobile browser
should be developed that could take advantage of these additional input methods
such as image upload via the built in camera and utilisation of voice input. They
also suggest that the browser should automatically scale down the complexity of
web pages in order to present the content in a suitable way for the mobile device.

According to Natchetoi et al. [NKHS07], it takes time for mobile web browsers to ma-
ture. They usually support HTML (Hypertext Markup Language), XHTML, Links
in Image-Maps, SSL (Secure Sockets Layer) and UTF8/UTF16 (Unicode Transfor-
mation Format). However, technology like Javascript 2.0 or CSS 2 (Cascading Style
Sheets) are not usually supported and only few browsers support iFrames, RSS 1.0,
Cookies or DOM manipulations.

The Acid tests (http://www.acidtests.org/), published by The Web Standards
Project (WaSP), are designed to expose limitations in the implementation of web
standards in web browsers. The Acid2 test was designed to aid web browser creators
in ensuring their products support standards that web designers desire. However,
this has not been possible, because major browsers did not follow those industry
standards [WSP08a]. Browser creators have started to use the tests to ensure that
their software interpret web pages correctly [WSP08b, Hic08]. Acid2 tested whether
browsers followed certain industry standards for HTML and CSS specifications, but
also if the browsers supported features such as transparent PNGs (Portable Network
Graphics).

The Acid2 test was released on April 12, 2005 and presented the results of a successful
test graphically as a smiling face [Aci08b]. The test renders a smiling face, if the
browser follows the tested features of W3C (World Wide Web Consortium) HTML
and CSS 2.0 specifications. On October 31, 2005, 6 months after the release of the
test, Safari 2.0.2 was the first browser to pass the test. Other browsers such as

9

Opera and Konqueror followed after. Major stable browsers that do not yet support
Acid2 are Internet Explorer and Firefox, but Acid2-supporting versions are under
development; see IE 8 and Firefox 3 beta 4 in Appendix A. More details about the
Acid2 test can be found in [WSP08a].

An internal version of Opera Mobile 9 on Nokia Series 60 was the first mobile browser
to pass the test [Gol07]. A new version of WebKit, an open source web engine that
powers Safari, Dashboard and the mobile browser for Series 60, passes the test,
and is what the mobile browsers in Series 60 are built upon [WJ07, Siv07]. Obigo,
another mobile web browser, has also passed the test. The current browser in the
Nokia Series 60 is based on WebKit, but does not render the Acid2 test correctly
[Siv07].

In order to test how well current desktop browsers support the standards tested by
Acid2, I visited the test page http://acid2.acidtests.org/ using certain major
browsers on both a Mac OS X 10.5.2 and Windows XP Professional Service Pack
2. The results can be seen in Appendix A along with results from external sources.
Different versions of Opera and Safari passed the test on both Mac and PC. Internet
Explorer 7 on a Windows machine did not pass the test. Firefox 2 did not pass the
test in either Mac or PC, but Firefox 3 beta 4 on the PC did. According to [IEB07],
Internet Explorer 8 will support the features tested in Acid2. It seems as though
major browsers support, or are striving to support, the standards tested in Acid2.

In 3 March 2008, the Web Standards Project, released their third test, Acid3
(http://www.webstandards.org/action/acid3/). The Acid3 test was designed
for testing standard specifications that are used in Web 2.0 [WSP08b]. Flaws in the
implementation of standards related to DOM scripting, such as ECMAScript and
DOM 2, XHTML 1.0, parts of CSS2 and CSS3 and SVG (Scalable Vector Graph-
ics), were exposed. The test comprised 100 mini tests and exposed flaws in all tested
browsers including Internet Explorer, Firefox, Opera and Safari. I tested various web
browsers against the Acid3 test and none of the installed browsers obtained a full
score on the test. The results from the Acid3 test can be found in Appendix B. The
browsers that obtained the best result was Safari 3.1 on Mac OS X 10.5.2 which
scored 74/100 points. Firefox seems to improve its result on the test from version
to version.

No web browser achieved the full score (100 out of 100) when the test was released
[Sto08]. However, browser creators worked hard to develop the first version to pass
the test.

10

On Wednesday 26 of March 2008, developer versions of both Opera and WebKit got
a full score on the Acid3 test and became the first two browsers to pass the test
[Alt08, Sta08]. A downloadable version of WebKit that passes the Acid3 test was
available shortly afterward.

Since the mobile browsers in Nokia Series 60 phones and iPhone/iPod Touch are
based on WebKit and Opera develops popular browsers for mobile phones it seems
that advanced Web 2.0 browser features will soon come to mobile web browsers as
well. I believe mobile browsers will become very capable within a short period of
time and that both basic and advanced web standards will be supported on both
mobile and desktop web browsers.

4 Web Usability

This section introduces usability, aspects of web usability, mobile web usability and
visualisation aspects related to usability.

4.1 Usability

There are two major quality attributes of user interface design [Nie03]. One is
usability, and the other is utility. Utility refers to the functionality of the design.
If the functionality of a program is not what the user wants it has no bearing it is
easy to use. On the other hand if a program can do what the user wants, but is too
difficult to use, it is no good either.

According to [Lew95], usability depends on the product in use and the context it
is used in. Jakob Nielsen [Nie03] defines usability as a quality feature that con-
sists of five quality components: learnability, efficiency, memorability, errors and
satisfaction. These components will be looked at below in further detail.

Learnability defines how easy is it for a user to accomplish his tasks when he is first
faced with the design [Nie03]. According to [Har01], humans have a tendency to learn
quickly, remember well and to overcome difficulties in clever ways. These attributes
can be taken advantage of when designing material that is to be learned, such as user
interfaces. According to [Har01], learnable material should be memorable, logical,
reconstructible, consistent and visual.

Efficiency defines how quickly the user can start to perform tasks once he has

11

learnt the design [Nie03]. There is often a conflict between learnability and efficiency
[LH01]. The rule of thumb is to design user interfaces that are efficient, later adding
learnability [LLK06]. A user interface with bad efficiency often breaks the whole
user interface. If, however, the interface has first been made efficient, then learnable,
both attributes can be preserved.

Web pages that require much of the users’ working memory cause efficiency problems
because human working memory is very limited [LLK06]. Working memory is a
bottleneck for human problem solving and information processing capacities for two
reasons. Firstly, the storing period is short, only a few seconds, and secondly it has
a limited capacity of only 4-7 items called chunks of information that can be kept
in the working memory at the same time. Large chunks of data can be reduced to
smaller sets by reorganising them into logical groups that are more comprehensible.

Memorability defines how easily a user can regain his skills when he has not used
the design for a period of time [Nie03]. Memory is closely connected to association
and there are different types of memory [Har01]. There is:

• Short term memory which stores a short shopping list, for example, which will
be forgotten after a while.

• Medium term memory is where things one should remember for next week, for
example, are stored. Reminder notes and association are used to remember
things in the medium term memory.

• Stored in our long-term memory are things that we will remember for life.
Some things we learn by brute force methods to be able to recall them rapidly,
letters of the alphabet or the multiplication table, for instance. Other things
may be learned by frequent use, such as playing an instrument or driving a
car.

Errors define how many errors the user makes, how severe they are and how easily
the user can recover from these errors.

Satisfaction is defined by how pleasant the design is to the user.

4.2 Web Usability

Nielsen [Nie99] argues that content is the reason web users go online. However, as
the use of the Internet has shifted from being an information repository into a social

12

meeting place, I claim that this it is not the only reason why users go online. I also
claim that users contribute content as well as consume it as they communicate with
others or publish content online. Nielsen continues to argue that content is the first
thing that a user looks for when they enter a web page, and that it is one of the
two most important features of a web page. The other is how easily users can find
the information they desire, and that web users are goal-driven and very impatient.
That is why content must be strongly oriented towards providing fast answers and
being useful. I agree with Nielsen in these last statements. I would like to add
that in addition to providing the information users desire, developers should seek to
identify the users’ goals and provide easy ways of achieving them.

From the very first moment users enter a web site they experience the usability of
that site [Nie99]. That is one of the reasons why usability is so important for web
pages. Users tend to leave the site if the information is difficult to read, the web
page does not state what the users can do, they get lost, or if the website does
not answer their key questions. Users do not read a manual of a website, and they
do not spend much time trying to learn an interface. Since there are many other
websites, according to [Nie99], leaving the site is the first defence mechanism when
a user encounters difficulties.

One web usability issue that affects how pleasant a web application is to use is
response time [Nie99]. Research shows that in order for the user to freely navigate
through an information space, the response time needs to be under one second, and
that users cannot keep their focus for longer than 10 seconds while waiting for a
page to load. If the response time is below one tenth of a second, users feel that
the system is reacting instantaneously. If this occurs then no feedback is necessary,
other than displaying the result. When the response time is less than one second, the
users flow of thought will remain uninterrupted, even though they may experience a
delay. According to Nielsen [Nie99], feedback is not necessary if the response time is
between 0.1 and 1.0 seconds, but the user can loose the feeling of operating directly
on the data. If the response time is longer than 10 seconds the users will start doing
something else while the page loads.

4.3 Mobile Web Usability

Mobile web browsing is different from desktop web browsing [KR03]. Text input
is much slower on a mobile device, there might be no cursor for interacting with
objects and some devices may not support horizontal scrolling. The amount of

13

cookie data that can be stored on the devices is usually limited and the user’s
mobile Internet account may be such that the user has to pay for the amount of
data that is transferred. In addition to these restrictions, there is a great variation
among mobile devices in terms of screen size, browser capabilities, input methods
and processing power. These attributes are necessary to consider when designing
web applications for mobile devices. According to user studies, users value different
aspects when browsing on a mobile device than on a desktop computer [VRM03].
Because of the differences in platform capabilities, and user expectations, not all
usability guidelines intended for desktop web browsing can be applied to mobile
browsing.

Large content does not fit into tiny screens. In order to view content in its original
format, paging, scrolling or zooming is required. It has been found that scrolling
in mobile web pages has a negative effect on user’s task performance efficiency and
it makes comparing and reading data difficult [CSA07]. User performance increases
when large content is divided into several pages. The optimal page length depends
on whether the page is meant to be informative or interactive. An intuitive approach
for viewing large content on small displays is to show a minimised view of the page
where users can zoom in on the desired content using a dedicated controller on the
device [Rot06]. However, most mobile phones do not have a dedicated zooming
controller, so other methods need to be found.

Some mobile browsers provide two modes for presenting web content, Narrow Lay-
out and Original Layout [Rot06]. Narrow Layout eliminates horizontal scrolling by
reformatting content so that it fits into a single column and only vertical scrolling
is necessary. However, not all web content is comprehensive in this format, wide
data tables or large maps for example. Therefore browsers provide a second mode,
Original Layout, for presenting content in the same way as on a PC. There are,
however, problems with these approaches. It is the user’s responsibility to change
between the modes, but user studies have found that most users do not know about
these modes. Large data tables require Original Layout, but wide text columns have
only good readability in Narrow Layout.

Baudish et al. [BXWM04] address the issue of visualising large content on small
displays through a method called Collapse-to-zoom. Collapse-to-zoom allows users
to zoom into relevant areas, but also allows users to collapse areas that they find
irrelevant, such as menu-columns, archive material or advertising. When content is
collapsed, all remaining content expand in size, revealing more detail, which increase

14

the user’s chance of finding content of relevance.

Lam and Baudisch [LB05] address the problem with thumbnail views, where texts
become unreadable. They present an enhanced thumbnail view, called Summary
Thumbnails, with additional readable text fragments. The method helps users to
identify viewed material and to distinguish between areas that are similar. The
method proved to be 41% faster, with 71% less error rates than interfaces with
Narrow Layout.

Roto et al. [Rot06], present a mode-less solution for displaying web pages on small
displays called MiniMap. Using MiniMap, all pages are viewable in the same mode.
The solution is to modify web pages so that they are similar to the original layout
but more suitable for small screens, making text columns the same width as the
screen for instance, and showing a page overview when the user scrolls continuously.
These approaches are intended for viewing standard web pages on mobile devices.
However, when web applications are designed for mobile devices, the aspects of
mobile browsing can be taken into consideration in the application design.

According to user studies, mobile web users prefer to navigate content that is pre-
sented in a list format so that detailed information can be acquired via items in the
list [KR03]. Scrolling has been found to be suitable for skimming and scanning tasks
in order to get an overview of the content [CSA07], but task performance increases
when page hierarchies are shallow [KR03, CSA07].

A user study of mobile XHMTL navigation conducted by Kaikkonen and Roto
[KR03] found that unique page titles were important for communicating the user’s
current location. For menu selections, less errors occur if interaction feedback is
provided [CSA07]. Keyword search was found to be popular for finding content,
and is often utilised by users of small screen devices [KR03, CSA07]. The browsers
back button was found to be the most important way of going back when navigating
a mobile XHTML page [KR03]. This may become a problem when developing web
user interfaces that are dynamically updated without page reloads, because history
handling of current mobile or desktop browsers is not intended to track different
states in a dynamically changing document. For users, however, it is intuitive to
think that the back button takes them one step backwards in the history of changes
that have occurred.

15

Figure 1: Portrait visualising the losses of Napoleon’s army during the Russian
campaign of 1812 [Tuf01]. From the Polish-Russian border goes a thick band that
shows the size of the army at each position. The retreat from Moscow during the
cold winter is visualised by the dark lower band and is connected to time scales and
temperature levels.

4.4 Usability and Data Visualisation

Due to the limited mobile web usability and visualisation guidelines for modern
browsers, this section introduces the principles behind visualisation and certain as-
pects regarding human perception in order to allow user friendly interfaces and
intuitive data visualisations on mobile web browsers.

Statistical graphics

According to Tufte [Tuf01], the best statistical graphics are able to communicate
complex ideas with clarity, precision and efficiency. One example of this, and in
Tufte’s opinion probably the best statistical graphics ever drawn, is Charles Joseph
Minard’s portrait of the losses suffered by Napleon’s army during the Russian cam-
paign of 1812; see Fig. 1.

Statistical graphics should not emphasise or have the user focus on anything else
than the data. The graphics should direct the user’s attention towards the substance
that is presented. The graphics should not distort the data by exaggerating or
decorating the data; see Fig. 2. Instead the graphics should be able to make a

16

(a) (b)

Figure 2: Graph (a) is an example of a statistical graphic with too much coding.
Graph (b) shows the same data without extra coding [Tuf01, LLK06].

logical representation of the data, encouraging the viewer to compare different parts
of the data. Tufte recommends representing the data at different levels of detail,
ranging from a general overview to finer details.

Visual Perception

When we experience a number of stimuli, they are not perceived as "a number" of
separate things, but they are organised and grouped together according to certain
principles. These principles are called Gestalt laws [Wer38].

Consider the shapes A-C in Fig. 3. They consist of circles, all of the same shape,
with equal distance from neighbouring circles. However, the same circles seem to
make up columns in shape B and rows in shape C [Wer38]. Our mind arranges them
into natural groups. This phenomena is called the Factor of Similarity, implying
that similar objects group together.

In shape D, the elements appear to form columns because of the differently shaped
elements. In shape E the same rule is applied and the elements appear to form
rows. However, in shape F, the red elements appear to make up one group whereas
the blue elements appear to make up another. According to Healey [Hea07], similar
colour is a stronger grouping factor than similar shape.

17

O PM

N Common area is
stronger than proximity

Connectivity is
stronger than similarity

Common area is stronger
than similarity

Connectivity is stronger
than proximity

A B C

J

G

D E F

The Factor of Similarity, similar objects group together
Similar colors group together

Similar shapes group together
The Factor of Similarity, similar objects group together Similar color is stronger

than similar shape

Proximity is stronger than similarity
The Factor of Proximity,

closeness group together

H

K

I

L

Figure 3: Gestalt laws. [LLK06, Wer38, Hea07].

18

(a) (b)

Figure 4: Determining whether a red circle is present or absent in a sea of blue circle
distractors: (a) target is present; (b) target is absent [Hea07].

In shapes G-L, the Factor of Proximity can be observed [Wer38]. In shape G the
circles are perceived to be organised in columns, whereas in shape J the circles
appear to be organised in rows. Even though the Factor of similarity is applied to
the circles, which can be seen in shapes H, I, K and L, the Factor of Proximity is
stronger and the elements appear to be organised in rows [LLK06].

In shape M, the adjacent columns are joined together with a line. This connection is
stronger than proximity, even though the circles are closer together in the columns,
the circles appear to be grouped together according to the connections [LLK06].
Connectivity is stronger than proximity.

In shape N it can be seen that line connectivity is also stronger than similarity
[LLK06]. The elements group together according to the connections rather than
objects of the same shape. In shapes O and P it can be seen that a common area is
a stronger grouping factor than both similarity and proximity [LLK06].

Our low-level visual system has the ability to recognise and extract certain features
from what we see immediately, even before we focus on the image. This is called
preattentive processing [Hea07]. Observation tasks that can be performed between
200-250 milliseconds on a large display are called preattentive. It takes at least 200
milliseconds before the eyes begin to move, meaning that the user has not focused
on any particular part of the image. Even so, it has been observed that viewers can

19

(a) (b)

Figure 5: Determining whether a red circle is present or absent based on difference
in shape: (a) target is absent; (b) target is present [Hea07].

(a) (b)

Figure 6: A combined search for a target red circle: (a) target is absent; (b) target
is present [Hea07].

perform these tasks with little effort.

An example of a preattentive task is finding a red circle among blue circles; see
Fig. 4. Similarly, in Fig. 5, our low-level visual system recognises differences in

20

shape and therefore finding a circle among squares can be performed preattentively.
However, when variations both in shape and colour appear and there are no unique
features that the visual-system can extract the search is no longer preattentive.

Fig. 6 is an example of a combined search when trying to find a red circle among
red squares and blue circles. The visual system has no unique visual property to
search for when the target is to be located. When a circle is searched for, the visual
system returns blue circles and when a red item is searched for, the visual system
always returns red squares. Studies have shown that the target cannot be found
preattentively [Hea07]. The viewer must conduct a time consuming serial search in
order to determine the presence of the red circle.

Based on the understanding that the low-level visual system can rapidly identify cer-
tain visual properties, in the design of multidimensional visualisations, the designer
can assign different visual features to different data attributes [Hea07]. By doing
this, multiple data can be shown simultaneously in a single view. One requirement
to facilitate search is that data features are mapped so that the visualisation does
not produce interference, i.e., different visual features do not hide or mask informa-
tion; see Fig. 6. In order to allow rapid search for combinations of data attributes,
one must ensure that the resulting combinations contain at least one unique visual
feature, so that identifying the elements can be performed preattentively [Hea07].

Colour and information

Humans are sensitive to colour variations and trained colourists can distinguish
among one million colour variations under ideal circumstances [Tuf90]. An average
person can distinguish approximately 20 000 different colours, where constraints are
due to visual memory rather than the ability to differ between similar colour tints.
Can colour be used to code data? When it comes to coding abstract information
using colours, it has been shown that using more than 20 or 30 colours gives a
negative effect, making data difficult to distinguish [Tuf90]. It is a difficult and
complex task to connect the right colour to the right place when using colours in
data coding. The fundamental uses of colours in data visualisation are (1) to label
where colour is used as a noun, (2) to measure where colour represents quantity,
and (3) to represent reality and enliven or decorate where colour is used to bring
beauty.

Colours used in visualisation of data have a tendency to generate graphical puzzles

21

since the mind does dot give a visual ordering to colours, even though we are familiar
with the colour spectrum from rainbows and science textbooks [Tuf01].

The use of different shades of grey can show quantity better than using colour,
because they have a visual hierarchy [Tuf01]. Multiple layers of information can be
created by providing multiple viewing depths and multiple viewing angles. Graphics
can have three viewing depths where one represents what is seen from a distance, and
is an overall structure aggregated from the underlying microstructure. The second
depth is what is seen close up, showing finer detail. The third depth shows the
underlying data. Other examples of colour scales in use are the rainbow spectrum,
red-blue or red-green scales and grey-red saturation values [Hea07].

Approximately 8% of caucasian males have some kind of colour sight deficiency
[Wol99]. This affects which colours are to be chosen when choosing a palette. In
[Wol99], a lookup table is provided for web designers with normal colour sight so
they can see how persons with different colour deficiencies see the colours. The
lookup table is available from http://www.internettg.org/newsletter/mar99/

color_challenged_table.html [retrieved 14-05-2008].

Other attempts in producing colour scales include techniques where the colours are
chosen on the basis of how viewers perceive them rather than their separation from
each other in the RGB (Red-Green-Blue) colour scale [Hea07]. According to [Hea07]
these techniques are improvements that allow balance among colours so that each
step in a colour scale produces the same amount of colour change, each colour is
equally distinguishable from all the other colours and no specific colour is easier or
harder to identify. The improvements also allow for flexibility where the colours
can be selected from any part of the colour space, and is thus not restricted only to
greens, reds and blues.

Data visualisation on mobile devices

It is now possible to access large amounts of data using mobile devices [Noi05].
Visualising large amounts of data is more difficult on mobile devices than on personal
computers because of the limited memory, processing power and screen size of mobile
devices. Even if memory, processing power and screen quality improve, the size of
mobile phone screens will remain small for it to be possible to carry the devices
around. According to [Noi05], it is not possible to just adapt representation meant
for the personal computers onto mobile devices. New solutions need to be found

22

When there is much information to be visualised, everything may not fit on one
screen due to the limited screen size [Noi05]. One solution is to split the information
into several pages. This, however, results in problems with navigation and orien-
tation. Considering the display of searching tasks, it is suggested that the amount
of page-to-page navigation needed to view search should be kept to a minimum. It
has been observed that the additional effort arising when the user needs to scroll
vertically has a lesser effect on user performance than that of page-to-page naviga-
tion. It is recommended that the user interface should adapt for vertical scrolling,
since users are more comfortable with scrolling vertically than horizontally [Noi05].
When users need to select items from a list, and the items are familiar to the user,
15 items are still acceptable. When the items are unknown there should be no more
than eight [Noi05].

Problems appear differently for devices with small screens (pocket PC’s) and very
small screens (mobile phones) [Noi05]. On a pocket PC the information can be
summarised on the screen where more details can be viewed by opening additional
windows. On a mobile phone, however, it is recommended that the visualisation
should be simplified. When there is much data, it is recommended that analytical
methods are used to reduce the amount of information before visualising it [Noi05].

The size and layout of pointing devices and keyboards on mobile devices vary from
model to model and have different effects on the usability of the device for certain
tasks. A case study of presenting time series data was made by [Noi05]. Stock visu-
alisations intended for large screens are usually not very readable on a mobile device.
In order to save space when visualising on a small display, [Noi05] recommends that
precise and concise information should be given, using as few words as possible and
using a vocabulary that the user understands.

Often graphical representations on PDA’s are miniatures of the visualisations used
on PC’s. However, it is not enough, if an overview of the data can be shown,
since it cannot provide enough details on a small screen. Noirhomme-Fraiture et al.
[Noi05] presents two methods for visualising time series data. One utilises bar chart
visualisation and the other uses colours to indicate change.

The first, called a Brick Wall Chart, represents the data values using scales of colour;
see Fig. 7. The colour range is white, yellow, red and black. White represents the
minimum value and black represents the maximum value. There are 12 columns
representing each month. Each column is divided into rows that represent the days in
each moth and each row is divided into 4 sections representing 4 different attributes,

23

(a) (b)

Figure 7: Two different ways of displaying time depended data on a PDA, (a) Brick
Chart Wall and (b) Stacked Bar Chart. Both were just as effective but 17 out of 20
test users chose the Brick Chart Wall as their favourite [Noi05].

colour coded according to their values. The user can get the precise values of the
attributes for each day by tapping on the screen over the desired day. A box then
opens showing the values of the four attributes. The other, called a Stacked Bar
Chart, divides the months into 12 parts using the metaphor of a calendar where each
part contains its own bar chart showing time on the x-axis and value on the y-axis;
see Fig. 7. The bar chart represents the values of the attributes for the different days
by showing them as elements with different height dependent on the value. This
visualisation can include two different attributes that are coded in blue and orange.
The attribute with the smaller value is placed in front of the attribute with larger
value. This visualisation is not as rich as the Brick Wall Chart, but it uses elements
that are familiar to the users.

These two methods of visualising time series data were evaluated in order to deter-
mine the efficiency of the visualisations and user preference [Noi05]. The measure
attribute for the efficiency was performance, based upon how long it took the users
to complete a task and how well the days and the values were represented. The

24

(a) (b)

Figure 8: Two different ways of displaying time depended data on mobile phones.
(a) Alternate Bar Chart and (b) Pixel Bar Chart [Noi05].

results were inconclusive as to which was better, but 17 out of 20 users chose the
Brick Wall Chart as their favourite visualisation. The Brick Wall Chat was thus
more appreciated than the Stacked Bar Chart.

On a very small screen, however, detailed graphics are not readable and it is not
advised to solve the problem by adding pop-up windows [Noi05]. Outlines are to be
avoided and pictures replaced with coloured or greyed surfaces. Some Gestalt laws
have shown that contrast boundaries are better than line boundaries for making
shapes stand out. If there are too many values, [Noi05] recommends to summarise
the values through clustering. If there exists, for example, a portfolio with many
different stocks, one solution is to display a clustered result of these stocks. Many
stocks have common behaviour so they can be assembled into classes with similar
behaviour. In the following visualisation examples that were designed for mobile
phones instead of PDA’s, [Noi05] merged 40 stocks into 7 clusters. Clustering was
also performed to reduce the number of days into fewer periods.

The first example, Alternate Bar Chart, displays a visualisation close to that which
workers in the stock exchange are familiar with; see Fig. 8 (a). The bar heights are
proportional to the value being represented. In this case, the maximum variation of
stock value during a period. This value can be both positive and negative. If the
value is positive, it is represented from bottom to top, and if negative, the value
is represented from top to bottom. Each bar represents a cluster of stocks. For
more details about a certain stock cluster, the user can point on a specific bar. The
screen space usage is optimised and the important negative vs. positive changes are

25

quickly visualised.

The second example, Pixel Bar Chart, visualises the evolution of values for different
clusters of stocks (or individual stocks); see Fig. 8 (b). Each cluster has its own
column where the width of the column is proportional to the number of stocks in
the clusters. Each day is represented from top to bottom as a line in the column,
and a colour scale is used to map daily changes. The colours are the same as for the
Brick Wall Chart example. This visualisation also uses maximum available screen
space. People with weak sight might have problems with this visualization, although
the authors hope that improved screen quality will reduce the problem.

These two methods of visualising stock data on mobile phones were tested on users.
Both visualisations had rather good performance, but according to the authors,
the tasks to be executed were simple. The preference of the users showed that
the Alternate Bar Chart was easier to learn since it was close to the standard
representation, whilst the Pixel Bar Chart required some time for training.

5 Service Aggregation

An aggregate is a whole formed by several elements [Oxf01]. Combining content from
different web pages into so called aggregated documents is a common phenomena
in the Internet today [SDJ+08]. Millions of blogs and a huge amount of online
newspapers and websites provide their content in a machine readable format. This
is accomplished by providing feeds that enable users and applications to access data.
The goal of the thesis is visualising online activity on mobile devices. In order to
visualise online activity, data, such as contributions, events, comments and updates,
need to be gathered from different online services where the users’ friends are active.
This section examines the means of acquiring, combining and integrating such data.

5.1 Techniques

RSS and Atom

RSS is a collection of XML (eXtensible Markup Language) formats that summarises
the contents of a webpage [BGS06]. The concept emerged in 1997 and the first
version of RSS emerged in 1999 [GMR07]. Today the term Really Simple Syndication
is used most commonly for RSS. Several versions of RSS exist due to forks in the

261 ! untitled 7 ! 2008-03-31 16:33 ! Christo"er Björkskog

{

"firstName": "John",

"lastName": "Smith",

"address": {

"streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": 10021

},

"phoneNumbers": [

"212 732-1234",

"646 123-4567"

]

}

Figure 9: Data represented in JSON format.

development of the standard. The common versions in use are RSS 1.0, RSS 2.0
and Atom. Each has its specific uses as well as advantages and disadvantages for
feed publishers. RSS is especially used by sites where content is added regularly,
for instance news sites and weblogs, and the amount of sites that support RSS is
increasing rapidly [BGS06].

RSS and Atom are widely established within the blogging community [Ham05].
There are millions of weblogs, personal online diaries, being written worldwide and
most of these produce a syndication feed such as RSS or Atom.

We use the term RSS to refer to RSS 1.0, RSS 2.0 and Atom unless explicitly stated.

JSON

JSON (JavaScript Object Notation) is a data-interchange format that is lightweight,
easy for humans to read and write and also easy for machines to parse and generate
[Jso08]. JSON is based on a subset of the JavaScript Programming Language. JSON
is an ideal format for exchanging data because it is entirely language independent,
but it uses elements that are familiar with programming languages such as C, C#,
C++, Java, JavaScript, Perl, Python, PHP or other

JSON is built of two structures, a collection of name/value pairs and an ordered list
of values. Fig. 9 shows an example of data represented in JSON format.

JSON is convenient as a data-interchange language for JavaScript because JSON in
itself is JavaScript. That makes it easy to parse because the text can be evaluated

27

producing a JavaScript object. The following piece of code is one way of creating a
JavaScript object out of a JSON feed. We assume here that the feed is stored as a
string in the JSON_text variable.

var p = eval("(" + JSON_text + ")");

However, if an application is using JSON in an untrusted environment, it is not
advisable to evaluate the JSON code directly but rather to parse it, since malicious
code could be injected into the feed causing harm and security vulnerabilities.

AJAX

AJAX (Asynchronous JavaScript and XML) consists of a set of standardised web
technologies developed in the nineties that are used today for making rich, responsive
and interactive web applications [Pau05].

In [Gar05], AJAX is described as follows:

“AJAX is not a technology. It’s really several technologies, each flour-
ishing in its own right, coming together in powerful new ways. AJAX
incorporates:

• standards-based presentation using XHTML and CSS

• dynamic display and interaction using the Document Object Model

• data interchange and manipulation using XML and XSLT

• asynchronous data retrieval using XMLHttpRequest

• and JavaScript binding everything together.”

An example of an AJAX site is Google Maps (http://maps.google.com). When new
data is needed the application fetches that data asynchronously in the background
and integrates the new data with a map. Some web applications containing maps
require the whole page to be reloaded when new parts of a map needs to be fetched;
see Fig. 10.

Most user actions in the interface of a classic web application trigger an HTTP
request to a web server [Gar05]; see Fig. 11 (a). The server processes the request
and returns an HTML page to the client. The original use of the web was as a
hypertext medium, and for this the classic model works well. The classic model

28

Figure 10: Two maps from different web applications, Reittiopas [YTV08], to the
left, and Google Maps [Goo08a], to the right. When the user needs to see content
that is just outside the visible part of the map, on the map to the left the user has
to click on the navigation arrows which causes the whole page to reload, while on
the map to the right the user can drag the hidden parts of the map into view.

that is suitable for the web as a hypertext medium may not be suitable for rich
web applications. When the browser is waiting for a page to load, which happens
whenever new data is requested, the only thing that the user can do is to wait for
the page to finish loading. As usability guidelines suggest, response time needs to
be under one second in order for the user to freely navigate through an information
space, and in order for the user to feel that the system is reacting instantaneously,
the response time needs to be below one tenth of a second [Nie99].

The nature of starts and stops that synchronous interaction causes can be eliminated
using AJAX [Gar05]. Instead of loading a web page, an AJAX engine, written in
JavaScript, is loaded between the user and the server. The AJAX engine communi-
cates with the server, renders the user interface and deals with user interaction; see
Fig. 11 (b). Requests go to the AJAX engine via JavaScript calls. If communication
with the server is needed, e.g., fetching additional interface code, new data or sub-
mitting data for processing, the engine makes the requests asynchronously without
interrupting or delaying the user’s interaction.

In Appendix C, there is the source code for an AJAX call. The following is a
description of the relevant parts of the AJAX call and is a simplified version of the
code in Appendix C. First an XHR object is created for managing calls.

xmlHttp = new XMLHttpRequest();

29

http(s)
transport

browser client

server-
side systems

user interface

Ajax engine

web and/or XML
server

datastores, backend
processing

JavaScript

call HTML+

CSS data

HTTP

request

XML

data

(b)

http(s)
transport

browser client

server-
side systems

user interface

web and/or XML
server

datastores, backend
processing

HTML+

CSS data

HTTP

request

(a)

Figure 11: Classic web application model (a) and AJAX web application model (b)
[Gar05].

To the xmlHttp object, a callback function is defined that will manage the content
after a call has been made.

xmlHttp.onreadystatechange = function() {

document.getElementById("ajax_output").innerHTML

= xmlHttp.responseText;

}

30

After that a connection is opened calling for the contents of the "pages/index.html"
file to be fetched using the GET method.

xmlHttp.open("get","pages/index.html");

After the call has been made, the onreadstatechange function of xmlHttp will be
called once the content has been loaded. That function takes care of updating the
web page with the new content.

JSON, XML or XHTML are the types of content that are usually fetched using
AJAX calls. However, new JavaScript libraries, CSS style sheets or even images
and videos may also be retrieved so that the application may fetch, for instance,
needed handlers of interface elements.

Several JavaScript toolkits exist that facilitate creating web applications using AJAX.
Examples of these are Prototype (http://www.prototypejs.org), Dojo (http://
dojotoolkit.org), jQuery (http://www.jquery.org) and Frost (http://frostlib.
org). Frost is intended for AJAX development on limited browsers such as mobile
phone browsers, micro browsers and gaming consoles.

Mobile AJAX

Georgi [Geo07] defines Mobile AJAX as:

“The use of existing web standards and technologies (XHTML, DOM,
CSS, JavaScript, XHR) to create more responsive, mobile web applica-
tions that reduce bandwidth usage by avoiding full page refreshes and
providing a more ’desktop application’ user experience.”

According to Georgi [Geo07], mobile AJAX is not much different from desktop AJAX
and the core technology is the same. Mobile AJAX is just one of the technologies
that can contribute to make the user experience better and AJAX should not be
used just for the sake of using it [Geo07]. Rather, one should see Mobile AJAX as a
helper technology that can enhance and build on top of traditional web applications
and sites.

One problem with mobile AJAX is that not all mobile web browser currently sup-
port the necessary technologies and standards [Geo07]. However, Opera Mobile, IE
Mobile, Nokia S60, Minimo, Safari on the iPhone and iPod Touch, and likely most

31

future mobile web browsers support the needed standards. Another problem is
that currently mobile devices have limited capacities in CPU performance, memory,
battery lifetime and bandwidth [Geo07]. Data transmission and JavaScript opera-
tions cause heavy CPU load, which may result in two things: slow performance and
battery drainage. Another thing is that currently DOM manipulation also cause
a heavy load on CPU and memory. That is why Georgi [Geo07] recommends the
AHAH (Asynchronous HTML and HTTP) method, which means that it should be
avoided to access web services directly, but rather to route the traffic via a server-side
script that outputs pre-generated HTML [Wik08].

Georgi [Geo07] suggests that one approach to the fact that there are many different
display sizes is to design the application using the lowest possible divisor of the
display capabilities and implement the application for that. Another approach is to
identify a target browser and develop the application for that.

5.2 Syndication and Aggregation

Syndication means supplying feeds that contain content in a machine readable for-
mat so that others can subscribe to the content [GMR07]. An example of this is
a blog that syndicates its content as RSS feeds. Other people can subscribe to the
feed using a RSS reader; see Fig. 12. When the author has written a new blog entry
the subscribers are notified of the change. Syndication increases traffic to the web
page and it helps to build brand-awareness for the webpage. Syndication can also
enhance the web page’s ranking in search engines [Ham05]. Syndication helps to
maintain relationships between sites in a community and improves the relationship
between the site and the users. Additional technology that may enhance syndicated
services is for instance an application that observes a syndicated feed and notifies a
subscriber via instant messaging.

Syndicated content can be aggregated and brought together into one place using for
instance RSS readers. Different kinds of RSS readers exist enabling an overview of
syndicated content. The earliest ways of aggregating and reading RSS feeds were
through web-based readers. Web based RSS readers provide a convenient way for
staying up to date with the content of web pages of interest without having to sit
at the own personal computer. One popular example of a web-based aggregator is
bloglines [Blo08], and the recently introduced Google reader1.

1http://www.google.com/reader/

32

Figure 12: Some web browsers have a built in RSS reader.

5.3 Mashups

Web users today have transformed from being content consumers into content providers
[TSK08]. Today you can create professional looking websites and blogs without
knowing HTML. That has not always been the case. The newest kinds of web tools,
mashups, enable users to combine content, services and functionality from different
web sources into unique services. An aggregate is a combination of data, whereas
a mashup can combine data, as well as functionality, into a single tool. Mashups
have become popular because of the emphasis on interactive user experience and the
combination of data provided by different services [Mer06]. There are many different
kind of handcrafted mashup solutions and a few different classes of popular mashups
being developed [AKTV07, Mer06]. An example of mashups is AdSense where ads
related to the content of the page are embedded into the webpage [AKTV07]; see
Fig. 13.

33

Figure 13: Ads related to the text in a page can be embedded into a webpage via
Google AdSense service.

Mashups aggregate and combine third-party data, and take advantage of data
sources that usually come from another site or service [Mer06]. Popular types of
mashups include mapping mashups, video and photo mashups, search and shopping
mashups, and news mashups [Mer06].

Mapping mashups

One factor why mapping mashups, where data are presented graphically using maps,
became popular was the release of public Application Programming Interfaces (API)
for cartographic imagery such as Google Maps2, Yahoo Maps3 and Virtual Earth4.
People are collecting and creating vast amounts of data, and much of this data
has got some location associated with it. This means that the information can
be displayed on a map. Several mapping mashups exist; some are collected to
http://googlemapsmania.blogspot.com/.

An example of a mapping mashup is the ChicagoCrime.org website which displays
Chicago crime activity on Google Maps. Users can interact with the mashup site,
having it for instance to display a map of south Chicago with the details of recent
murders shown graphically on the map; see Fig. 14. Even though the concept and
the representation are simple, the combination of crime and location information
can become visually powerful. The Google Maps API describes how the developer
can use Google Maps as part of a mashup [Goo08b]. The code in Appendix D

2http://maps.google.com/
3http://maps.yahoo.com/
4http://www.microsoft.com/virtualearth/

34

Figure 14: ChicagoCrime.org presents crime data on a map.

outputs a map, which is zoomed to the level 15, around the location on longitude
60.205796 and latitude 24.962525 (Which is the Kumpula campus of the University
of Helsinki) and puts a marker there; see Fig. 15.

Video and photo mashups

Some photo hosting services, such as Flickr5, provide APIs to access shared photos
[Mer06]. This has led to the emergence of many interesting mashups. The content
providers have metadata associated with the images that are hosted. This metadata
can contain information, e.g., about who took he picture, what the picture is about,
when and where it was taken. Mashup developers can use the photos along with
other information and match the metadata of the photos with other content. An
example is a combination of the lyrics of a song with images related to the words in
the song.

Search and shopping mashups
5http://www.flickr.com/

35

Figure 15: The example code in Appendix D outputs this map

Even before web APIs were common, and the term mashup was coined for com-
bining web content, several search and shopping mashups existed. Services such
as MySimon, BizRate, PriceGrabber and Google’s Froogle aggregate price data so
that it can be compared. Consumer marketplaces such as eBay and Amazon provide
APIs to make it easier to create mashups and interesting web services. For instance
Amazon enables mashup creators to get revenues from their mashups. A mashup
developer might use the Amazons API to enable users to create wish lists of things
they would like to buy or receive as gifts. If then someone via the site buys an item
from Amazon, the mashup developer gets a certain percentage of the purchase in
revenue from Amazon. Another example of shopping mashups is Google’s AdSense,
where ads that are related to the content are placed on a dedicated place on the
webpage; see Fig. 13. A reseller or site owner that wants to draw customers or vis-
itors to their site can purchase certain keywords from Google using their AdWords
program. Their ads are then placed on sites that have content that relates to their
ads. This enables ads to be targeted to people interested in similar topics as the
ads.

News mashups

Certain news sites have been syndicating their content through RSS-feeds according
to topics since 2002. Theses are for instance BBC, New York Times and Reuters.

36

Aggregating mashups of syndicated feeds can create personalised newspapers from
the users’ preferred feeds according to interests. One example of a news feed mashup
is Diggdot.us that mash up feeds from Digg.com, Slashdot.org and del.icio.us.

The architecture of a mashup site

The architecture of a mashup site consists three major parts; the service providers,
the mashup site and the client’s browser. These will be looked at below in further
detail.

• API/service providers The content providers may be unaware of the fact
that their content is used to create web mashups. However, the providers
can also provide their content for this purpose among others by providing
APIs or feeds to access the content. The content may be provided through
web protocols, for instance JSON, web services or RSS. Many potential data
providers do not yet provide APIs for accessing the data. Mashup developers
acquire information from these web sites through screen scraping, which will be
introduced later in this section. The web page ChicageCrime.org uses Google
respectively the Chicago Police Department as API and Service providers.

• The mashup site The mashup site is where the service is hosted and the
logic of the mashup resides. Though, it is not necessarily where the mashup
is executed. The page can be executed through dynamic content generation
on the server, as well as through client side scripting such as JavaScript, or a
combination of these, which is most common. Mashup applications often use
data that is provided from their own user base, which implies that at least
one set of data is local. Complex queries may require processing that is not
suitable on the client side.

• The client’s browser The application is rendered graphically in the client’s
web browser and some processing takes place there. For instance the Google
Maps API is accessed via the browser using JavaScript.

The process of building a mashup

For complex mashups certain problems need to be solved [TSK08]. The data source
for mashups may vary in format, structure and location [MMD06]. The source of
the data could be a web page, a feed or even a PDF on a local file system. The

37

Select and Aggregate Organize and Classify Clean and Transform

Display

Services Services

DBMS DocumentDocuments

Figure 16: The process of producing mashups [MMD06].

data needs to be extracted into a manageable form [TSK08]; see Fig. 16. If the
data is dynamically extracted, the rules for how to extract the data need to be
solved. Data might span different locations and sources making it more difficult to
manage. The data needs to be organised and classified to make it manageable and
to find relationships between existing data sources and new ones [MMD06, TSK08].
The data may need to be transformed and cleaned in order to fix misspellings or to
transform the data into the desired format. If the data retrieved has for instance
the artist name Norah Jones in the format Jones, Norah, and another data set
has got the artists’ names in the former manner, a transformation is needed to
integrate the new data set so that it matches our existing one, or an address needs
to be transformed into geographical position. The transformation process may use
other services for these transformations as well. In [TSK08], a data integration step
is presented in the process of creating mashups. If for instance, one would build a
mashup that would list all the movies performed by this year’s Oscar award winners,
one would need to retrieve a list of this year’s Oscar award winners and merge that
using database join operations on the winners names with a movie database. Data
visualisation takes the final data and represents it to the user in a certain way.

38

Screen scraping

Screen scraping is defined as gathering data from web pages originally intended for
human consumption by parsing and analysing the content so that semantic data
structures and information can be acquired [Mer06]. If the content providers do not
provide an API or a feed to access the data, mashup developers may need to resort
to screen scraping in order to retrieve certain information [Mer06]. The information
and data structures acquired can then be used to create a mashup. Screen scraping
as data acquisition is used by a handful of mashups, especially when retrieving
information from the public sector. An example of a mashup project that uses
screen scraping is XMLTV6, which is a set of tools that aggregates TV program
listings from all over the world.

Screen scraping has some significant drawbacks. Unlike APIs which are interfaces of
how to access data, there is no specific programmatic contract between the content-
provider and the content-consumer for screen scraping. The scrapers have to analyse
the content model of the site to be scraped and design their tools to comply with
that. If the provider changes the way content is represented, the scraping tools are
likely to stop working. Web sites periodically update their look-and-feel in order
to remain fresh and stylish and this causes maintenance headaches to developers
using screen scraping. Another issue is that there does not exist any screen-scraping
toolkit software (scrAPI), that is sophisticated and reusable enough. Why these
APIs and toolkits does not exist is mainly because each scraping has got extremely
application-specific needs which affects the tools. Designers are forced to reverse-
engineer content, parse and aggregate raw data and create data models of the con-
tent. Some scrAPI prototypes are currently being developed. One approach is using
CSS selectors to get the desired content [Rub06]. It is probable that the target
content is styled and given a class name. In this way it can be possible to get the
right content even if some parts of the site structure might change.

User built mashups

There are different approaches that allow users to create mashups [TSK08]. One
is based on widgets where the user can manage different services and elements in
the mashup through enclosed elements called widgets. The other is based on data
extracting through DOM analyses.

6http://xmltv.org

39

Figure 17: Users can create mashups using Yahoo! Pipes, a mashup building tool
that use widgets to allow users without programming knowledge to create their own
custom mashups [AKTV07]. The example shows a user built mashup that provides
a music video feed of the current day’s top ten purchased songs from an online music
store. For each item in the feed, the mashup searches for the song title from the site
youtube.com and outputs the first result for each song. The pipe can be found from
http://pipes.yahoo.com/pipes/pipe.info?_id=uGJSZWC42xGQdxGFJZhxuA

In [TSK08] a framework is presented that allows users without programming skills to
build customised mashups by providing examples that the framework can interpret
and gather similar data. The DOM of the page is analysed and similar items to
the suggested one are extracted from the document using XPath analysis. The data
is cleaned in a way where the user modifies an example data into the desired form
and the system interprets the change and comes up with a transformation how to
change all the similar data into the desired format.

40

Another way to create mashups is to use widgets. For example, Yahoo! Pipes
(http://pipes.yahoo.com) is a tool that allows users to build mashups via wid-
gets; see Fig. 17. These widgets produce an output that can either be entered into
another widget as input or directed to the output of the mashup. Even though no
programming is required, it may still be difficult for an average user to create a
mashup since you need to have an underlying knowledge of certain programming
terms and structure to utilise the features.

6 Implementation of Funnelry

It was noted in Chapter 2 that social networking sites have increased in popularity,
with large numbers of people contributing content in these sites. We stated that this
content is mainly text, photos, video, remixes of other content from other sites, or
content users have produced themselves. We argued that a large amount of content
is being produced and viewed online, and that communication in various forms is
constantly occurring on the Internet. In this thesis we refer to online contribution,
viewing, communication and user actions as online activities.

Funnelry is an application prototype developed at HIIT (Helsinki Institute for In-
formation Technology) with Björkskog as the main coder. Its purpose is to allow
users to follow the online activities of their friends in various social media using a
mobile phone. Instead of requiring the user to use a computer and visit several sites,
they can follow their friends’ activities from one place, even when on the move.

6.1 Example Scenarios

We explain the use of Funnelry through two simple scenarios.

Keeping Up With Friends

Snehal is studying Computer Science at the University of Helsinki. He is originally
from India, but lives, studies and works in Helsinki. Some of his Finnish friends
are active in Facebook, but most of his Indian friends use another social network
called Orkut. Each morning Snehal logs in to these services in order to see what
has happened since he was last online. After he has checked his friends’ status and
possibly sent a greeting, he heads for school on the bus. With Funnelry, he could

41

have stayed up to date with his online friends whilst riding the bus. He would
need to use only one web application, which would gather all of his friends’ relevant
activities in one place, where he could gain a quick overview of what is happening.

New User

Gina is a high school student. She occasionally uploads some of her favourite photos
to Flickr for her friends and family to see. Occasionally she uploads a video clip to
YouTube, but, more often than not, she finds a funny or interesting video clip that
she adds to her favourites for her friends to see when they visit her YouTube profile
page. She has a blog in Blogger, and is active in Orkut and Facebook. She also adds
bookmarks to del.icio.us occasionally. Gina has friends in all of these online services,
and some of her friends use several of the same services as Gina; see Fig. 18.

Gina registers and logs into Funnelry. She registers the services for which she has
accounts. Gina’s friends are then extracted from these services. Gina chooses which
friends she wants to follow in Funnelry. She notices that her friend Maria’s Flickr,
Youtube, Facebook and del.icio.us accounts are listed. Gina merges these accounts
so that the system knows they belong to the same person. She chooses to follow
all of Maria’s account activities except her Flickr account. Gina can now follow
the activities of her friends in her social networks. She can see the details of the
activities and, for the activities that enable comments, she can comment directly
from the Funnelry interface. If she only wants to see what Maria has been doing
lately, she can also simply view only Maria’s activities.

Gina recommends Funnelry to Maria. Maria registers as a new Funnelry user. Maria
finds that her account information from Flickr, YouTube, Facebook and del.icio.us
is already set by Gina, so she immediately sees the activities in those networks. She
only needs to add her Twitter account so she can follow her friends there as well.

6.2 Specifications

The specifications for Funnelry are described below.

Different services Different services can be added as plug-ins to the program.
These plug-ins behave similarly. To add a service you can write an appropriate
plug-in and register it to the Funnelry database. These services follow the same
interface and behaviour.

42

del.icio.us

Flickr

YouTube

Orkut

Blogger

Facebook

Figure 18: Gina has got many friends in different online social media. Some persons
she is friends with in several networks.

Different visualisations The standard visualisation is a list of activities as they
occur, where each activity can be viewed in its entirety. Additional visualisa-
tion handlers can be added in a similar way as adding service plug-ins.

Connecting additional services and filters A new visualisation filter should work
without the necessity of rewriting anything for the service plug-ins. The client
scripts communicate via an interface with the server, receiving and submitting
the necessary content.

Contributing Some online services enable contributing via web services in the
same way as receiving. The user must usually be logged into the specific
services in order to submit content. Content submitted could be blog posts,
status updates, wall posts, messages, comments etc.

43

Terminology
ID Bundling Associate different account id’s to represent one "Person"
Grouping Group together several persons of interest

Content Bundling

Inclusion
What we would like to see
Selecting the media sources

Aggregation
Group together
Joining the media sources

Filtering
Prioritise the bundled content by certain criteria
Select the content to show

Visualisation How to show the data

Table 2: The terminology used.

List of friends Lists of friends can be created separately; one for family, one for
work etc. Users can turn on or off different services for each friend dependent
on their interests.

The terminology that is used can be found in Table 2.

6.3 Architecture

Funnelry has been implemented using a client-server architecture where the client
interface is implemented through the mobile web browser; see Fig. 19. An AJAX
engine builds the user interface and manages the data transfer between the server
and the client. When the AJAX engine requests recent activities for the friends of
a certain user, a pre-processed set of data is returned to the client in JSON format.
The AJAX engine presents this data to the user via the user interface.

For enhanced user experience, the user can install a J2ME module (BeTelGeuse
[NKL+07]) that gathers context data which is sent to the server. By using context
data the activity information can be enriched. If, for instance, a user sees that a
friend has updated his Facebook status to "I am bored", and the context data shows
that the friend is nearby, the user can pay his friend a visit.

On the server side, data, such as activity data and user information, is fetched
continuously from different services in order to provide short response time for the
client. The data is organised and classified by the service-specific plug-ins, and
eventually cleansed and transformed so that it can be integrated with the rest of
the data. For example, a GPS position may be transformed into a logical location,

44

Select and Aggregate Organize and Classify Clean and Transform

DB DocumentDocuments Filter

Cache

User Inteface

Ajax Engine

Images/videoImages/videoImages/video

Server

Context
Data

Services Services

Client

Proxy
data

Figure 19: Funnelry system architecture.

such as home, or a specific address. The data is cached in order to be retrievable
with only a short delay. When the user requests the data it can instantly be sent to
them. Certain data may require that requests are sent to the services.

When there is too much information to display, the amount of data that is presented

45

can be reduced through clustering [Noi05]. Our approach is to train the application
to know which data the user finds interesting and relevant. Data can also be clus-
tered. For example, when a user has uploaded several photos, it is summarised as
a single event that the user uploaded 15 photos in Flickr, instead of having a new
activity for each image.

When users navigate within the application and view the activities of their friends,
a log is kept of what they are viewing in order to determine what kind of activities,
based on tags, content type, content data, context and author, different users are
interested in. When there is much data, the system can filter out irrelevant and
uninteresting data.

A user can supply additional training data for the filter by installing a separate
proxy on their desktop browser. What the user has watched is logged and analysed
in order to find preferences for certain types of data and activities.

Data such as image and video can be uploaded to different services using third
party applications such as ShoZu (http://www.shozu.com), which uploads images
taken on the mobile phone to online services such as Flickr, Facebook, Blogger and
YouTube.

Database Design

The database keeps track of different services, users, their specific service id’s, the
activities of their friends in the respective services and a log of which content the
user has viewed using Funnelry; see Fig. 20. The following is a description of the
specific database tables:

service An online social service such as Facebook, Flickr or YouTube.

user A user or a person added to the system. It may be a user of Funnelry, but it
can also be a friend of a Funnelry user from one or many services. A user can
be thought of as a container for service id’s.

userService A person’s account identifier for a specific service. A user can have a
user id in several services.

userRelation Defines a relationship between different users.

relationType Different types of relationships, e.g., friend, peer, family or acquain-
tance.

46

id
name
decription

relationType

user1
user2
relationType

userRelation

id
activityType
time
person

activity
id
name
parent

activityType
id
name
description

metadataType
id
activity
metadataType
service
value

activityMetadata

activity
user
time

viewLog

id
name
password
type
email

user

id
name
description
serviceUserClass

service

service
user
userServiceId

userService

id
owner

FriendList
person
list

ListBelonging

Figure 20: Database diagram.

activity An activity by a person in a service.

activityType Types of activity, including blogpost, uploaded photo, comment or
status update, for example.

activityMetadata Metadata associated with an activity.

metadataType Types of metadata, e.g., tag, title, URL, description, content, im-
age, video and publish time.

viewLog Stores what a user has viewed using Funnelry in order to personalise the
filter so that only relevant content is presented to them.

friendList A list created by a user for grouping friends together.

listBelonging Persons belonging to specific lists.

47

Figure 21: A prototype implementation of the initial user interface design. It was
however rather slow to move the zoom-glass on a mobile device.

6.4 User Interface Prototype

In Fig. 21 an initial design of the user interface for Funnelry can be seen. It is one
method of showing the activities in social media. Each row in the screen represents a
friend. Each item along the x-axis represents different contributions in different so-
cial media by that person. The various services are represented by different colours.
This is one way of seeing a large amount of data on a relatively small screen. When
the user moves the cursor (or for this device, the pen) on the interface, a zoom-glass
follows the cursor, showing more details about the activities. This was implemented
as a test using CSS, Javascript and XHTML.

The interface consists of two div elements, one smaller and one larger, that contain
the activities. The larger is clipped, however, so that only a small part is shown.
This is the zoom glass. It is placed over the smaller div so that it appears to be
zooming in on where the cursor is. When the cursor moves, a new clipping area
of the larger div is calculated and the larger div is also moved in a relative way so
that the correct content follows the cursor. In this way, an illusion is created of a
magnifying glass hovering over the area. On a desktop browser it worked well, but

48

up

down

left right

click

Figure 22: The pointing device is used as arrows for navigation. Here seen on the
target device Nokia E61i.

on a mobile device it was too slow, since there was much work to be undertaken by
the browser when the large area needed to be moved and re-clipped. One way of
making this more effective might be to skip the larger div, and just logically create
the content of the magnifying glass based on the data. This way, only as much as
is shown needs to be manipulated, and the effect might be that it could run more
smoothly on a mobile device.

6.5 Implementation

6.5.1 Navigation

We stated in Chapter 4 that mobile web users prefer to navigate content that is
presented in a list format, so that detailed information can be acquired via items in
the list. For this reason, we designed the next iteration of the user interface as a list-
view. The built-in pointing device or arrow keys are used to navigate; see Fig. 22.
By pressing up or down, different elements in a list are highlighted. By pressing
right or clicking the activation button, the content determined by the selected item
is shown.

One problem with this approach is that the use of the pointing device is interpreted
as mouse movement and pressing the middle button is interpreted as a mouse click.
So we could not gather those events by listening to key presses. We partially cir-
cumvented this problem by adding a mouse listener that registers changes in x-
and y-axis. The top-left corner of the screen has the (x,y)-values (0,0), and the
bottom-right corner has the x-value the same as the browser window’s width and

49

C
a

n
 g

o
 l
e

ft
?

Can go up?

yes no

y
e

s
n

o

same as

before
go left

do nothinggo up C
a

n
 g

o
 l
e

ft
?

Can go down?

yes no

y
e

s
n

o

same as

before
go left

do nothinggo down

Top left corner Bottom left corner

Figure 23: Interpreting whether up, down or left was pressed in the top left and
bottom left corners.

the y-value the same as the browser window’s height. When a change in the cursor
position is greater along the y- than the x-axis, either up or down has been pressed.
If the y-value is less than before the event occurred, the up button was pressed. If
it is greater, down has been pressed. The same occurs for left and right regarding a
change along the x-axis. However, this approach presents problem areas. When the
cursor comes to the edges or the window corners, the mouse cannot travel further
in those directions, and a coordinate position change will not occur. Four of these
problem areas, when the cursor comes to the edges, but not in the corners, can be
solved. If the cursor is, for instance, at the bottom edge and down is pressed, a
mousemove event will be triggered, but there seems to be no change in either x- nor
y-axis. We can then check what the x- and y-positions of the cursor are. If we find
that the cursor is at the bottom edge, the cursor’s y-coordinate is the same as the
height of the viewport and its x-coordinate is greater than zero, but less than the
width of the viewport. When no change in either x- nor y-direction has occurred,
we know that down has been pressed. If left or right had been pressed, the x-value
would have changed. If up had been pressed, the y-value would have shrunk. Similar
rules can be applied to the other edges, but the corners remain a problem. If the
cursor is, for instance, in the bottom left corner and a mousemove event is triggered
but no change in cursor coordinates has occurred, we cannot know which of left or
down has been pressed. We can specify a default case, but users are likely to get
confused, if the application reacts in a different way than they commanded it to do.

One compromise for solving this would be to use the click (see Fig. 22) instead of
right to activate a link, and left, as usual, to get back. Then the cursor would not

50

Activities

Friends

Settings

screen-child screen-child

Peter

Marja

Esko ...

Figure 24: New content slides in from the right.

travel gradually rightwards and end up in one of the right corners. The only two
problem areas would now be the top-left and bottom-left corners. We can diminish
the impact of these problems by examining how the cursor got there. If the cursor
ended up, for instance, in the top left corner and a mousemove event occurs with
no change in cursor position occurring, we know that either up or left has been
pressed, but not which one. If we look at the navigation event that happened before
the cursor ended up in the corner, we can draw conclusions as to what the current
navigation action is. A matrix for determining the actions to take when the cursor
is in either top-left or bottom-left corners can be seen in Fig. 23. This compromise
solution does not cover every case, but is better than always having one default
action.

In Chapter 4 we further discovered that unique page titles are important for com-
municating the user’s current location within the web structure. The navigation
manager presents content in a list format and users can select an element from the
list (by pressing up and/or down to highlight an element and activating a high-
lighted element by pressing the click button) opening a new page that slides in from
the right, pushing the previous page out of view to the left; see Fig. 24. When the
new page slides in, the title of the page changes so that it is the same as the text of
the activated link. When the user presses left, the viewport slides back, so that the
current page slides out of view to the right as the previous page slides in from the
left and the title of the page changes to what it was previously.

The screen hierarchy is built up using screen nodes; see Fig. 25. Each screen node
contains the content that is to be displayed when the node is selected. In addition,

51

each screen node may contain a screen node as a child.

So that the reader should not be confused with the terms, we will specify what is
meant here with the terms "list" and "link".

list is here used to describe an XHTML table or div element with the class name
"list"

<table class="list"></table> or <div class="list"></div>

not to be confused with an ordered or unordered XHTML list object (
or)

link is used to describe a table row or a div with the class name "link" or "link-
selected"

<tr class="link"></tr>, <tr class="link-selected"></tr>,

<div class="link"></div> or <div class="link-selected"></div>

not to be confused with an XHTML anchor, or link ()
nor list items () in or XHMTL elements.

Activities

Friends

Settings

screen-child
Content Child

Peter

Marja

Esko ...

Screen node

Viewport Window-stack

List

Link

Selected link

Navigation Framework

Screen node

Figure 25: The user interface navigation system.

If there exists, in the content, a div or table with the class name "list", every tr
respective div element with the class "link" can be iterated in the list using up or
down. Each link can be given a function that returns the content that should be

521 ! untitled 4 ! 2008-06-02 20:08 ! Christo"er Björkskog

<div id="horizontal-window-stack">

 <div id="win_1" class="screen-node">

 <div id="win_1_self" class="screen-content">

 <div class="list">

 <div id="win_1_link_1" class="link" rel="wiew_activities">Activities</div>

 <div id="win_1_link_2" class="link-selected" rel="wiew_friends">Friends</div>

 <div id="win_1_link_3" class="link" rel="wiew_settings">Settings</div>

 <div id="win_1_link_4" class="link" rel="logout">Logout</div>

 </div>

 </div>

 <div id="win_1_next" class="screen-child">

 </div>

 </div>

</div>

Figure 26: XHTML container that builds up the navigation structure.1 ! untitled 4 ! 2008-06-02 20:08 ! Christo"er Björkskog

<div id="horizontal-window-stack">

 <div id="node_1" class="screen-node">

 <div class="screen-content">

 <ul class="list">

 Activities

 Friends

 Settings

 Logout

 </div>

 <div class="screen-child">

 </div>

 </div>

</div>

Figure 27: Alternative XHTML container.

viewed if the logical link gets activated. The selected element in the logical link is
given the class name "link-selected". Each up/down action changes which element is
given the class name "link-selected". When a link is activated, the function that is
associated with the selected link is executed by the navigation handler. The content
that the function returns (XHTML) is inserted into a new screen node’s content;
see Fig. 25. The new screen node is added into the current screen-nodes’ child. The
container that holds the nodes, a div with the id "horizontal-window-stack", which
may be larger than the viewport, is moved leftwards so that the invisible content to
the right becomes visible and the currently visible content slides out of view to the
left.

Fig. 26 shows an example of the XHTML container that builds up the navigation
structure. Text inside the rel attributes are the name of the functions which are to
be called when the links are activated. However, rel is not a valid attribute for a div
in XHTML. This implementation works on mobile Series 60 devices. An alternative
version can be seen in Fig. 27.

53

By implementing the navigation structure according to Fig. 27, it would support
devices with a touch screen as well. The problem with the cursor ending up in
a corner could also be solved, since the cursor snaps to the links in a page when
the cursor is moved far enough and the page automatically scrolls when the cursor
approaches the edges. However, care should be taken so that it is not the link (<a>
tag) that the cursor points to that is triggered, but rather, the selected link. This
can be achieved by having a script add an onclick="doStuff();return false;" to every
<a> tag where a handler (here named doStuff) is responsible for determining what
happens.

When left is pressed, the container slides rightwards exposing the parent node’s
content and the parent becomes the active screen. The node that was recently
exited from is destroyed leaving the currently active node’s child empty.

6.5.2 Visualising Activities

We stated in Chapter 4 that it is recommended, when visualising large amounts
of data, to represent the data at different levels of detail ranging from a general
overview to fine detail. We also argued that visualisation graphics should direct the
user’s attention to the presented data. We found that this can be achieved through
preattentive processing, by taking advantage of the human low level visual system’s
ability to recognise and extract certain features immediately, without focusing on
the picture. We discovered that in order to allow for preattentive processing of data
combinations, one must assure that the resulting combination contains at least one
unique visual feature.

The standard view is a list where the different activities are presented in a condensed
list with some detail of the visible activities. The users can obtain more information
about each activity by selecting and activating them. Each activity in the list is
described with a photo of the person who performed the activity, a time indicator
when the activity occurred, a small logo of the service and text describing what kind
of activity it is. These are visual features allowing the user to immediately recognise
an activity of interest. Each activity has a description field that differs depending
on what type of content it is. A set of photos can show small thumbnails of the
photos or, if someone wrote a blogpost, the title of the post is shown. This way
users can immediately distinguish between certain types of activity in addition to
the text that says what kind of activity it is.

54

Figure 28: Visualising a set of uploaded photos. The photos can be viewed and
commented on if the service provider supports that.

Figure 29: Visualiation of wall post.

A set of photos that have been uploaded by a friend is visualised in the list view as
tiny thumbnails; see Fig. 28. When opened, each photo is presented in a list with
larger, titled thumbnails and a description. The user can select a photo to view in
more detail, and is presented with a photo in appropriate size for a small display.
The screen size, which is obtained using JavaScript, can be used in order to find a
version of the photo in a similar size. Photos in different resolutions are generated
by the server when photo activities are fetched. The user can also comment on the
photo if the service supports comments. A comment is then submitted to the service
from which the specific photo came.

Certain services, such as Facebook, have the possibility for users to write short
messages on their friends’ profile pages. These are referred to as wall posts. In the
list view, wall posts are described using the message and pictures of the persons
involved, and an arrow indicating the receiver of the message; see Fig. 29. When
the link is opened, the user can see the history of the friend’s messages to one other.

Status updates are common in many services and are used to describe what the
user is currently doing. In the list view, a short representation of the status from a
certain service is presented; see Fig. 30. If the text does not fit in the list view, the
user can see a full text version by opening the link. On the detail page there is also
a possibility to reply with a wall post or a message if the service allows it.

The title of a blog post is shown in the list view; see Fig. 31. When opened, the

55

Figure 30: Visualising a status update. When opened, the status update can be
seen in full text and if the service supports wall posts or messages via APIs, the user
can directly write a comment to the friend.

Figure 31: Visualization of text contribution such as blog posts.

entire text can be read within Funnelry. If the service supports comments, the user
can comment on the blogpost directly from Funnelry.

The interface and data visualisation was implemented on the client side with JavaScript,
XHTML and CSS. Data was fetched asynchronously from the server using XHR and
the data transferred was encoded in JSON format. Each activity was encoded in a
similar way to this example using the JSON standard; see Fig. 32.

The only thing that differs in structure between activity types is the "items" at-
tribute, which may change from content type to content type. The example in
Fig. 32 shows how data representing a status update in Facebook was visualised.

If the content type was a set of images, the items attribute would contain an array
of information about each image instead of a string, and it would be visualised as
a row of image thumbnails. The other attributes were visualised in the same way
for each activity type. Time was retrieved from the server as a timestamp, which
is transformed by the visualisation filter and presented as a logical representation,
e.g., "20 minutes ago".

56

{

 "id" : "4",

 "name" : "Fredrik",

 "pic" : "http://someurl.com/small_picture_of_fredrik.jpg",

 ”type" : "status",

 "what" : "status update",

 "when" : "1206938076000",

 "where" : {

 "ll" : "60.1889453302619, 24.804940223693848",

 "name":"home”

 },

 "service" : "1",

 "nearby" : "",

 "items": "is writing his thesis"

}

status update

1 days ago

home
Is writing his thesis f

pic what when
(transformed)

where.name serviceitems
(transformed)

Figure 32: The type of activity determines how the items attribute will be presented.
The other attributes are presented in the same way independent of activity type.

When visualising the different activities, each content type has its own handler for
adding the descriptive information based on the items attribute. Each content type
also has its own handler for visualising the details of each activity. The handlers com-
municate with the server interface using XHR loading JSON feeds asynchronously.

To make JavaScript programming faster, a JavaScript library called jQuery (jquery.com)
was used. This contains handlers for AJAX calls and animation from one CSS state
to another. The sliding of the navigation was implemented using the animation
feature of jQuery, which ran smoothly. The response time for interaction using the
pointing device as arrows was not very fast, and did not appear to react immediately
to input. The mouse event handler needs to be optimised in order to provide the
feeling of instant interaction.

6.6 Loading Times

In order to determine the loading times of the site, and the activities, and to see
whether it is necessary to create local resized copies of images to be shown, we
measured how long it took to load certain elements of Funnelry. The results can be
seen in Appendix E. The tests were performed on a Nokia E61i mobile phone, with

57

a WLAN (Wireless Local Area Network) connection, using a stop watch. Each test
was repeated ten times. The following loading times are average times calculated
form the repeated tests. The time it took for the page to load (when it had been
viewed before), including the Ajax engine, was 3.8 seconds. When the cache was
cleared and the page reloaded, the loading time was 5.6 seconds. Opening an activity
feed several times without reloading took 2 seconds. From a reloaded page it took
4.7 seconds to open an activity feed. The activities in the feed were similar to those
seen in the visualisation examples in this section. The time was measured from
when the activity feed was opened until the last image had been loaded. There were
15 images in the feed apart from the profile pictures of the users. The resolution of
the pictures were 75x75 pixels, around 2.5 KB in size each, but they were displayed
as 20x20 pixels. When these pictures were linked to their location on the Flickr
server without being resized, the loading time from an empty cache was 8.2 seconds.
When the feed was changed on the server side to use resized images, 20x20 pixels in
dimension, around 0.6 KB in size, the loading time from an empty cache dropped
to 7.5 seconds. There was no significant difference in loading time when the images
were stored in the browser’s cache. The activities represented with text were not
included in this experiment since they became visible without any noticeable delay.
The reason why there was so little change in loading time when the size of the
images decreased may depend on the connection speed and the fact that there was
no decrease in the amount of http-requests being made (there were just as many
pictures), and the limited processing power of mobile devices.

Usability guidelines say that users will only stay focused for a very short period of
time. Even though the loading times have been optimized, they are still too large.
This indicates that providing feedback to the user about interface events is crucial
for the user experience of Funnelry.

In order to further improve loading times, the following measures could be taken:

• Several small images that are to be presented next to each other are merged
into one, which would reduce the amount of http-requests.

• Activity data presented in the sub page "Activities" is requested immediately
when the user enters the front page and is kept in memory.

• Images are loaded before they are needed by creating JavaScript Image objects,
which initialise http-requests once they have been assigned a URL.

It took 27 seconds to get the metadata for the 10 newest photos for two Flickr

58

friends (20 photos), store the metadata in a database, download the thumbnails
to the server and resize them from 75x75 pixels to 40x40 and 20x20 pixels. The
communication with the services are bottlenecks. API calls can be slow, and if
there is a great deal of users with a large pool of friends, a large amount of requests
need to be made. If these channels of communication are too slow, the application
suffers. It is necessary the data retrieval done in advance so that the user does not
have to wait long. We will take these aspects into consideration by having the server
automatically fetch activity data on a regular basis.

6.7 Lessons Learned

From the software process of this thesis some lessons can be learned. One is how
much the standard input of mobile devices can be manipulated without loosing
flexibility. If I were to redesign the application, I would choose to use the browsers
built-in feature of jumping between highlighted link items. This could make the
up-down iteration through the selectable links faster, since it would be managed by
the browser itself, and not a script that the browser runs, and would use a standard
way of navigating between links. For opening links I would choose that the links
are to be clicked, and going backwards would be done through the browser’s back
button or via a back-link that would be placed so that it is easily accessed.

Another lesson comes from debugging. Some bugs were difficult to discover when a
web page was dynamically manipulated using jQuery. When adding XHTML tags
which did not have a separate closing element (e.g.
), the web browser of the
Nokia E61i could not add the XHTML element even though it was valid XHTML.
Example of this are the
 and tags. If such a tag was entered as a
HTML tag, e.g.,
 (not valid XHMTL), it worked. It also worked if the tags
were entered with a close tag, e.g.,
</br>. The phenomenon caused problems
when injecting XHTML from external sources. In order to prevent these kind of
errors, the XHMTL to be injected should be checked and modified so that these
kind of problems do not occur.

One lesson comes from competition with the market. A problem in the development
process was that new services and competing applications emerged regularly. When
we thought of new ideas, the same ideas could be found in a commercial application
a few weeks later. It is difficult to be unique in a field that is very popular and
constantly changing.

59

7 Conclusion

Social networking is a natural phenomenon in human communication. The evo-
lution of the Internet has taken social networking to new levels with online social
interaction, communication, collaboration and media sharing. Many socially ori-
ented services, such as video and photo sharing services, social and professional
networks, online recommendation systems, blogs, communities, collaborative edit-
ing, user reviews and status tracking enhance social networking. There are many
different online social network services and it is difficult to follow the activities in
all. In this thesis we have studied whether online social activities can be aggregated
and visualised in a graspable way on mobile Web browses using AJAX technologies.

In order to visualise online activity in a social network of a user, activity data need
to be gathered from different online services where the users’ friends are active.
Many services provide API’s for developers to integrate, contribute, and interact
with their data in various ways.

The software part of this thesis consisted of a mobile web application that aggregates
online activities. The software fetches profile data and activities of the user’s friends
from online services and presents them to the user. The data is presented in a
list-view, which is preferred by users when there is much content to be displayed.

A good way to visualise and manipulate data in web content is to use AJAX tech-
nologies. These consist of web standards that have existed for many years and are
well known by developers. Recently several mobile browsers support these technolo-
gies, which enable mobile web applications to handle data and user interaction in
new ways.

We conclude that it is possible to aggregate and visualise online activity on mobile
devices, but in order for the application to remain scalable, server side data retrieval
and pre-processing is necessary.

8 Acknowledgements

First of all, I would like to thank God for his, love, grace, inspiration, and wisdom.
I would like to thank my wonderful wife Eva for all the support, encouragement
and motivation she has given me, and for everything she has done for our family. I
would like to thank our precious children Emma and David (and our unborn child)

60

for being my inspiration and motivation, and source of joy. I would like to thank
the PUPS project and the colleagues there, especially Petri Saarikko, who played
a major role in the forming of Funnelry, provided the user interface graphics and
had always ideas and a great hope for the application. I would like to thank Petteri
Nurmi, my thesis supervisor, and Patrik Floréen, who took me onboard, for their
guidance, directions, patience, feedback and time. They have read my thesis several
times, found my mistakes and have helping me improve this thesis. I would also like
to thank HIIT for giving me the opportunity to write this thesis, and my peers in
the "Kennel" for their friendship, feedback, help and encouragement. I would like
to thank Fredrik Boström for contributing with support, code, and help. I would
also like to thank Peter Peltonen who read my thesis and gave feedback. I would
like to thank Esko Kurvinen for his ideas and inspiration. I would like to thank my
friend and brother in Christ, Dan Stephens for reading my thesis and helping me
with my English. I would also like to thank everyone who has given me words of
encouragement and advice along the way. May God bless you all.

References

Aci08a Acid2, 2008. URL http://acid2.wikispaces.com. [retrieved 14-04-
2008].

Aci08b Acid2 - wikipedia, the free encyclopedia, 2008. URL http://en.

wikipedia.org/wiki/Acid2. [retrieved 14-04-2008].

AKTV07 Ankolekar, A., Krötzsch, M., Tran, T. and Vrandecic, D., The two
cultures: mashing up web 2.0 and the semantic web. WWW ’07: Pro-
ceedings of the 16th International Conference on World Wide Web, New
York, NY, USA, 2007, ACM, pages 825–834.

Alt08 Altman, T., Opera and the acid3 test, March 2008.
URL http://my.opera.com/desktopteam/blog/2008/03/26/

opera-and-the-acid3-test. [retrieved 14-04-2008].

BGS06 Blekas, A., Garofalakis, J. and Stefanis, V., Use of RSS feeds for content
adaptation in mobile web browsing. W4A: Proceedings of the 2006 In-
ternational Cross-Disciplinary Workshop on Web Accessibility (W4A),
New York, NY, USA, 2006, ACM, pages 79–85.

61

Blo08 Bloglines, About Bloglines. IAC Search & Media, San Francisco Bay
Area, 2008. URL http://www.bloglines.com/about. [retrieved 14-
04-2008].

BXWM04 Baudisch, P., Xie, X., Wang, C. and Ma, W.-Y., Collapse-to-zoom:
viewing web pages on small screen devices by interactively removing
irrelevant content. UIST ’04: Proceedings of the 17th Annual ACM
Symposium on User Interface Software and Technology, New York, NY,
USA, 2004, ACM, pages 91–94.

CSA07 Costa, C. J., Silva, J. and Aparício, M., Evaluating web usability us-
ing small display devices. SIGDOC ’07: Proceedings of the 25th An-
nual ACM International Conference on Design of Communication, New
York, NY, USA, 2007, ACM, pages 263–268.

CtHS06 Counts, S., ter Hofte, H. and Smith, I., Mobile social software: realizing
potential, managing risks. CHI ’06: CHI ’06 Extended Abstracts on
Human Factors in Computing Systems, New York, NY, USA, 2006,
ACM, pages 1703–1706.

Gar05 Garett, J. J., Ajax: A new approach to web applications, Febru-
ary 2005. URL http://adaptivepath.com/ideas/essays/archives/

000385.php. [retrieved 21-04-2008].

Geo07 Georgi, R., Ajax on mobile devices - making mobile web apps ubiq-
uitous, May 2007. URL http://2007.xtech.org/public/asset/

attachment/182. XTech 2007.

GMR07 Glotzbach, R. J., Mohler, J. L. and Radwan, J. E., RSS as a course
information delivery method. SIGGRAPH ’07: ACM SIGGRAPH 2007
Educators Program, New York, NY, USA, 2007, ACM, page 16.

Gol07 Goldman, D., Opera for Windows Mobile passes Acid2
test; on pace to become first WM browser to pass test,
April 2007. URL http://operawatch.com/news/2007/04/

opera-for-windows-mobile-passes-acid2-test-on-pace-to-become-first-wm-browser-to-pass-test.

html. [retrieved 14-04-2008].

Goo08a Google Inc, Google maps, 2008. URL http://maps.google.com. [re-
trieved 21-03-2008].

62

Goo08b Google Inc, Google maps api reference, 2008. URL http://code.

google.com/apis/maps/documentation/reference.html. [retrieved
20-04-2008].

Ham05 Hammersley, B., Developing Feeds with RSS and Atom. O’Reilly &
Associates, April 2005.

Har01 Haramundanis, K., Learnability in information design. SIGDOC ’01:
Proceedings of the 19th Annual International Conference on Computer
Documentation, New York, NY, USA, 2001, ACM, pages 7–11.

Hea07 Healey, C. G., Perception in visualization, Department of Computer
Science, North Carolina State University, January 2007. URL http:

//www.csc.ncsu.edu/faculty/healey/PP. [retrieved 14-04-2008].

Hic08 Hickson, I., The acid3 test, March 2008. URL http://acid3.

acidtests.org/. [retrieved 14-04-2008].

ID05 Ito, M. and Daisuke, D., Mobile phones, Japanese youth, and the re-
placement of social contact. In Mobile Communications: Re-negotiation
of the Social Sphere, Springer, London, UK, 2005, pages 131–148.

IEB07 IEBlog, Internet Explorer 8 and Acid2: A Milestone, decem-
ber 2007. URL http://blogs.msdn.com/ie/archive/2007/12/19/

internet-explorer-8-and-acid2-a-milestone.aspx. [retrieved 14-
04-2008].

Jso08 Json.org, Json, 2008. URL http://json.org. [retrieved 20-03-2008].

KR03 Kaikkonen, A. and Roto, V., Navigating in a mobile xhtml application.
CHI ’03: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, New York, NY, USA, 2003, ACM, pages 329–336.

LB05 Lam, H. and Baudisch, P., Summary thumbnails: readable overviews
for small screen web browsers. CHI ’05: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, New York, NY,
USA, 2005, ACM, pages 681–690.

Lew95 Lewis, J. R., Ibm computer usability satisfaction questionnaires: psy-
chometric evaluation and instructions for use. Int. J. Hum.-Comput.
Interact., 7,1(1995), pages 57–78. URL http://portal.acm.org/

citation.cfm?id=204774.

63

LH01 Lauesen, S. and Harning, M. B., Virtual windows: Linking user tasks,
data models, and interface design. IEEE Softw., 18,4(2001), pages 67–
75.

LLK06 Laakso, S. A. and Latva-Koivisto, A., Käyttöliittymät 2006,
2006. URL http://www.cs.helsinki.fi/u/salaakso/papers/

Kayttoliittymat-opetusmoniste-2006.pdf. Lecturenotes.

Mer06 Merrill, D., Mashups: The new breed of web app, 2006. URL http://

www.ibm.com/developerworks/xml/library/x-mashups.html. [re-
trieved 14-04-2008].

MMD06 Murthy, S., Maier, D. and Delcambre, L., Mash-o-matic. DocEng ’06:
Proceedings of the 2006 ACM Symposium on Document Engineering,
New York, NY, USA, 2006, ACM, pages 205–214.

Nie99 Nielsen, J., Designing Web Usability: The Practice of Simplicity. New
Riders Publishing, Thousand Oaks, CA, USA, 1999.

Nie03 Nielsen, J., Usability 101: Introduction to usability. URL www.useit.

com/alertbox/20030825.html. [retrieved 20-04-2008].

NKHS07 Natchetoi, Y., Kaufman, V., Hamdi, L. and Shapiro, A., Mobile web 2.0
browser for collaborative social networking. Position paper for European
Conference on CSCW Workshop, Limerick, Irland, September 2007.

NKL+07 Nurmi, P., Kukkonen, J., Lagerspetz, E., Suomela, J. and Floréen, P.,
BeTelGeuse - A Tool for Bluetooth Data Gathering. BodyNets ’07:
Proceedings of 2nd International Conference on Body Area Networks,
Florence, Italy, 2007.

Noi05 Noirhomme-Fraiture, M. et al., Data visualizations on small and very
small screens. Proceedings of the 11th International Symposium on Ap-
plied Stochastic Models and Data Analysis ASMDA-2005, Brest, France,
May 2005, ENST.

O’R05 O’Reilly, T., What is web 2.0: Design patterns and business models for
the next generation of software. URL http://www.oreillynet.com/

pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.

64

Oxf01 The New Oxford American Dictionary. Oxford University Press, USA,
first edition, September 2001.

Pau05 Paulson, L. D., Building rich web applications with ajax.
IEEE Computer, 38,10(2005), pages 14–17. URL http://doi.

ieeecomputersociety.org/10.1109/MC.2005.330.

Pew08 Pew Internet & American Life Project, Usage over time, 2008. URL
http://www.pewinternet.org/trends/UsageOverTime.xls. [re-
trieved 14-04-2008].

Rot06 Roto, V. et al., Minimap: a web page visualization method for mobile
phones. CHI ’06: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, New York, NY, USA, 2006, ACM, pages
35–44.

Rub06 RubyForge: scrAPI: Project Info, August 2006. URL http://

rubyforge.org/projects/scrapi. [retrieved 14-04-2008].

SDJ+08 Schrier, E., Dontcheva, M., Jacobs, C., Wade, G. and Salesin, D., Adap-
tive layout for dynamically aggregated documents. IUI ’08: Proceedings
of the 13th International Conference on Intelligent User Interfaces, New
York, NY, USA, 2008, ACM, pages 99–108.

Siv07 Sivaraman, G., Web technologies driving innovations in mobile,
2007. URL http://www.nokia.com/NOKIA_COM_1/Press/twwln/

presentation_pdfs/Web_Technologies_TWWLN.pdf. [retrieved 14-04-
2008].

Sta08 Stachowiak, M., Webkit achieves acid3 100/100 in public
build, March 2008. URL http://webkit.org/blog/173/

webkit-achieves-acid3-100100-in-public-build/. [retrieved
14-04-2008].

Sto08 Storey, D., Opera on acid, March 2008. URL http://my.opera.

com/dstorey/blog/show.dml/1843336?cid=4964852. [retrieved 14-
04-2008].

Tec08 Technorati, Technorati: About us, 2008. URL http://technorati.

com/about/. [retrieved 14-04-2008].

65

TSK08 Tuchinda, R., Szekely, P. and Knoblock, C., Building mashups by ex-
ample. IUI ’08: Proceedings of the 13th International Conference on
Intelligent User Interfaces, New York, NY, USA, 2008, ACM, pages
139–148.

Tuf90 Tufte, E. R., Envisioning Information. Graphics Press, May 1990.

Tuf01 Tufte, E. R., The Visual Display of Quantitative Information. Graphics
Press, May 2001.

VRM03 Venkatesh, V., Ramesh, V. and Massey, A. P., Understanding usability
in mobile commerce. Commun. ACM, 46,12(2003), pages 53–56.

Wer38 Wertheimer, M., Laws of organization in perceptual forms. pages
71–88. available at http://psy.ed.asu.edu/~classics/Wertheimer/
Forms/forms.htm.

Wik08 Wikipedia, Ahah - wikipedia, the free encyclopedia, 2008. URL http:

//en.wikipedia.org/wiki/AHAH. [retrieved 20-03-2008].

WJ07 Wilton-Jones, M., Acid 2 in major browsers, 2007. URL http://www.

howtocreate.co.uk/acid. [retrieved 14-04-2008].

WM08 Weaver, A. C. and Morrison, B. B., Social networking. Computer,
41,2(2008), pages 97–100.

Wol99 Wolfmaier, T. G., Designing for the color-challenged: A challenge,
March 1999. URL http://www.internettg.org/newsletter/mar99/

accessibility_color_challenged.html.

WSP08a The Web Standards Project, Acid2: The guided tour, 2008. URL http:

//www.webstandards.org/action/acid2/guide/. [retrieved 14-04-
2008].

WSP08b The Web Standards Project, Acid3: Putting browser makers on notice,
again., March 2008. URL http://www.webstandards.org/press/

releases/20080303/. [retrieved 14-04-2008].

YTV08 YTV, Reittiopas: Kartta, 2008. URL http://aikataulut.ytv.fi/

reittiopas/en/. [retrieved 21-03-2008].

Appendix A. Acid2 Test

Camino 1.5.5 Firefox 2.0.0.13 Firefox 2.0.0.12 Firefox 3 beta 4

MacOS X 10.5.2 Mac OS X 10.5.2 Win XP SP 2 Win XP SP 2

IE 7.0.7730.13 IE 8 Safari 3.1 Safari 3.0.4 (523.15)

Win XP SP 2 [IEB07] Mac OS X 10.5.2 Win XP SP 2

Opera 9.25 Opera 9.26 Opera Mobile 9 Opera Mini

MacOS X 10.5.2 Win XP SP 2 Windows Mobile MicroEmulator

[Gol07] [Aci08a]

Opera Mobile (8.65) Opera Mini 4.0 NokiaWebKit Safari

PocketPC 2003 Symbian 9.1 Symbian 9.1 Mobile OSX

[Aci08a] [Aci08a] [Aci08a] [Aci08a]

Internet Explorer 6 Minimo 2.0

Windows Mobile 6 Windows Mobile 6

[Aci08a] [Aci08a]

Appendix B. Acid3 Test

Release r31342 of WebKit Safari 3.1 Safari 3.0.4 (523.15)

[Sta08] Mac OS X 10.5.2 Win XP SP 2

Firefox 2.0.0.12 Firefox 2.0.0.13 Firefox 3 beta 4

Win XP SP 2 Mac OS X 10.5.2 Win XP SP 2

Camino 1.5.5 IE 7.0.5730.13

Mac OS X 10.5.2 Win XP SP 2

Opera 9.25 Opera 9.26

Mac OS X 10.5.2 Win XP SP 2

Crashed after 36 Crashed after 46

Appendix C. AJAX Code Sample
1 ! code2.xhtml ! 2008-03-31 16:24 ! Christo"er Björkskog

<div id="ajax_output">

Waiting to be replaced by Ajax Call

</div>

<script type="text/javascript">

<!-- // Required to be compliant with XHTML-->

 var xmlHttp=null; // Defines that xmlHttp is a new variable.

 // Try to get the right object for different browser

 try {

 // Firefox, Opera 8.0+, Safari, IE7+

 xmlHttp = new XMLHttpRequest(); // xmlHttp is now a XMLHttpRequest.

 } catch (e) {

 // Internet Explorer

 try {

 xmlHttp=new ActiveXObject("Msxml2.XMLHTTP");

 } catch (e) {

 xmlHttp=new ActiveXObject("Microsoft.XMLHTTP");

 }

 }

 xmlHttp.onreadystatechange = function() {

 if (xmlHttp.readyState == 4)

 try { // In some instances, status cannot be retrieved and will

 // produce an error (e.g. Port is not responsive)

 if (xmlHttp.status == 200) {

 //Set the main HTML of the body to the info provided by

 // the AJAX Request

 document.getElementById("ajax_output").innerHTML

 = xmlHttp.responseText;

 }

 } catch (e) {

 document.getElementById("ajax_output").innerHTML

 = "Error on Ajax return call : " + e.description;

 }

 }

 xmlHttp.open("get","pages/index.html"); // .open(RequestType, Source);

 xmlHttp.send(null); // Since there is no supplied form,

 // null takes its place as a new form.

</script>

This example is taken from http://en.wikipedia.org/wiki/Ajax_(programming)

Appendix D. Google Maps API Code Sample
1 ! code3.xhtml ! 2008-03-31 16:28 ! Christo"er Björkskog

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 <meta http-equiv="content-type" content="text/html; charset=utf-8"/>

 <title>Google Maps JavaScript API Example</title>

 <script src="http://maps.google.com/maps?

file=api&v=2&key=ABQIAAAAly60PJPTKn52cmHklOawphSDpq-8M7SD0oVCTvZ7J4UBlv1dIxQTX5hC

NBSieJ1510Q3vngcsZJ52A"

 type="text/javascript"></script>

 <script type="text/javascript">

 //<![CDATA[

 function load() {

 if (GBrowserIsCompatible()) {

 var map = new GMap2(document.getElementById("map"));

 // 60.205796, 24.962525 is the latitude and longitude of kumpula

 var location = new GLatLng(60.205796, 24.962525);

 var kumpula = new GMarker(location);

 map.setCenter(location, 15);

 map.addOverlay(kumpula);

 }

 }

 //]]>

 </script>

 </head>

 <body onload="load()" onunload="GUnload()">

 <div id="map" style="width: 500px; height: 300px"></div>

 </body>

</html>

This example is a modification of the simple example found from http://code.

google.com/apis/maps/documentation/examples/index.html

A
pp

en
di

x
E
.
L
oa

di
ng

T
im

es

1
2

3
4

5
6

7
8

9
10

Av
er
ag

e
L
oa
d

4.
1

3.
6

3.
9

3.
9

3.
5

3.
8

3.
9

3.
6

3.
7

3.
6

3.
8

C
le
ar

ca
ch
e,

re
lo
ad

5.
7

5.
4

5.
4

6.
7

5.
5

5.
3

5.
3

5.
6

5.
5

5.
4

5.
6

U
N
R
E
S
IZ
E
D

P
IC

T
U
R
E
S

O
p
en

ac
ti
vi
ti
es

2.
1

2.
1

2.
0

2.
1

2.
1

2.
0

2.
0

2.
1

1.
9

1.
8

2.
0

R
el
oa
d
,
op

en
ac
ti
vi
ti
es

5.
4

4.
3

5.
0

4.
4

4.
4

4.
6

5.
1

4.
5

4.
9

4.
4

4.
7

C
le
ar

ca
ch
e,

re
lo
ad

,
op

en
ac
ti
vi
ti
es

8.
1

7.
7

8.
0

8.
0

8.
3

8.
0

8.
2

8.
5

8.
3

8.
5

8.
2

R
E
S
IZ
E
D

P
IC

T
U
R
E
S

O
p
en

ac
ti
vi
ti
es

2.
1

1.
9

1.
8

1.
8

1.
8

1.
8

1.
9

1.
8

1.
9

1.
9

1.
9

R
el
oa
d
,
op

en
ac
ti
vi
ti
es

4.
7

4.
6

4.
9

4.
3

4.
9

4.
6

4.
8

4.
8

4.
5

4.
7

4.
7

C
le
ar

ca
ch
e,

re
lo
ad

,
op

en
ac
ti
vi
ti
es

6.
3

7.
8

7.
6

7.
6

7.
5

7.
7

7.
7

7.
7

7.
7

7.
7

7.
5

Ta
bl
e
3:

Lo
ad

in
g
ti
m
es
,i
n
se
co
nd

s,
fo
r
Fu

nn
el
ry
,m

ea
su
re
d
w
it
h
a
st
op

w
at
ch
.

