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Abstract

The real-time network simulation requires dealing with miscellaneous
technical problems to achieve a correct and timely execution. The igno-
rance of those issues can render a valid model useless, because its im-
plementation would produce erroneous results. This paper identifies and
discusses the problems specific for a Linux operating system on the x86 ar-
chitecture. A problem of accurate event scheduling in a simulation process
without disturbing other processes is the most important and is considered
in detail. Several solutions to this problem are evaluated by measurements.
The results show that no single solution fits all criteria, but the most ap-
propriate method can be selected according to goals of a simulation study.
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If you’re trying to solve

real-time sort of problems, you are dealing

with some fairly thorny technical issues.

B. Gallmeister, a vice-char of POSIX.4. [6]

1 Introduction

Studying behavior of Internet protocols over a real data link or network is often

costly or, if it is only in a development stage, impossible. An alternative way is

to build a model that emulates the network of interest and then using this model

to measure the performance of real networking applications.

An understandable desire of any modeler is to concentrate the effort on de-

veloping a conceptual model of a system under study and to treat the com-

puter as a perfect implementation tool that accurately follows the event schedule.

Unfortunately, this does not work, as most off-the-shelf personal computers and

UNIX-like operating systems are not designed for real-time use, have coarse timer

resolution, and are prone to delays caused by the hardware (a disk or network

access) and by the operating system. Especially in a multi-process environment,

keeping a real-time schedule can be hard, because a simulation process have to

compete with other processes for system resources.

For example, consider Figure 1. It presents performance results from the first

version of Wireless Network Simulator (Wines), a tool for studying the behavior of

network protocols over GSM, developed at the Department of Computer Science,

University of Helsinki. Wines emulates a slow wireless link by delaying data

packets, and the actual line rate maintained by the simulator is expected to be

the same as requested in a configuration file. In practice, as can be seen from

the figure, the actual line rate is lower than the requested line rate. The error is

produced because the simulator relies on a standard Linux system call to perform

delays.

Appropriate services of an operating system for real-time applications is an ac-

tive research area. An important landmark is POSIX.4 specifications for portable

real-time programming [6]. However, many of related issues are highly specific
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for a particular hardware and operating system.

In this paper we discuss technical issues of real-time network simulation on a

Linux operating system run on a PC 1. A problem of accurate event scheduling

in a simulation process without disturbing other processes is the most important

and is considered in detail. Most of related work is concentrated only on achieving

the highest possible accuracy, but ignoring practical factors that are sometimes

decisive for usage of a method. In this paper, we take into consideration such

issues as the amount of modifications needed in the kernel, transparency of a

method for applications, and maintainability of the computer system.

Several solutions to this problem are evaluated by measurements. The results

show that no single solution fits all criteria, but the most appropriate method can

be selected according to goals of a simulation study. Other problems are outlined

and possible solutions to them are suggested, but an extensive evaluation is a

subject of future work.
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Figure 1: Actual versus requested line rate. Measured with WINES simulator

using 100-byte packets. Sleeps are performed using a standard Linux system call.

1We use PC to refer to any of personal computers based on i386 and its successors
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2 Seawind real-time simulator

A Software Emulator for Analyzing Wireless Network Data transfers (Seawind)

is developed as a tool for exploring the behavior of real Internet protocols (mostly

TCP) over wireless datalink services provided by GSM, GPRS, and HSCSD. It

may be classified as a real-time distributed functional simulator [2]. The simu-

lation system consists of several simulation processes connected in a pipeline, so

that every simulation process corresponds to some subsystem of the modeled net-

work. Simulation processes can be distributed on several computers and exchange

messages using unmodified TCP or UDP protocols.

The simulation process is designed based on the Mowser library [1], that among

other tools includes a generic event dispatcher (mev). A Mowser client can regis-

ter an event handlers for a number of specific events (a descriptor is ready for writ-

ing or reading, an alarm goes off, a process receives a signal, etc.). Unfortunately,

mev was not initially designed to be a real-time scheduler and was never used in

this way. Experience with Seawind will show the existing problems, and appro-

priate enhancements could be made to mev in future.

Figure 2 shows the Seawind components and interfaces between them. Several

simulation processes are managed with a control tool via a graphical user inter-

face. The client and the server are normal Internet hosts that run a networking

application over the Seawind system that tunnels packets possibly delaying, mod-

ifying or dropping them. The background load can be emulated either artificially

or explicitly with external load generators. The configuration of the simulation

process is read before starting a test and is not a problem, but logging may

happen during an experiment run and can cause undesired delays.

Figure 3 shows the internal architecture of the simulation process. The heart

of it is a simulation kernel that includes two uni-directional data channels referred

to as uplink and downlink. Auxiliary functions (configuration, logging, random

number generation from a distribution) are handled by modules external to the

simulation kernel.

The approximate size of the whole system in the first phase is approximately

eleven thousand lines of code, that includes the simulation process, GUI and con-

trol components. In the second phase, when additional features are implemented,
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Figure 2: Seawind simulation system.

the code size can double.

Currently the maximum envisaged number of simulation processes is four. As a

rule, every simulation process should be run at a separate PC. It is expected that

the Seawind simulator will be used outside of our department as well. These facts

imply that it is not wise to demand the usage of a modified Linux kernel for all

experiments. In this paper we outline the cases in which the kernel modification

is a must, and cases there required accuracy can be achieved by suggested user

software methods.

3 The problem of an accurate sleep time

3.1 Definition of the problem

Standard Linux kernel on PC provides a process sleep time resolution of 10 ms

with a minimum of approximately 20 ms. As a rule, the actual sleep time is
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10 ms more than requested. In the later sections we will see reasons for such

coarse behavior, but first we consider implications of these facts to our real-time

network simulator.

Figure 4 shows the delay per packet to emulate a slow link of a given line rate.

The delay value is determined by the line rate and by the packet size. To demon-

strate limitations of the standard Linux sleep method, let us consider modeling

of a GPRS data link. Conceptually, three main levels of model granularity can be

identified: the IP packet layer (typical packet size of 1000 bytes), LLC (typical

packet size of 200 bytes), and RLC (typical packet size of 25 bytes). Note, that

in this paper we assume 1 kbps is 1000 bps, but 1 kbyte is 1024 bytes.

Taking into account the accuracy of sleeps, and observing Figure 4 we see that

on standard Linux modeling on RLC is out of question, LLC can be modeled

with meaningful results up to 20 kbps, and only IP-level seems to be manageable

for higher line rates. In practice, even IP-level modeling would give inaccurate

results, because sleeps are always greater than requested and accumulated delay

would result in the line rate of emulated link to be lower than requested.

In modeling of a data link some amount of variation of delay per packet is

acceptable, and sometimes even natural, because it also presents on the real link.
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Figure 4: The computed delay per packet versus requested line rate.

However, the errors in individual sleeps should not accumulate, or otherwise the

results would be biased.

Events for downlink and uplink channels of Seawind simulation process are

scheduled concurrently. Because of this an average sleep request would be half

of that Figure 4 gives. Note also, that it only accounts for slow down sleeps, so

if a process is interrupted during the sleep to process some event, for example

background load packet arrival, and then goes to sleep again, the error can be

twice as large.

3.2 Formalization of the problem

In this section we give a number of numerical parameters, that can be used in

comparison of different methods of accurate sleep.

All sleep requests can be roughly divided into two groups. The first group
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consists of one-occurrence sleeps that are not dependent on each other. An ex-

ample is a random delay modeling the effect of some rare event, for instance, a

cell change. As we see later, accuracy of such sleeps is more difficult to improve,

but on the other hand such sleeps tend to be large in value, thus the relative

error for such requests is small.

The second group consists of sleeps belonging to single sleep thread or in other

words, a series of sleep requests. An example is emulation of a slow link, when a

delay is done per packet of a data flow. Some difference between the requested

and actual sleep time per one sleep in a thread is acceptable, as long as on

the average the actual sleeps is same requested. This is sometimes called error

dumping [5]. The value of individual requests and the length of the series is often

not known in advance.

Let xi be the requested sleep times belonging to the same series and let yi be

the actual times elapsed for ith request, i = 0..n for some n ∈ N . We define the

absolute sleep error as

ai = yi − xi

and the relative sleep error as

ri =
yi − xi

xi
=

ai

xi

.

If Zi, i = 1..n are random variables, we denote the sample mean as

Ê(Zi) =
n∑

i=0

Zi

n

and sample variance as

V̂ ar(Zi) =
n∑

i=0

(zi − Ê(Zi))
2

n − 1

Now aei and rei are random variables and we have

AESM = Ê(ai)

absolute error sample mean and

AESV = V̂ ar(ai)
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Table 1: Statistics for sleeps using a standard Linux system call. N is number

of requests, AE and RE are absolute and relative error, SM and SV are sample

mean and sample variance.

N AE SM AE SV RE SM RE SV

1000 14.50 10.49 0.85 4.39

absolute error sample variance.

Correspondingly

RESM = Ê(ri)

relative error sample mean and

RESV = V̂ ar(ri)

relative error sample variance.

Naturally, we wish to have ai and ri to be constantly zero, that is equiv-

alent to having AESM = AESV = RESM = RESV = 0. We will use

AESM, AESV, RESM, RESV as a rough estimate of how good the suggested

methods are. It is acceptable to have the non-zero variances because they only

reflects the deviation of individual sleep requests that often presents in the real

system as well. However, the means should be kept as close to zero as possible

because the indicated bias directly affects the final results.

The relative error (RESM, RESV) shows how well a method approximates

an area of the smaller sleep request values, because even a small absolute error

there would result in a large relative error. On the other hand, the absolute error

(AESM, AESV) gives how does the method behave “on average” and allows to

estimate how large error is introduced in the final results. For a given application

the choice between methods with either smaller AE or smaller RE should be

made based on the pattern of sleep requests: if the application tends to request

smaller values that are close to the sleep resolution it is better to use the method

giving the lower RE, otherwise a method with the lower AE.

Table 1 gives a summary of error statistics for sleep using a select() system

call on a standard PC Linux.
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Figure 5: Performance of sleeps using a standard Linux system call. A dashed

line shows the desired behavior.
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3.3 Background of the problem

In this section we give an overview of the timer chip and explain the reasons for

coarse timing.

Nearly every PC has a MC146818 (or clone) chip providing realtime clock as

well as CMOS RAM. The realtime clock is independent on CPU and all other

chips and it is powered by a battery when a PC is off, so that the clock can go

on. MC146818 can be programmed to generate periodic interrupts. The chip

has 4 bits of an internal status register to determine the rate of interrupts. The

values can be in the range between 0011 and 1111. The frequency of interrupts

of interrupts is then

f = 65536/2rate

and lays between 8192 Hz (cycle time 122 µs) and 2 Hz (500 ms) [7].

The interrupt from MC146818 is reported on IRQ8. The frequency of inter-

rupts can be changed with first writing the identification of the register containing

rate bits (0ah) to the port number of MC146818’s address register (70h) and then

setting the corresponding bits of port (71h) of MC146818’s data register to desired

value.

Standard Linux kernel sets frequency of the timer interrupt to 100 Hz at boot

time that corresponds to 10 ms interval between interrupts. When a process

requests to be temporarily suspended and waken after some specified time, a

timer structure is created and added to a list maintained by the kernel. Simplified

timer structure:

struct timer {

(void *)func(unsigned long);

unsigned long data;

unsigned long expires;

struct timer *next;

struct timer *prev;

}

A field expires gives when the function func should be called passing data as

a parameter. The timer list is double-linked and maintained in ascending time
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order.

At each interrupt, the kernel increments a number of ticks passed since it was

started by one. The interval length between timer interrupts is called a jiffy. A

framework of interrupt handler:

void handle_timer_interrupt() {

jiffies++;

check_timer_list();

do_accounting_and_scheduling();

}

In this handler after updating the jiffies counter, the kernel calls check timer list()

routine that check for pending timer events and process them as necessary.

Finally, in do accounting and scheduling routine kernel accounts the processes

for CPU usage and possibly scheduling a new process.

void check_timer_list() {

struct timer* timer_ptr=timer_head;

while(timer_ptr!=NULL && timer_ptr->expires < jiffies ) {

(*time_ptr->fn)(timer_ptr->data);

timer_ptr=timer_ptr->next;

remove(timer_ptr);

}

}

Since the kernel checks for expired timers only when a timer interrupt occurs,

the smallest meaningful sleep request time is one jiffy. In fact, the POSIX stan-

dard for select system call states that the process must sleep at least the time

requested. To guarantee this, a kernel adds one jiffy to the requested sleep time

in jiffies. That means the smallest sleep time in practice is two jiffies.

Fortunately in modern Linux kernel gettimeofday provides nearly microsecond

accuracy employing time-stamp register (TSR) available on Pentium processors

that is incremented on each clock cycle. Earlier kernel versions returned the

time-of-day value updated only at a timer interrupt.
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3.4 Possible solutions

Methods to solve the problem of accurate sleeps can be divided into three groups:

1. Using some mechanism to get finer clock resolution.

2. Compensating the difference in the next sleep request.

3. Busy waiting.

In the first group the frequency of timer interrupts is increased either perma-

nently or temporarily, and interrupts are handled either by the kernel of by the

user process. In the second group the requested sleep time is changed to reflect

the error made in previous sleeps or to match the expected actual sleep time. In

the third group, the accurate gettimeofday() call is used to actively wait until the

requested time has elapsed.

Methods are then compared using the following evaluation criteria:

• high accuracy (Small AESM, AESV, RESM, RESV),

• transparency for applications,

• load on the CPU,

• amount of modifications needed to the kernel,

• maintainability of the application and operating system.

3.5 Measurement specifications

3.5.1 Measurement model

Initially the following parameters were identified as possibly affecting the results:

• the pattern of sleep requests by the application,

• the overall system load,

12



• the amount of computation in the application,

• the length of the sleep series.

After consideration, a decision was made to use a long series of uniformly

distributed in 0 ms to 100 ms requests on unloaded system. The pattern of

requests is different for each application and thus difficult to generalize. The

overall system load should not have large effect, because the real-time application

is supposed to be run with a higher priority than other applications. Computation

time inside the loop should be withdrawn from the sleep request and thus does

not affect the results. The length of the sleep series was chosen of 1000 requests.

This is longer than most of sleep series in practise, but allows for better statistics.

Here is a code fragment used to generate the requests and output the (re-

quested, slept) pairs. Note, that random generator is intentionally not initialized,

so all methods are tested using the same sequence of requests.

for (i=0;i<1000;i++) {

wanted_sleep_time=(double)random()/RAND_MAX*100;

slept=sleep_function(wanted_sleep_time);

printf("%d %d\n", wanted_sleep_time, slept);

}

A number of shell scripts and short programs in C-language were written to

compute the relative and absolute error, sample mean and variance and to plot

figures. All 1000 samples were used for statistics, but only 300 first samples are

shown on figures to keep the size of graphics files manageable.

3.5.2 Test environment

Hardware. Pentium II 450 MHz (450.56 bogomips)CPU, 128 MB RAM, 2

FUJITSU 4325 MB HDDs, 3Com 3C905B 100bTX Ethernet.

Software. Linux kernel 2.0.36, Computer Science Linux distribution (modified

Slackware), gcc 2.7.2.3, libc5 library, ELF executables.
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3.5.3 Using several Linux kernels

Performing tests required to have three different Linux kernels to be installed on a

single machine. In Linux it is possible to keep multiple kernel boot image files and

switch between then on a system boot. A convenient interface is achieved using

(Linux Loader) LILO tools. As an example, we give a slightly edited lilo.conf file

from a computer used for tests:

# LILO configuration file

#

# Start LILO global section

boot = /dev/hda3

delay = 50

# End LILO global section

# Linux bootable partition config begins

image = /vmlinuz

root = /dev/hda3

label = Linux

# Linux bootable partition config ends

# Linux bootable partition config begins

image = /vmlinuz_RTC_HZ_1024

root = /dev/hda3

label = LinuxHZ

# Linux bootable partition config ends

# Linux bootable partition config begins

image = /vmlinuz_RTC

root = /dev/hda3

label = LinuxRTC

# Linux bootable partition config ends

In principle, it is possible to supply a specially modified kernel with the sim-

ulation software. An installation and removal of this kernel can be done with a

shell script. When a computer is used for normal purposes, a standard kernel

should be selected from the boot menu, and when it is used for simulation, a

special purpose kernel is selected.
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3.6 Methods of accurate sleep with kernel support

3.6.1 Counting RTC interrupts

In Section 3.3 a port-based interface to program RTC chip was described. Fortunately,

Linux provides a driver to handle this lower-level routine, so the interrupt rate of

the RTC can be set with a ioctl() calls and the process is informed of the in-

terrupt occurrence with using read() or select() system calls on the /dev/rtc

device.

The support for RTC in the kernel is optional and can be activated when the

kernel is compiled. At our department installation this option is disabled, and a

sample kernel had to be compiled with RTC support enabled to perform tests.

A C-language code for sleep routine is given below. For simplicity error han-

dling and code to ensure correct functioning with concurrent usage is omitted.

#define FREQ 1024

int fd;

int

rtc_sleep (unsigned int msec) {

int retval;

unsigned long data;

int irqcount=0;

if (msec==0) return 0;

/* Set frequency of interrupts */

retval = ioctl(fd, RTC_IRQP_SET, FREQ);

/* Enable periodic interrupts */

retval = ioctl(fd, RTC_PIE_ON, 0);

/* Count interrupts */

while (1) {

retval = read(fd, &data, sizeof(unsigned long));

15



Table 2: Statistics for sleeps using RTC driver. N is number of requests, AE

and RE are absolute and relative error, SM and SV are sample mean and sample

variance.

N AE SM AE SV RE SM RE SV

1000 0.00 0.00 0.00 0.00

irqcount+=data/256;

if ((double)irqcount*1000/FREQ > msec) break;

}

/* Disable periodic interrupts */

retval = ioctl(fd, RTC_PIE_OFF, 0);

return (double)irqcount*1000/FREQ;

}

int main() {

int i, retval;

int wanted_sleep_time;

int slept;

fd = open ("/dev/rtc", O_RDONLY);

for (i=0;i<1000;i++) {

wanted_sleep_time=(double)random()/RAND_MAX*100;

slept=rtc_sleep(wanted_sleep_time);

printf("%d %d\n", wanted_sleep_time, slept);

}

}

Figure 6 shows that this method produces fairly accurate results. In fact, as

can be seen from Table 2, all actual sleeps their exactly as requested when rounded

to milliseconds. System tools indicated 0 % CPU utilization when running the

test process.
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Figure 6: Performance of sleeps counting RTC interrupts. A line shows the

desired behavior.
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Table 3: Statistics for sleeps when frequency of kernel interrupts is increased. N

is number of requests, AE and RE are absolute and relative error, SM and SV

are sample mean and sample variance.

N AE SM AE SV RE SM RE SV

1000 0.41 0.25 0.04 0.01

A negative side of this method, is that it requires a replacement of the sleep

routine in the applications. The Mowser library would need a major change to

able to use RTC interface.

3.6.2 Increasing interrupt frequency of the kernel.

The frequency of timer interrupts, and thus accuracy of select call is affected

by the value of HZ constant in kernel sources. It is defined in include/asm-

i386/param.h file. The default value is 100, but it is possible to change within

the range of the clock chip capabilities. Increasing the frequency of clock ticks has

a negative impact in CPU overhead. As Seawind system aims at approximately

1 ms resolution, the value of HZ of 1024 can be considered appropriate.

A sample kernel was compiled with this feature and measurements were run.

Figure 7 and Table 3 show the results.

The behavior, best observable from absolute and relative error graphs, has a

simple explanation. As was mentioned in Section 3.3, Linux adds one jiffy to any

sleep request. Because jiffy in this case is approximately 0.9766 ms, the absolute

error is either rounded to 0 or to 1 ms. This can be fixed by using jiffy of 1 ms

and requesting to sleep each time 1 ms less, but it will harm the main advantage

of this method, the complete transparency for applications.

3.6.3 UTIME patch

UTIME is an extensive modification of the kernel that aims at providing accurate

timing without putting an excess load on the system. It is done by increasing the

frequency of timer only temporarily, only when this is actually needed, because

even if events are scheduled with microsecond resolution, they are rarely scheduled
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Figure 7: Performance of sleeps when frequency of kernel interrupts is increased.

A line shows the desired behavior.
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every microsecond. Rather than interrupt CPU at the fixed rate, the timer chip

is programmed to interrupt CPU at the time of the earliest scheduled event. This

approach yields good results, and the achieved accuracy is up to 50 µs [3].

However, UTIME does a large modification of the kernel, and it can possibly

have some negative side effects. It is not a part of the official kernel that is very

reliable because it was read and verified by thousands of independent people. In

contrast, the UTIME code was probably checked only by a few programmers and

some bugs are known but not fixed. Another problem is maintainability: the

required patch only installs on the certain kernel version (2.0.34) and is aimed at

RedHat distribution. Also it might be considered somewhat an overshot, because

currently Seawind needs only 1 ms resolution. For these reasons UTIME was not

tested, but perhaps it should be checked more closely in future.

3.7 Methods of accurate sleep without kernel support

3.7.1 Sleep with slack

The average accuracy of a sleep thread can be improved by measuring the actual

sleep time of the current request and compensating the difference later with the

next sleep request. Unfortunately, it is not possible to do this without modifying

the interface to the sleep routine, because the slack should be kept per sleep

thread, and a pointer to this variable need to be passed to the routine on each

call.

The interface to the sleep routine is modified to pass two parameters to the

function: the time requested for a sleep and pointer to a variable containing slack

from the previous sleep request (it can be positive or negative).

The programmer is responsible for separating sleep threads in the application,

and assigning the slack variables to them. The sleep routine in C-code is given

below. The slack variable can contain the positive or negative value, depending

if the previous sleeps were shorter or longer than requested. The slack variable

is updated to the value compensated in the sleep.

int

sleep_with_slack(int sleep_ms, int *slack) {
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Table 4: Statistics for sleeps counting slack from previous requests. N is number

of requests, AE and RE are absolute and relative error, SM and SV are sample

mean and sample variance.

N AE SM AE SV RE SM RE SV

1000 0.01 38.56 -0.09 0.27

int slept;

if (sleep_ms-*slack<=0) {

*slack-=sleep_ms;

return 0;

}

slept=ms_sleep(sleep_ms-*slack);

*slack-=(sleep_ms-slept);

return slept;

}

This method does not increase the accuracy of a single sleep call, of course.

However, as can be seen from Figure 8, the absolute error is evenly distributed

around the zero, and the relative error is smaller than for standard sleeps in

Figure 5. Table 4 shows that the absolute error is very low, thus on average the

actual sleeps are same as requested.

The best side of this method is that is can be used on unmodified kernels.

It can be successfully combined with other methods that require kernel support

to further increase the accuracy accounting for deviations in individual sleep

requests.

3.7.2 Sleep with pre-compensation

It is easily noticed that the sleep time provided by the unmodified select tends to

be larger than requested approximately by the constant component of 10 ms plus

the a variable part that varies from 0 to 9 ms depending on the least-important

digit.
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Figure 8: Performance for sleeps with slack. A dashed line shows the desired

behavior.
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In the method we call sleep with pre-compensation a requested sleep time is

decreased by the value of the expected oversleep. This can be done inside the

application or by modifying the sleep routine. For standard sleep with select() it

decreased the errors, but not enough to make this method useful by itself.

It was interesting to check if pre-compensation would improve the performance

of sleep with slack. In fact, the experiment has shown that there is no significant

difference then pre-compensation is used. At first it was surprising, but later it

was observed that slack variable tends to stabilize at the value typically requested

by pre-compensation.

3.7.3 Busy waiting

We mentioned in Section 3.3 that gettimeofday call provides nearly microsecond

resolution in time. It is possible to wait for an exact time period by repeatedly

calling gettimeofday until the requested time has elapsed. A C-code sleep routine

is given below:

int

busy_wait(int msec) {

struct timeval tv1,tv2;

gettimeofday(&tv1,NULL);

do {

gettimeofday(&tv2,NULL);

} while(ms_between(tv1,tv2)<msec);

return ms_between(tv1,tv2);

}

However, this approach would not work for an event-driven application, as

Seawind is. All event handlers must be kept short not to block processing of

other pending events, and busy waiting inside a handler is certainly unacceptable.

A better solution is to busy wait through the Mowser dispatcher itself. This is

possible because Mowser supports event handlers of different priorities. In this

way a handler mev later is registered with a zero timeout and minimal priority.
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Table 5: Statistics for sleeps with busy waiting. N is number of requests, AE

and RE are absolute and relative error, SM and SV are sample mean and sample

variance.

N AE SM AE SV RE SM RE SV

1000 0.02 0.11 0.00 0.00

If there are any pending events, they will be processed first, and then a function

for timer event is called. This function checks if the time of request has already

elapsed, and if not re-register the handler in the same way.

This method can be used when there is a single process per CPU. For multi-

process system only very short sleeps can be done in such way, otherwise the

sleeping process will use up all its CPU quota only for busy waiting and will be

preempted. An advantage of the method is high accuracy.

Figure 9 and Table 5 show the results. For all but one request the error is

zero. This single request well illustrates the shortcoming of this method, as the

probable reason for it is a preemption of the waiting process.

4 Other problems

In this section we outline miscellaneous issues that affect the accuracy of simu-

lation results. All of them need closer consideration that in turn requires bench-

marking. Some of the problems were already experienced with, so possible solu-

tions are also given.

4.1 Disk I/O

Seawind processes access disk for reading configuration and writing log. All

configuration related information should be read before starting the experiment

and thus is not a problem.

In Seawind, an experiment consists of repetitions of basic tests (for example

one TCP connection), so the log writing should not cause additional problems

24



0 20 40 60 80 100
0

20

40

60

80

100

Requested sleep time (ms)

A
ct

ua
l s

le
ep

 ti
m

e(
m

s)

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

Requested sleep time (ms)

R
el

at
iv

e 
er

ro
r

0 20 40 60 80 100
0

1

2

3

4

5

6

Requested sleep time (ms)

A
bs

ol
ut

e 
er

ro
r 

(m
s)

Figure 9: Performance of sleeps with busy waiting. A line shows the desired

behavior.
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for short basic tests, because the log can be stored entirely in the main memory

during each basic test and written to disk between basic tests.

For more intensive logging (when for example whole packets are logged) and

longer tests the problem remains. A good method of real-time logging is to keep

a number of buffers each of the size of a disk sector in the main memory, and

asynchronously write a full buffer to disk while filling the other buffers [6]. The

appropriate number of buffers should be determined experimentally. Performance

of asynchronous I/O under Linux needs closer consideration, because it is cur-

rently done without kernel support, but with a separate user thread per each

request.

In general, providing a lightweight and predictable I/O is a fairly difficult task

that requires close consideration and possibly replacement of some Linux kernel

components [4].

4.2 CPU and memory performance

Even if on average occurring events require small amount of time to process,

situations are possible when several events are scheduled close to each other. For

example, a bunch of background load users have arrived and need to be processed

almost instantly. Some delay in dispatching events is inevitable in this case, but

it is important to find out how large is it and how can it be accounted for.

Overall system performance can be of concern with when simulation model

involves much computing. The Seawind code would need to be profiled and

analyses to remove the bottlenecks. In particular, data inside the simulation

process often need to be copied without actually modifying them. In some cases

this can be avoided by more careful programming.

4.3 Clock synchronization

The PC clock chip is accurate to 13 min per year at normal temperature and

a fresh battery [7]. In smaller units, it is approximately 90 ms per hour. This

is large enough to impose problems with analysis of logging data, as logging is

distributed. Some mechanism should be used to either find out offset of each
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computer’s clock or to synchronize them. A timesync script is available on

all CS department Linux machines. It uses Network Time Protocol (NTP) to

synchronize clock on calling machine with the clock of the time server.

4.4 Process scheduling

Standard Linux processes use SCHED OTHER default universal scheduling pol-

icy, that aims at optimizing throughput rather than fulfilling requirements of

real-time processes. If besides a simulation process, other active processes are

present on the same computer, it is important that the simulation process is given

the highest priority that it cannot be preempted by other processes. Fortunately,

Linux fulfills the POSIX requirements for soft-real time systems and provides two

other scheduling policies for special time-critical applications that need precise

control over the way in which runnable processes are selected for execution [6].

In order to determine the process that runs next, the Linux scheduler looks for

the non- empty list with the highest static priority and takes the process at the

head of this list. All non-real time processes run under the static priority of 0.

In opposite, a real-time process can assign itself a static priority in the range 0

to 99. All scheduling is preemptive: If a process with a higher static priority gets

ready to run, the current process will be preempted and returned into its wait

list.

For real-time processes two scheduling policies are available, First In First

Out (SCHED FIFO) and Round Robin (SCHED RR). SCHED RR is a simple

enhancement of SCHED FIFO, the only difference is that in SCHED RR each

process is only allowed to run for a maximum time quantum. If a SCHED RR

process has been running for a time period equal to or longer than the time quan-

tum, it will be put at the end of the list for its priority. Assigning of scheduling

policies and priorities for processes of a given system can be done only based on

exact functionality of each process.

A computer system used as a platform for running experiments should be as

bare-bone, as possible. In particular, X server should not be used, but rather

a single textual shell. Care should be taken to remove miscellaneous system

processes and daemons that are not needed for the real-time processes, but are

present on the normal Linux system, because any such process is a potential
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source for scheduling distortions for a real-time application.

4.5 Virtual memory paging

Virtual memory paging can cause unexpected delay in execution of real-time

processes. In the first place, paging should not happen at all during run of

experiment, but in some cases (for example log file is kept in the main memory)

is possible. To prevent this problem from occurring, a mlockall system call should

be used. It disables paging for all pages mapped into the address space of the

calling process. This includes the pages of the code, data and stack segment,

as well as shared libraries, user space kernel data, shared memory and memory

mapped files. All mapped pages are guaranteed to be resident in RAM when the

mlockall system call returns successfully and they are guaranteed to stay in RAM

until the pages are unlocked again by munlockall or until the process terminates.

4.6 Network buffers

Problem with network buffers is specific for network emulation when TCP flow

control is used as a resort to stop sender from flooding SP with packets. In this

case the sender application can also get a feeling of a slow link.

Default TCP send and receive buffers in Linux are 64 kbytes, so up to 128

kbytes can be filled by the sender almost immediately before the application will

get blocked by TCP flow control. In reality, on 9600 kbps link, it should take

approximately 110 sec.

A solution is to set the TCP send and receive buffers to a smaller value

using setsockopt system call. This call will always succeed, but actually set

value differs among kernel’s versions. For example, for 2.0.35 SO SNDBF and

SO RCVBUF are set to the maximum of requested value and 256 bytes, but on

2.2.7 SO SNDBUF is set to the maximum of twice(!) the requested value and

2048 bytes and SO RCVBUF to twice the requested value and 256 bytes.

The amount of buffered data should estimated for each experiment and caused

error taken into account when evaluating the results.
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5 Conclusion

Miscellaneous technical issues are shown to be crucial for a sound implementation

of a real-time network simulator. The most important problem is to provide a

simulation process with an accurate delay mechanism that does not interfere

with other processes. Several methods were evaluated and their usability was

discussed. Table 6 shows a summary of methods properties. While no method

was found to satisfy all the criteria, strong and weak sides of each method were

identified to make an appropriate choice for particular system configuration.

The other important problems were briefly discussed, but more elaborate re-

search is a subject of further work.
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