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Lifetime Maximization for Multicasting in
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Abstract—We consider the problem of maximizing the lifetime
of a given multicast connection in a wireless network of en-
ergy-constrained (e.g., battery-operated) nodes, by choosing ideal
transmission power levels for the nodes relaying the connection.
We distinguish between two basic operating modes: In a static
power assignment, the power levels of the nodes are set at the
beginning and remain unchanged until the nodes are depleted of
energy. In a dynamic power schedule, the powers can be adjusted
during operation.

We show that while lifetime-maximizing static power assign-
ments can be found in polynomial time, for dynamic schedules
the problem becomes NP-hard. We introduce two approximation
heuristics for the dynamic case, and experimentally verify that
the lifetime of a dynamically adjusted multicast connection can be
made several times longer than what can be achieved by the best
possible static assignment.

Index Terms—Ad hoc networks, computational complexity, en-
ergy-awareness, lifetime, multicasting, optimization.

I. INTRODUCTION

WIRELESS “ad hoc” communication networks, con-
sisting of a collection of radio transceivers with no

prearranged infrastructure, have been studied intensively
during the past few years [1]–[3]. The general area of topology
control in such networks [4] is concerned with assigning ap-
propriate transmission power levels to the transceivers so that
some desired topological property holds. A natural problem in
this area is the maintenance of a multicast connection, i.e., a
transmission graph connecting a given source node to a group
of sink nodes.

Battery power is a serious limiting constraint in many appli-
cations of ad hoc networks, and accordingly much attention has
been paid to energy-efficient designs in this area. In a wireless
transceiver, power is used for transmitting and receiving data,
internal data processing, and simply for being “on” in an idle
mode. The power required for transmission and reception, how-
ever, dominates [5], [6]. For simplicity, we consider only the
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power required for transmission, as in, e.g., [5] and [7]–[9], and
disregard some physical layer issues such as interference.

We assume that transceiver can communicate directly to
transceiver , if the transmission power of exceeds a threshold
value , usually approximated as , where is a constant,

is the physical distance between nodes and , and the expo-
nent , , models the decay of the radio signal in the
intervening medium. In reality, the actual transmission powers
and threshold values depend on several environmental and
technological factors [12], [13]. We make no constraining as-
sumptions on the values of .

A number of recent papers (e.g., [9], and [14]–[23]) have
considered the topic of energy-aware broadcasting in wireless
networks, i.e., the problem of maintaining a transmission graph
connecting a given source node to all the other nodes. However,
with rare exceptions such as [9] and [20], all of these works (as
well as many older ones, e.g., [24] and [25]), take it as their goal
to minimize the total power consumption of the entire network,
i.e., they address the wireless analogue of the classical problem
of finding a minimal spanning tree for a network. (Interestingly,
in wireless networks this “minimum power broadcast” problem
turns out to be NP-complete, as proved in, e.g., [14], [16], and
[18].) Some of the papers, e.g., [18], [19], [22], and [23] address
also the problem of constructing minimum multicast trees under
the same metric.

However, minimal total power consumption does not guar-
antee maximum lifetime for a network (either for broadcast or
multicast), as has been noted for instance in [26] and [27]. In
this paper, we address the task of maximizing the network life-
time directly, and also take into account that different nodes may
have different initial energy supplies.

Recent work closest to ours consists of the articles [8]–[11].
Our network model and the basic ideas for dealing with the
static power assignment case are adapted from [8]. In [9], the
problem of broadcast lifetime maximization using both static
and dynamic power schedules is introduced, and a graph-the-
oretic polynomial time algorithm for the static problem is pre-
sented in [10]. Reference [11] introduces a distributed heuristic
for finding long-lived static multicast trees.

The rest of the present article is organized as follows. In
Section II, we formulate our model and the problem of multicast
lifetime maximization. Furthermore, we note that in the static
setting, an optimal power assignment can be determined in poly-
nomial time. In Section III, we turn to dynamic power schedules,
which are the main topic of this paper. We show that multicast
lifetime maximization now becomes NP-hard, but remains poly-
nomial time solvable for a fixed number of sink nodes. Whether
the problem has a polynomial-time approximation algorithm
with bounded, or even polylogarithmic performance ratio, is an
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open problem connected to some well-known open problems in
combinatorial approximation theory [28]–[30].

In Section IV, we suggest two randomized approximation
heuristics for finding good dynamic power schedules for multi-
casting, and extend them also to the related problems of broad-
cast lifetime maximization and group connectivity lifetime max-
imization. In Section V, we report on simulation experiments
using these techniques, showing that optimal static power as-
signments can indeed be significantly improved upon by using
dynamic power schedules. In Section VI, we conclude with a
summary and some ideas for further research. For readability,
proofs of the technical results are relegated to the Appendix.

A preliminary conference report on our work appeared in
[31]. In the present version, the proofs of the complexity-the-
oretic results have been fundamentally changed to remove the
assumption of discrete scheduling times made in [31]. Also, the
variety of experimental tests has been increased, and the experi-
ments have been extended to cover also the broadcast and group
connectivity lifetime maximization problems. Since the publi-
cation of [31], similar results on the complexity and approxima-
bility of the multicast lifetime maximization problem have been
independently announced in [7] and [32].

II. DEFINITIONS AND THE STATIC CASE

We write for the set of nonnegative rational numbers.
We model an ad hoc network as a complete directed graph,
the power threshold graph , where the trans-
ceivers form the set of nodes , and the values

on each arc are the power threshold
values for transmission from transceiver to transceiver . Note
that we include among the possible values to indicate that di-
rect communication is impossible (due to, e.g., an impenetrable
obstacle between the nodes).

Each transceiver usually carries a battery with limited en-
ergy supply. We denote the energy constraint for node with

. Disregarding the details of battery technology,
transmission at power for a time consumes energy .

A power assignment in a power threshold graph
of nodes associates to each node in its transmission power
value. A power assignment induces a transmission graph
which includes only those arcs for which the power level
assigned to node in is at least , i.e., the arcs corresponding
to direct communication from node to node . As a conse-
quence, when the power is high enough to reach a certain node,
some other nodes may be reached simultaneously with the same
transmission. Node may transmit with power different from ,
so a direct connection from to does not imply the converse.
Note that this is different from the symmetric model employed
in, e.g., [33].

A power schedule consists of a sequence of power assign-
ments, together with their time allocations. Formally, a power
schedule is a pair , where the th column
of the matrix indicates the th power assignment , and the

th element of the vector is the time allocated to .
A power schedule is static if it consists of a single power

assignment, and otherwise, dynamic. A schedule is feasible, if it
respects the energy constraints of the nodes. A power schedule
that maintains a particular topological property in the induced
transmission graph is valid for .

In the lifetime maximization problem for property , the goal
is to find a power schedule maximizing the time
during which the schedule is feasible and valid for . The
property of central interest to us is multicast connectivity (or
briefly multicasting), i.e., the condition that the transmission
graph contains a directed tree connecting a given source node
(indexed as 1) to a set of given sink nodes. We also consider
broadcast connectivity (broadcasting), which is the special case
of multicast connectivity with all nodes except the source as
sinks, and group connectivity, where a given set of “terminal”
nodes is strongly connected, i.e., the transmission graph
contains a directed path from each to each .

To summarize, the multicast lifetime maximization problem
takes as input the power threshold graph, the energy constraints
at the nodes, and the set of sinks, and gives as output a power
schedule that maximizes the time during which there are paths
from the source node 1 to the sinks, taking the energy constraints
into account.

Lloyd et al. [8] give a polynomial time algorithm for opti-
mizing static power assignments that finds, for any polynomi-
ally testable, monotone graph property (i.e., one that is con-
served under addition of arcs), a static assignment valid for
that minimizes the maximum power used at any individual node
in the network. The algorithm is based on the observation that
for a monotone graph property, it suffices to consider only power
levels that correspond to the power thresholds , of which
there are at most different ones. Thus, with a simple search
over these values, one can find the optimal static power assign-
ment in polynomial time. In our conference paper [31], we note
that for monotone graph properties (in particular for multicast
connectivity), static lifetime maximization is equivalent to static
node power minimization. Thus, we obtain a polynomial-time
algorithm for static multicast lifetime maximization as a corol-
lary to the results in [8]. The argument is presented in detail in
[31], and we do not repeat it here. As broadcasting and group
connectivity are also monotone graph properties, we similarly
get polynomial-time algorithms for the static versions of these
problems.

III. DYNAMIC POWER SCHEDULES

We now turn our attention to the more difficult task of mul-
ticast lifetime maximization with arbitrary power schedules. In
this context, one can see that the hardness of the problem lies
in determining the power assignments that occur in an optimal
power schedule. Once the power assignments are available, it is
a standard linear programming (LP) problem [34], [35] to de-
termine the optimal time to allocate to each assignment.

More precisely, suppose we are given valid power assign-
ments for the nodes. Denoting by the power assigned to node

in the th power assignment, the lifetime maximization task
restricted to these power assignments can be represented as the
following LP problem over the variables :

maximize

subject to

(1)
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The associated dual problem over the variables is

minimize

subject to

(2)

The hardness of the lifetime maximization problem arises
from the fact that the power assignments are not given explicitly
in the problem instance, but implicitly via the power thresholds

, and by specifying the source and sink nodes. In this case,
the total number of different valid power settings can be ex-
ponential in , which makes the problem hard to solve.

Theorem 1: The multicast lifetime maximization problem is
NP-hard under polynomial-time Turing reductions. Moreover,
the problem remains NP-hard for broadcasting.

In the conference version of this paper [31], we established
a weaker version of Theorem 1, quantizing the time alloca-
tions to multiples of some discrete unit. The current proof,
which takes a different approach than that in [31] and relies
on ideas arising from the context of fractional Steiner tree
packing [36, Sec. 4], is presented in the Appendix. This the-
orem has also recently been announced, without proof, in [7].

For any fixed number of sink nodes, the multicast lifetime
maximization problem is polynomial time solvable via the ellip-
soid algorithm. This is due to the fact that the separation problem
(see [34]) for the dual (2) reduces to the problem of finding a
valid power assignment with the minimum total power (multi-
cast total power minimization), which can be solved in polyno-
mial time for a fixed number of sink nodes. This is because the
multicast total power minimization problem is polynomial-time
equivalent to directed Steiner tree minimization, which is solv-
able in polynomial time for a fixed number of sink nodes, but
NP-hard for an arbitrary number of sink nodes. However, we
omit the details of this approach (see [36, Th. 4.1] for an analo-
gous situation in the context of fractional Steiner tree packing),
because recently a more practical algorithm has been given in
[7], using techniques from [37].

As far as approximability is concerned, it is noted in [7] that
multicast total power minimization is approximation-preserving
equivalent to directed Steiner tree minimization. Furthermore,
given a polynomial time algorithm for multicast total power
minimization with approximation ratio , the techniques in [7]
and [37] give a polynomial time algorithm for multicast lifetime
maximization with approximation ratio for any .

For directed Steiner tree minimization it is known that
no polynomial-time approximation algorithm can achieve
a performance ratio of for any , unless

, and the existence of a poly-
logarithmic-ratio approximation algorithm remains an open
problem [29], [30].

A theoretically interesting open question that remains is to
what extent lifetime maximization and total power minimiza-
tion are “equivalent” with respect to polynomial time approx-
imability; that is, is it also the case that an approximation algo-
rithm for lifetime maximization would give an approximation
algorithm for total power minimization.

Theorem 1 shows that multicast lifetime maximization with
arbitrary power schedules is NP-hard, but still leaves open the
possibility that more restricted versions of the problem could
be solvable in polynomial time. A natural restriction is to limit
the number of valid power assignments allowed in a power
schedule. In particular, for , we know from Section II
that the problem is solvable in polynomial time. It turns out
that already for the problem becomes NP-hard. An-
other NP-hard variation, noted in Theorem 3 below, is to require
integral time allocations to all power assignments in a power
schedule.

We show NP-hardness of these problems by transformation
from the following node-disjoint Steiner tree packing problem:
given an undirected graph , a set of terminal nodes

, and a positive integer , decide whether there exists
a set of trees in such that 1) every tree contains all the
nodes in and 2) every node in occurs in at most one
tree. In [31, Lemma 2], we show that the node-disjoint Steiner
tree packing problem is NP-complete if the number of terminal
nodes is constant (four); whether this holds also for three ter-
minal nodes is open. For two terminal nodes, the problem re-
duces to finding a maximum flow in a network and is thus solv-
able in polynomial time. If we allow a nonconstant number of
terminal nodes, then packing even two node-disjoint trees is
hard, as the following lemma shows.

Lemma 2: The node-disjoint Steiner tree packing problem
is NP-complete. Moreover, the problem remains NP-complete
even if .

As a consequence of this lemma we obtain the following.
Theorem 3: The multicast lifetime maximization problem

remains NP-hard in both of the following special cases.

Case 1) The number of different power assignments in a
power schedule is fixed to any constant greater than
one.

Case 2) It is required that the time allocated to each power
assignment in a power schedule is integral.

For proofs, we again refer to the Appendix. Results similar
to those of Theorem 3 have been announced recently also by
Krumke et al. [32]. Hardness and approximation of packing
Steiner trees is investigated further in [38].

IV. ALGORITHMS

We present two randomized algorithms for multicast lifetime
maximization with dynamic power assignments, and a method
for bounding the lifetime from above. We also modify the al-
gorithms to apply to broadcast and group connectivity lifetime
maximization.

A. Algorithm RNDGREEDY

The first algorithm is based on the polynomial-time static
power assignment algorithm mentioned in Section II. The al-
gorithm for the static case gives a solution where all nodes will
run out of energy simultaneously, and where many nodes may
be assigned transmission powers higher than actually necessary
for multicast connectivity. Algorithm RNDGREEDY modifies
this by reducing the powers. With the remaining energy, another
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power assignment may be generated, and so on. This can be con-
tinued for as long as the source node has any energy left; even-
tually, there remains the trivial multicast connection where the
source 1 transmits directly to all sinks (assuming ).

Since the algorithm is a randomized one, it can be iterated
several times, and the best solution chosen; in our experiments
in Section V, we take the best solution obtained in 100 iterations
of the algorithm.

Algorithm RNDGREEDY
1. While energy of source 0, do:

1.1. Choose an optimal power assign-
ment with the static algorithm.

1.2. For all nodes in random order:
Reduce the power assigned to
node to be as low as possible
without breaking the multicast
connectivity. (Binary search
over all that lie between 0
and the power assigned to node
in Step 1.1; for each value,
check connectivity with depth-
first search.)

1.3. Run the network with this power
assignment until some node is
depleted of energy. Update the
energy supplies of all nodes
according to the consumption.

B. Algorithm LPSCHEDULE

The second algorithm is based on the LP formulation de-
scribed in Section III. It generates a collection of valid power
assignments as columns in a matrix . Time is then allocated to
these assignments by solving the linear program (1).

Algorithm LPSCHEDULE
1. Initialize: , (the true

energy constraints of each node).
2. Repeat for a number of iterations:

2.1. Sampling: Generate a set of power
assignments with RNDGREEDY, using
reduced energy constraints .
Append all of them as new columns
to .

2.2. Scheduling: optimal times for
with full energy (solve as

LP).
2.3. Consumption: .
2.4. Energy for next iteration:

uniform random number in
[0,1], .

3. Return the power schedule .

The difficulty lies in generating the collection of valid power
assignments. As pointed out in [9], simply generating individ-
ually good power assignments may not result in a good collec-
tion. Intuitively, a good collection would contain assignments

that are as “energy-disjoint” as possible, i.e., that exploit the en-
ergy supplies of different subsets of all nodes.

Algorithm LPSCHEDULE generates iteratively: new
power assignments are obtained using RNDGREEDY and
accumulated. Power assignments are never discarded from the
collection; we rely on the scheduling step to allocate zero time
for inferior assignments. As long as remains reasonable in
size, scheduling is computationally cheap, compared with the
cost of generating new valid power assignments.

In order to encourage the new power assignments to exploit
other nodes than those heavily used by the current , the al-
gorithm RNDGREEDY is given a reduced energy constraint
vector. In fact, the randomization of in Step 2.4 of algorithm
LPSCHEDULE is not critical to the operation of the algorithm.

C. Upper Bounds on Lifetime

Finally, we attack the problem from the opposite direction and
formulate upper bounds for the maximum dynamic multicast
lifetime achievable in a given network. Such an upper bound can
be used, e.g., for assessing the quality of the solutions found by
the algorithms.

Consider an arbitrary cut that contains the source, but
not all the sinks. Replace multicast connectivity with a “path-
out” property that only requires at least one path to exist from the
source to any node outside . Since this property is weaker than
multicasting, its best achievable lifetime gives an upper bound
on multicast lifetime.

On the other hand, the path-out property only depends on the
power levels assigned to nodes in . Thus, for small , this
weaker lifetime problem can be solved exactly by enumerating
all such power assignments (inside ) that fulfill the path-out
property and optimizing the time allocation among them using
the linear program.

Experiments suggest that quite small cuts (e.g., the source
and its six nearest neighbors) can give quite tight bounds on
the dynamic multicast lifetime. Indeed, for multicast trees in
a large network, the bottleneck condition is to escape a small
neighborhood of the source, constrained by its limited energy
supply. After that, the large number of nodes in the rest of the
network provides an abundance of alternative routes to the sinks.

D. Broadcasting and Group Connectivity

As broadcasting is a special case of multicasting, all al-
gorithms given, including the method for obtaining an upper
bound, can be used without modification for the problem of
broadcast lifetime maximization.

For group connectivity, as already noted, the polyno-
mial-time static algorithm for multicasting applies; only the
property check needs to be changed. In algorithm RND-
GREEDY, the loop condition is changed to “While all nodes
in have energy 0.” Algorithm LPSCHEDULE needs no
modifications. The multicast upper bound algorithm can be run
once for each as a source and as sinks; the
minimum of these upper bounds gives an upper bound for the
group connectivity lifetime.

For other topological properties, such as -connectivity, the
LP formulation of lifetime maximization is still valid. If the
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Fig. 1. Multicast trees in two valid power assignments in a random network. Source 1 and sink nodes 2, 3, 4, and 5 shown as squares. Filled nodes are transmitting
at ranges indicated by the dotted circles; hollow nodes idle. (a) Optimal static assignment; it could be used for 59.7 units of time, but was allocated only 17.9 in
the dynamic schedule. (b) The assignment that was allocated the most time in the dynamic schedule, 26.5.

Fig. 2. Distribution of multicast lifetimes for 50 random networks of 100 nodes and 4 sinks. Notched boxes indicate median and quartiles; whiskers indicate
minimum and maximum values. (a) Lifetime relative to the static solution. (b) Lifetime relative to the upper bound.

property is monotone and can be checked in polynomial time,
both the static algorithm and RNDGREEDY can be used.

V. EXPERIMENTS

The algorithms were implemented in MATLAB 6.5, using
the Optimization Toolbox 2.2 for linear program solving. Ex-
periments were run on a workstation with a 1333-MHz AMD
Athlon processor.

In the experiments, 100 nodes (including one source and
four sinks) were placed uniformly at random in the unit square.
Power thresholds were computed as , and all nodes
were initially given one unit of energy. An upper bound for the
lifetime was computed using a cut consisting of the source and
its six nearest neighbors.

An example network, with a maximum static multicast
lifetime of 59.7 units, is shown in Fig. 1. Both dynamic al-
gorithms were run for 100 iterations on this network. For
algorithm RNDGREEDY, we take the best result obtained in
these iterations. Algorithm LPSCHEDULE generated a total of
695 different power assignments, of which 92 were allocated
nonzero time. Two of them are illustrated in Fig. 1. The re-
sulting power schedule has a lifetime of 236.8 units, a factor of

3.96 better than the static lifetime, and achieves 92.6% of the
upper bound.

To gain some idea of the performance of the algorithms in
general, we next generated 50 random networks. For each net-
work, we ran the static algorithm and the two dynamic ones for
50 iterations each. The results are shown in Fig. 2. It can be seen
that the dynamic power schedules have, in general, lifetimes
about three times as long as the static ones. Also, algorithm LP-
SCHEDULE often finds near-optimal solutions; in fact, in more
than half of the networks the resulting lifetime was within 1%
of the upper bound.

The results show that dynamic power schedules can be clearly
superior to static ones and that our algorithm LPSCHEDULE
can find very good power schedules.

We also performed a similar experiment for broadcast and
strong connectivity lifetime maximization. The results are
shown in Figs. 3 and 4. For broadcasting, the ratios to the upper
bounds are inferior to those of multicasting, although some of
this might be caused by the upper bounds being too loose. For
group connectivity, the ratios to the upper bounds are better
than for multicasting. Because there is a “bottleneck region”
around each terminal, the upper bounds are lower than for
multicasting.
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Fig. 3. Distribution of broadcast lifetimes for 50 random networks of 100 nodes. (a) Lifetime relative to the static solution. (b) Lifetime relative to the upper
bound.

Fig. 4. Distribution of group connectivity lifetimes for 50 random networks of 100 nodes and 5 terminals. (a) Lifetime relative to the static solution. (b) Lifetime
relative to the upper bound.

VI. CONCLUSION

A large amount of recent work has been directed toward en-
ergy minimization in wireless ad hoc networks, with the under-
lying goal of maximizing the lifetime. Our approach has been to
optimize the lifetime directly. In addition, most previous work
has been directed toward static power assignments; we have
worked with more general dynamic ones.

We have proved that finding optimal power schedules for
multicasting is NP-hard in the dynamic case and thus not likely
to be exactly solvable by a polynomial-time algorithm. This
inherent complexity of the problem notwithstanding, the two
heuristic approximation algorithms we have presented for deter-
mining dynamic power schedules are able to consistently find
schedules achieving multicast lifetimes 3–4 times as long as
the optimal static power assignments. The approximation tech-
niques are easily adaptable to related topology control problems,
such as broadcast lifetime maximization and group connectivity
lifetime maximization, in which cases similar performance im-
provements seem to be achieved.

We have assumed that the nodes are immobile, as in, e.g.,
sensor networks. In addition, our power assignment algorithms
require some degree of centralized control of the network. Either
all the nodes need to be aware of the network’s complete struc-
ture and initial energy state, or they need to communicate with
some central coordinating node. The problems of node mobility
and distributed approximate optimization of the power sched-
ules remain to be studied.

APPENDIX

PROOFS

A. Proof of Theorem 1

We follow [34] in notation and terminology unless explicitly
indicated otherwise.

Let be an oracle for the lifetime maximization problem
that behaves as follows. Given a power threshold graph

, the energy constraints , a set of
sink nodes , and a rational accuracy parameter as
input, the oracle outputs a rational number such that

, where is the maximum objective function value for
the primal program (1). We assume that the encoding length
of is bounded by a polynomial of .

We describe an oracle algorithm that solves the multicast
total power minimization problem using as an oracle. More
precisely, given a power threshold graph , a set
of sink nodes , and an accuracy parameter as
input, the algorithm computes a rational number such that

, where is the minimum total power used by a
valid power assignment in . The running time of and the
number of oracle calls made are bounded by a polynomial in

.
The algorithm enables us to decide in oracle polynomial

time between YES and NO instances of set cover with integral
weights (minimum cover [39, p. 222]). First, transform an in-
stance of set cover into an instance of minimum broadcast cover
[14] using the transformation in [14, Th. 1]. Then, input the re-
sulting power threshold graph to so that all other nodes ex-
cept the source are sink nodes. It is easy to see that all the power
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thresholds in are integral. Thus, any accuracy in Al-
gorithm suffices to decide between YES and NO instances of
set cover. From this it follows that the multicast lifetime maxi-
mization problem is NP-hard under polynomial time Turing re-
ductions [39, Ch. 5], and remains so in the special case when
all the other nodes except the source are sinks. This proves
Theorem 1.

It remains to describe the algorithm in detail. Before pro-
ceeding with the description, we require some definitions and
results. A polyhedron is of blocking type [35, p. 114]
if it is up-monotone and . If are the
vertices of , then

The blocker of a polyhedron is the polyhedron
.

Theorem 4: [35, Th. 9.2] Let be a polyhedron of
blocking type. Then:

1) is a polyhedron of blocking type;
2) ;
3) if , then

, and conversely.
We now proceed with the description of algorithm . Let a

power threshold graph be given as input together
with a set of sink nodes. To avoid degenerate cases,
we may without loss of generality assume for all .
Denote by the th power assignment in
that satisfies the multicast connectivity property for the set of
sinks , .

We first require some bounds. Let be the polyhedron de-
fined by the constraints of the dual program (2). Clearly, is
of blocking type. The vertices of are inter-
sections of hyperplanes of the form or .
Consequently (see [35, Ch. 3]), the encoding length for all

is bounded from above by a polynomial in
. Thus, we can in time bounded by a polynomial

in find rational numbers , , , with
similarly polynomially bounded encoding length such that

We also observe that and .
Thus, both and are bounded by a polynomial in .

Algorithm turns the optimization oracle for the primal
program (1) into a strong membership oracle for using a se-
quence of steps that are described next. Once the strong mem-
bership oracle is available, it is a simple matter to complete the
proof.

In the following lemma, we observe that the optimization or-
acle directly gives us a weak validity oracle for .

Lemma 5: There exists an oracle algorithm that solves the
weak validity problem for using a single query to the opti-
mization oracle . The running time of the algorithm is bounded
by a polynomial in .

Proof: Let , , and a rational number
be given. If any coordinate of is positive, then we can by

up-monotonicity and nonemptiness of assert that there exists

an such that . Otherwise, put
and query with input , , , . Let be the
answer returned by the oracle. If , assert that
for all ; call this case i). If , assert that there
exists an such that ; call this case ii).

The definition of and the LP duality imply that
holds for all . Moreover, there exists an such that

. In case i), we have . Thus,
holds for all , which shows that the assertion

made in case i) is correct. In case ii), we have . Thus,
, which shows that the assertion made in case ii)

is correct.
The weak validity oracle for constructed in Lemma 5 gives

us a weak membership oracle for the blocker ; take
and in Lemma 6 to obtain such an oracle.

Lemma 6: Let be a nonempty up-monotone poly-
hedron given by a weak validity oracle. Suppose there exists
a rational number such that . Then,
there exists an oracle algorithm that solves the weak member-
ship problem for with one query to the weak validity or-
acle for . The running time of the algorithm is bounded by a
polynomial in .

Proof: Let and a rational number be given.
Select any so that and .
Query the weak validity oracle with , , and . If
the oracle asserts that for all , then
assert that ; call this case i). Otherwise (i.e.,
when the oracle asserts that for some ),
assert that ; call this case ii).

We first prove correctness of the assertion made in case i).
Denote by the vector with all components equal to one. Since

is up-monotone, we clearly have for all
. Thus, for all , . Put

. Now, for all

by our choice of and . Thus, ,
and since , .

It remains to show that the assertion made in case ii) is correct.
Let such that . Put and

. Because is up-monotone, .
Now

We, clearly, have if .
The last inequality holds because and our choice of
imply . Thus, , which
together with implies that .
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From the weak membership oracle for given by
Lemma 6, we obtain via a theorem of Yudin and Nemirovskii
[40] (as cited in [34, Sec. 4.3]), a weak validity oracle for .

Theorem 7: There exists an oracle-polynomial time algo-
rithm that solves the weak violation problem for every centered
convex body ( ; , , , ) given by a weak membership or-
acle [34, Th. 4.3.2].

Take and in the following lemma to obtain
a weak validity oracle from the weak membership oracle.

Lemma 8: Let be a nonempty up-monotone polyhe-
dron given by a weak membership oracle. Suppose there exists
a rational number such that all the vertices of occur in

. Then, there exists an oracle algorithm that solves the
weak validity problem for . The running time of the algorithm
and the number of oracle calls made are bounded by a polyno-
mial in .

Proof: Let , , and a rational number
be given. If any one coordinate of is positive, then we can by
up-monotonicity and nonemptiness assert that there exists an

such that . Similarly, if and
, then we know that there exists a vertex

with and can assert accordingly. Thus, the
nontrivial case is when and .

Select rational , such that and .
Let . Using the weak membership oracle for

, we can build a weak membership oracle for : given
and , we proceed as follows. If , we assert that

; otherwise, we run the weak membership oracle
for with input , and assert accordingly.

In the nontrivial case, we run the algorithm of Theorem 7 for
the centered convex body ( ; , , , ) given by the weak
membership oracle for and assert accordingly.

Next, we apply Lemma 6 with
and to obtain a weak membership oracle for

. Applying the technique in [34, Th. 6.3.2(b)]
with , we can transform the weak membership oracle
for into a strong membership oracle whose running time
together with the number of queries made to is bounded by a
polynomial in .

It remains to complete the description of algorithm . Let
be the minimum such that . In particular, it is
easy to see that is the minimum total power required for
multicasting in . Let be the accuracy parameter given
to algorithm as input. Algorithm first computes the bounds

, , , based on the power thresholds , and then selects
a rational so that

Then, using steps of binary
search in the interval , algorithm finds
a such that . It then outputs and
halts. By the choice of

Fig. 5. Graph G in the proof of Lemma 2.

Thus, . It is straightforward to check that the
overall running time of algorithm is bounded by a polynomial
in .

B. Proof of Lemma 2

The problem is clearly in NP. To show completeness, we use
transformation from 3SAT [39, p. 48]. Let be the

clauses over variables . The graph consists of
nonterminal nodes and terminal nodes. One

terminal node (core) is connected by an edge to nonterminal
nodes (truth assignment) and (pad). Associated with each
clause there is one terminal node . Each variable is
represented by a variable gadget consisting of three nodes: one
terminal node adjacent to two nonterminal nodes and .
The node is adjacent to and all the nodes , , ,

, . The node is adjacent to and all the terminals
, . Finally, each node is adjacent to and to

the three literals (i.e., nonterminal nodes of the form or )
that occur in the clause . It is straightforward to check that
admits two node-disjoint Steiner trees connecting the terminals
if and only if the 3SAT instance is satisfiable.

C. Proof of Theorem 3

Consider the graph in the proof of Lemma 2 (Fig. 5). Let
be the source and suppose the other terminal nodes are the

sinks. Suppose that has two units of energy and that all the
other nodes have one unit of energy. Each node may transmit to
any adjacent node with power one; the threshold to other nodes
is infinite. This defines a power threshold graph together with
the energy constraints on the nodes.

Consider Case 1) in the theorem. It is easy to see that a power
schedule with a lifetime greater than one must contain at least
two different power assignments. This is because the time allo-
cated to a power assignment cannot exceed one due to the en-
ergy constraints on the nodes. Furthermore, if a power schedule
with lifetime greater than one contains exactly two different
power assignments, then no other node except the source can
transmit in both power assignments. Thus, the sets of nontermi-
nals that transmit in each power assignment induce two node-
disjoint Steiner trees connecting the terminals. Conversely, we
can transform two node-disjoint Steiner trees into two power as-
signments, in which no node except the source transmits in both
assignments.
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Let be an integer. If we now modify so that has
units of energy and add unit-energy nonterminal nodes

adjacent to all the terminals, then a similar argument shows that
achieving a lifetime of over with a power schedule con-
sisting of at most different power assignments requires that
each nonterminal transmits in at most one power assignment.
This proves Case 1).

Case 2) follows using a similar construction: a lifetime of
time units can be achieved if and only if contains

node-disjoint Steiner trees connecting the terminals.
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