
Hi3: An Efficient and Secure Networking Architecture for

Mobile Hosts

Andrei Gurtov, Dmitry Korzun, Andrey Lukyanenko, and Pekka Nikander
Helsinki Institute for Information Technology (HIIT), Finland

Department of Computer Science, Petrozavodsk State University, Russia

April 22, 2008

Abstract

The Host Identity Indirection Infrastructure (Hi3) is a networking architecture for
mobile hosts, derived from the Internet Indirection Infrastructure (i3) and the Host Iden-
tity Protocol (HIP). Hi3 has efficient support for secure mobility and multihoming, which
both are crucial for future Internet applications. In this paper, we describe and analyze
Hi3 in detail. Compared to existing solutions, Hi3 achieves better resilience, scalability
and security. Both our analysis and early measurements support the notion that Hi3
preserves the best of both approaches while improving performance compared to i3 and
enhancing flexibility and security compared to HIP.

1 Introduction

The original Internet Protocol (IP) stack was designed without explicit consideration for
address agility1 or IP-layer security. As argued elsewhere (e.g., [4]), the current standards for
adding mobility and security to the IP stack, at best, represent independent point solutions
that do not integrate easily and sometimes interact badly.

In this paper, we describe the Host Identity Indirection Infrastructure (Hi3), analyze its
operation and latency, and provide early measurement results. Compared to the Internet
Indirection Infrastructure (i3) [28] and the Host Identity Protocol (HIP) [19], upon which
Hi3 is based, Hi3 preserves the best of both approaches while greatly improving performance
compared to i3 and enhancing flexibility and security compared to HIP.

In particular, we argue that an overlay infrastructure such as i3 is ideal for providing a
secure, integrated rendezvous infrastructure for HIP [14], basically forming a secure “control
plane” for the Internet. For performance reasons, the actual “data plane” traffic should still
be carried directly end-to-end, without involving the overlay.

The main benefits of Hi3 can be summarized as follows:

• Inheriting from HIP, Hi3 integrates mobility with end-host-based multi-address multi-
homing and basic security mechanisms. It also makes IPv4/IPv6 integration easy,
including mobility and multi-homing across IPv4 and IPv6 [11,22,35].

1Mobility was considered as early as 1970 [26] but it was later decided to leave it out from the architecture.

1

• To our knowledge, the system provides better protection against Denial-of-Service
(DoS) attacks than any other comparable system.

• Due to its inherently decentralized nature, Hi3 is very robust, with no single points of
failure.

• The system is designed to facilitate separation of control and data packets into different
“planes”, thereby making it easier to build system architectures where the control and
data traffic flow different paths due to security, manageability, or other reasons.

• The overall system performance is comparable to plain IP, i.e., clearly better than the
performance of systems based on pure overlay routing.

Hi3 can be deployed in a piecewise manner without any flag days. Furthermore, all the
perceived deployment steps give some benefits, providing motivation for people and organi-
zations to perform the required upgrades.

The rest of the paper is organized as follows. In Section 2, background material on HIP,
i3/Secure-i3, and IPsec-aware NAT is presented. In Section 3, we describe the Hi3 network
architecture in detail. In Section 4, we analyze the latency of typical requests to Hi3. In
Section 5, our implementation experience is described and measurement results are presented.
Section 6 concludes the paper.

2 Background

Hi3 is based on ideas from i3, Secure-i3, and HIP. Furthermore, for protecting the data traffic,
Hi3 uses the IPsec-aware NAT, SPINAT. This section gives the necessary background on the
technologies mentioned above.

2.1 Host Identity Protocol (HIP)

In HIP [19, 20], IP addresses are used to address and route packets just as today. Only in
the upper parts of the stack the addresses are replaced with the host identifiers. These host
identifiers form a new Internet-wide name space, the host identity name space. The identifiers
in this name space are public cryptographic keys. With HIP, each host is directly identified
with one or more public keys that each corresponds to a private key possessed by the host.
Each host generates one or more public/private key pairs to provide identities for itself2. A
host can prove that it corresponds to the identity by signing data with its private key. All
other parties use the host identifier, i.e., the public key, to identify and authenticate the host.

Typically, a host identifier is represented by a 128-bit long identifier, the Host Identity Tag
(HIT). A HIT is constructed by applying a cryptographic hash function over the public key.
The purpose and function of HITs is similar to i3 identifiers used in triggers (see Section 2.2),
but they are constructed entirely cryptographically.

2The problem of certifying the keys or otherwise creating trust relationships between them has explicitly
been left out from the HIP architecture. It is expected that each system using HIP may want to take care
of it in a different manner. For mere mobility and multi-homing, the systems can work without any explicit
trust management, in an opportunistic manner [25].

2

Figure 1: HIP base exchange.

The introduction of new end-point identifiers changes the role of IP addresses. When HIP
is used, IP addresses become pure topological labels, naming locations in the Internet. An
end-point can change its IP address without breaking connections. Thus, the relationship
between location names and identifiers becomes dynamic.

The actual HIP protocol [20] consists of a two-round-trip, end-to-end Diffie-Hellman key
exchange protocol (called the HIP base exchange), a mobility exchange, and some additional
messages. The purpose of the HIP base exchange is to create assurance that the peers indeed
possess the private key corresponding their host identifiers (see Figure 1). Additionally,
the exchange creates a pair of Encapsulated Security Payload (ESP) security associations
(SAs), one in each direction. The base exchange requires cryptography processing for R1/I2
(solving the puzzle) and I2/R2 (checking the puzzle solution and authenticating the initiator)
at initiator’s and responder’s sides, respectively. The delay is represented as the processing
time µpr in Figure 1.

Once the HIP base exchange has been completed and the security associations are in place,
the end-points can inform their peers about the additional IP addresses assigned to them [22],
and update this information as needed. For initial rendezvous, simultaneous movement, and
location privacy, the HIP architecture includes the rendezvous server concept [14]. A HIP
rendezvous server simply forwards HIP control packets to a registered HIP host. It can also
provide a two-way forwarding function [25]. Functionally, a rendezvous server is similar to a
single i3 server, as it forwards a packet to a registered IP address, based on the destination
HIT in the packet.

2.2 Internet Indirection Infrastructure (i3)

To ease the deployment of services, Stoica et al. proposed an i3 overlay network that offers a
rendezvous-based communication abstraction [28]. Instead of explicitly sending a packet to a
destination, each packet is associated with a destination identifier; this identifier is then used
by the infrastructure to deliver the packet. As an example, a host R may insert a trigger
(id,R) in the i3 infrastructure to receive all packets that have the destination identifier id.

i3 provides natural support for mobility. When a host changes its address, the host needs
only to update its trigger. When the host changes its address from R1 to R2, it updates its
trigger from (id,R1) to (id,R2). As a result, all packets with the identifier id are correctly
forwarded to the new address. Note that this change is completely transparent to the sender.

The primary aim of the Secure-i3 proposal [1] was to provide a network architecture that is
more robust against DoS attacks than today’s networks. The basic idea is to protect against
DoS attacks by hiding the IP addresses of the end-hosts from other users of the network.
The indirection approach provides straightforward implementation for multicast, mobility,

3

and multi-address multihoming. In Secure-i3, there are two types of triggers, public and
private. Public triggers are used to announce the existence of a service and are well known
(announced on web pages, in the DNS, or on other public media). Private triggers are used
for the actual communication between sender and the receiver(s), which are the only ones
that know the private triggers.

Finally, we describe three advanced capabilities of Secure-i3. In Secure-i3, a public trigger
cannot point to the end-host, but only to a private trigger to prevent cycles in the infras-
tructure and malicious misuse of triggers. Therefore, a trigger chain of two right-constrained
triggers is used to insert a given identifier into the infrastructure. To run legacy applications
over i3, a proxy located on the client and the server must be used. The proxy transparently
intercepts DNS requests and forwards data packets to the i3 infrastructure. Recently, a ca-
pability to send data directly between the client and the server has been added to i3. Known
as shortcuts, it allows efficient data transfer between hosts, but does not offer currently any
cryptographic data protection.

Since Hi3 relies on features from the basic i3 architecture and the Secure-i3 extension,
from here on we do not make a difference between them.

2.3 SPI multiplexed NAT

As argued by Walfish et al. [31,32] and also elsewhere, by introducing IP-address-independent
end-point identifiers, the connectivity problem created by NATs becomes easier to manage.
Both the HITs in HIP and the trigger identifiers in i3 are such address-independent identifiers.
However, utilizing the identifiers for NAT traversal in an architecturally clean way requires
that the NATs become aware of the identifiers3.

SPI multiplexed NAT (SPINAT), as proposed by Ylitalo et al. [30, 34], is an approach
to establish a state for HITs during a HIP base or mobility exchange. The association at
the SPINAT device consists of a HIT pair, IP address pair, and ESP SPI pair. The base
or mobility exchange packets are routed based on the HITs in the HIP header. Once the
state at the SPINAT device has been established, the device identifies connections using the
SPI value and the destination IP address in the ESP-protected data packet headers. With a
SPINAT-like approach it becomes possible to connect several IP realms into a single network
where the upper layer identifiers are used to route packets between the realms.

2.4 Other related work

In addition to the work mentioned above, there has been a considerable number of other pro-
posals to address the identifier / locator separation and consequently mobility, multi-homing,
and security, both separately and in an integrated manner, both from the academic commu-
nity and from the industry. For a partial list of proposals, consider FARA [4], MAST [5],
PeerNet [6], IPNL [7], and LIN6 [10].

So far, none of the proposals have gained major acceptance, partially because the time
has not been ripe, and partially because many of the proposals have not properly taken

3It is also possible to use new end-to-end identifiers with existing NATs, but this cannot be considered
architecturally clean. It typically requires UDP encapsulation, constant state maintenance at the NAT, and
external infrastructure support in the form of STUN [27] or similar servers.

4

Figure 2: i3 as an instantiation of the HIP rendezvous server.

deployment and operational concerns into account.

3 Hi3 architecture

In this section, we describe the Hi3 architecture in detail. More specifically, we consider
the particulars of separating session control, actual data delivery, and service naming. We
analyze problems that induced by this separation and present the solutions. Additionally, we
qualitatively analyze the key advantages of Hi3 and discuss perspective of the design.

The original concept of Hi3 was proposed by Nikander et al. in the sketch [8, 23], where
they observed that a HIP rendezvous server and a single i3 server are functionally close.
Therefore, the basic idea is to allow direct, IP-based end-to-end traffic while using an indi-
rection infrastructure to route the HIP control packets.

We enhance this proposal in the following way. First, we generalize the i3 representation
of the host identity namespace such that peers can use separate identifier layers for service
and for hosts. Second, we concentrate on the Hi3 design for the control traffic and introduce
all available control messages. Third, our discussion of Hi3 advantages and perspective gives
the most comprehensive overview available at present.

3.1 Separating control, data, and naming

In HIP, a rendezvous server is used to fully support association setup between two end-hosts,
simultaneous movement, location privacy, and third party referrals. The concept of the
HIP rendezvous can be enhanced to an overlay rendezvous infrastructure, a distributed and
decentralized instantiation of the HIP rendezvous server. In the Hi3 solution, an i3 network
implements this infrastructure. Figure 2 illustrates this idea.

The infrastructure forms the Hi3 control plane, relaying HIP signaling messages. Data
traffic flows directly between end-hosts, using plain IP routing and forming the Hi3 data
plane (shown with dashed lines in Figure 2). HIP and i3 provide secure communications for
the control plane; IPsec and IPsec-aware NAT (SPINAT) give basic protection to the data
plane. This concept of Hi3 is shown in Figure 3.

5

Figure 3: Separating data and control in Hi3, and related technologies

Inherited from HIP, Hi3 uses separate identifiers for location (IP addresses) and endpoint
(HIT). HIT acts as an identifier for a public i3 trigger, reflecting in the infrastructure the
HIP-based separation of naming. Note that if i3 identifiers are longer than 128-bits, then
prefixes to HITs are applied.

For a host A, the pair of triggers [HITA | IDA] and [IDA | IPA] can be stored in i3, where
HITA is a public i3 identifier of A and IDA is its private i3 identifier. The latter is constructed
by A according to the constrained IDs technique [1, 16].

In this mere form, a set of all pairs of public and private identifiers is the i3 representation
of the host namespace. Whenever a host needs to contact a peer, the host uses peer’s public
identifier; however, the messages flow obligatory via the private trigger too. Figure 4 shows a
schematic distribution of the HIT-based triggers in i3 for communication between end-hosts
C and S.

We enhance this mechanism to support a higher naming layer. Public trigger identifiers
are used for association setup between a client and a server. When the association has been
completed, the server creates a private identifier for the client (or uses an existed identifier
for a group of clients). After that, only the private trigger is used to relay control messages
from the client to the server.

Therefore, the i3 public identifiers resemble the service identifiers in the layered naming
architecture by Balakrishnan et al. [2], while the private trigger identifiers clearly form some
“lower” naming layer. Utilizing HIP, we can use fresh, newly generated host identifiers (or
identifiers for a group of hosts) as private trigger identifiers. To secure the binding between
the public and private triggers, i.e. between the service and host identifiers, the cryptographic
delegation is used [21].

3.2 The data plane

In this section, we describe the Hi3 data plane that protects end-to-end data traffic and
supports multiple IP realms.

3.2.1 Protecting end-to-end data traffic

For basic end-to-end data protection we use HIP. In its simplest form, HIP encapsulates
all data traffic in ESP, protecting integrity, authenticity, and (optionally) confidentiality.
However, HIP alone does not protect against distributed denial-of-service attacks. In plain
HIP, the hosts always reveal their real IP address(es) to their potential peers. Therefore, a
host could tell a large number of zombies to launch a coordinated bombing attack against

6

Figure 4: Schematic distribution of HIT-based triggers in i3 for C ↔ S communication.

the target host.
To protect against distributed denial-of-service, we extend the notion of using IPsec-aware

middle boxes [23]. A number of SPINATs4 (IPsec-aware middle boxes) are placed on or close
to the possible data paths. These provide a fast-path barrier against bombing denial-of-
service, simultaneously hiding the actual IP address of the servers. The method structurally
resembles i3 shortcuts [28] but is more secure than using shortcuts and works independently
from the rendezvous infrastructure.

To employ SPINATs at the time the client and server inform each other about the IP
addresses to be used for data traffic, they tell the addresses of SPINATs serving them instead
of telling their real IP addresses. In other words, the use of SPINAT is completely controlled
by the involved host, independent from the rendezvous infrastructure. In practical terms,
in most cases the SPINAT can act by inspecting HIP base and mobility exchange packets
flowing through it. Mobility performance and DoS resistance of SPINAT has been measured
by Ylitalo et al. [33]. The results suggest that the efficiency of data plane is not significantly
reduced by the presence of SPINATs.

As described in [30], it is easy to design such a middle box that forwards and filters traffic
based on <dst,SPI> pairs. The filtering can be extended to include source addresses. In
the typical case of the control packets passing through the middle box, the middle boxes can
securely learn the appropriate mappings by listening to the signed control packets. If the
control and data packets take completely different paths, there must be explicit signaling
between policy points at the control and data path. For example, the hosts can use the HIP
registration protocol [15] to create suitable initial state at some SPINAT.

As the SPINAT knows the allocated SPI mappings, including the source and destination
IP addresses, for its basic functionality, it can easily filter out most unwanted traffic. A ran-
dom attacker can’t learn the real IP address of the server; it can only learn the IP address of
the SPINAT. Getting packets through the SPINAT requires that the attacker knows a valid

4Note that even though the SPINATs in their basic form translate network addresses in order to hide the
real IP address(es) of the server, that translation may still happen between IP addresses belonging to the same
IP realm instead of distinct IP realms. Alternatively, if placed always on path (instead of close to the path),
they can function as plain filters that do not perform address translation at all. The following discussion
mostly applies to all cases, with just minor differences.

7

SPI, causing random packets to be effectively filtered. However, an attacker that establishes
an (opportunistic) HIP association with the server learns a valid SPI, which it can commu-
nicate to a large number of zombies. Hence, source address spoofed traffic from zombies
that have learned a valid SPI still is a potential problem. Applying heuristics based on ESP
sequence numbers makes such coordinated attacks harder but not impossible; the zombies
can increase the sequence number in rough synchrony, resulting in unwanted high-volume
traffic where the sequence numbers mostly fall within the replay window.

An obvious means to protect against zombie-based synchronized bombing attacks is to
deploy source address filtering everywhere in the network. That would prevent zombies from
sending valid-looking packets; the packet’s source address would necessarily be different,
resulting in the packets being dropped at the first SPINAT on the path.

In Hi3 the IP source address field is no longer needed. The control packets are explicitly
routed by the identifiers; there the source HIT takes the function of the source IP address.
The data packet destination is always based on the local by-HIP-created IP-layer state, and
the source address is always ignored [20]. Hence, we surmise that the source address field
could be used to record the actual path taken by the packet [3].

Utilizing the possibility of using HIP-based mobility, a server under an attack can move
the legitimate traffic to other available SPINATs. Hence, a multi-homed site with multiple
entry SPINATs or a host with suitably selected independent SPINATs can move legitimate
traffic from the SPINAT under an attack to another one. The server can also use the HIP
control packets to tell the attacked SPINAT to drop forwarding all traffic on the attacked
SPI. This is structurally similar to a host dynamically changing its private trigger in i3.

3.2.2 Supporting multiple IP realms

In the discussion above we have glossed over problems caused by multiple IP realms and the
resulting partial connectivity. For the system to work properly in the current multi-realm
IP reality, two requirements must be fulfilled. First, all hosts must be reachable through the
i3 infrastructure. Second, the hosts must know at least one public IP address of a SPINAT
serving them so that they can tell that address to their peers at or behind the public Internet.
There are multiple ways to fulfill the requirements.

We first consider the requirement of knowing a public IP address of a serving SPINAT. As
the SPINATs are assumed to form a new piece of infrastructure, an anycast-based mechanism
can be used to learn suitable nearby SPINATs. Alternatively, in a corporate environment
SPINAT-related information could be naturally distributed along with other managed con-
figuration data. Additionally, on-path, passive plain NATs could be detected directly, and
the necessary state in them can be created with methods similar to STUN [27] or ICE [24].

To make hosts reachable by the i3 infrastructure, the simplest way seems to be to locate
the infrastructure in the public Internet, requiring the hosts in other IP realms to maintain
active connectivity with that/those i3 server(s) that hold their private trigger(s). In that
way the packets sent to the private trigger can be always passed to the hosts over active
connections. Alternatively, if a host is able to create semi-permanent state at some SPINAT
with a public IP address, it can list the SPINAT’s IP address at the private trigger, again
resulting the packets coming to the right host. However, in this case the i3 server does not
use an existing connection for sending the packet but sends it to the SPINAT, which in turn

8

forwards it according to the state associated with the HIT.
In any case, multiple realm support requires reachability state to be created at the

SPINATs between the realms. This state can be either created explicitly, by hosts regis-
tering their identifiers at the cross-realm SPINATs. The resulting infrastructure resembles
proactive hop-by-hop host routing, but takes place on a layer above the current IP rout-
ing layer. Alternatively, supposing the existence of a single most preferred realm (i.e., the
public Internet), SPINATs at the realm boundaries can learn the identifiers of the hosts be-
hind them. In order to remain reachable, the hosts must keep sending packets towards the
preferred realm. In this case, the resulting infrastructure resembles link layer bridging.

3.3 The control plane

The control plane is used to relay HIP messages in two cases. First, when before direct
end-to-end communication two end-hosts establish a HIP association. In this case the main
benefit of using the control plane is protection against DoS; the IP addresses of both hosts are
not revealed until mutual authentication is completed. Second, when having an established
connection the hosts lose the direct end-to-end connectivity. Such a case is important for
end-host mobility, e.g., the connectivity is lost after a simultaneous movement of both hosts.
Therefore, the control plane is a trusted third-party that aims in establishing and keeping
the data plane connectivity between communicating peers.

Let C and S be two communicating end-hosts. We assume that C is a HIP initiator
(e.g., a mobile client) and S is a HIP responder (e.g., a stationary Internet server). Figure 4
illustrates a distribution of their HIT-based public and private triggers in i3; for first contacts
the peers use neighbor i3 nodes that they happen to know (S2 and S5).

In the rest of this section, available request types to the control plane are described.
Diagrams of packet flows of the requests are shown in Figure 5. Arrows represent paths, by
which packets of requests follow. An arrow label is a packet name (e.g., I1 or R2) and a
sequence mark (i.e., “a” is for the first part of the flow, “b” is for the next part, etc.). Thick
arrows denote possible multi-hop Chord lookups [29], when the destination i3 node is not
cached in the source i3 node.

3.3.1 Pure HIP association setup

Figures 5(a) and 5(b) show the Hi3 establishment of a HIP association between C and S.
To establish a connection with a server, a client C sends an I1 packet to the IP address

of a random i3 node it happens to have; in our case this node is S2 (path I1.a). The public
trigger for S, HITs, is stored in S1, and S2 forwards the packet to S1 via i3 (path I1.b). The
client obtains the correct i3 node for future contacts to S (path I1.c’, in parallel with the
primary branch I1.c–I1.d). The private trigger of S resides on S3, to which S1 forwards the
packet (path I1.c), and finally S3 delivers it to S (path I1.d).

A similar procedure is followed by S to send an R1 reply packet to C. The neighbor i3
node S5 is contacted first (path R1.a). The public trigger for the client C, HITc, is stored in
the node S4, to which S5 forwards the packet via i3. Then S4 notifies S about the correct
i3 node for communicating with C (path R1.c’, secondary branch) and forwards R1 to S6,
which keeps the private trigger for the client (path R1.c). Finally, S6 delivers the packet to

9

(a) Pure association setup: I1 and R1 packets (b) Pure association setup: I2 and R2 packets

(c) Optimized association setup (d) Location update

(e) Failure of the location update (f) Double-jump resolving

Figure 5: Request types in Hi3.

the client (path R1.d).
The consequent I2–R2 exchange occurs in a similar manner, see Figure 5(b). The only

difference is that the packets are sent straight to the i3 nodes keeping the public triggers, S1
and S4.

3.3.2 Optimized HIP association setup

In the pure form of association setup, the public and private triggers of both hosts must
have been inserted to i3. It is, however, unreasonable to require a client to keep its triggers
in i3 even temporarily. The solution is to delegate an initial part of the setup from S to i3.
This way, the node S1, which keeps a public trigger of S, caches pre-computed R1 packets.

10

Figure 5(c) shows the optimized form of setup.
As in the pure association setup, C sends an I1 packet to the S2, its neighbor (path I1.a),

and the packet is forwarded to S1 (path I1.b). Then, unlike in the pure setup, S1 replies
directly to the client with an R1 packet since it has been cached (path R1). In this reply, S1
also notifies C about the correct node to contact S via i3.

The I2 packet is sent to S1 (path I2.a), then forwarded to S3 via i3 (path I2.b), and
finally delivered to S (path I2.c). The packet is expected to contain the HIP LOCATOR
parameter, listing the client’s real IP address. The server replies with an R2 packet directly
to the client (path R2). That is, the control plane is not involved in R2 delivering.

The optimization reduces the load of S, since it receives less packets and does not check
the puzzle solution of C. Note that the cost of processing delegated is comparable with
the cost of packet forwarding, and the main benefit of the optimization is due to the lower
communication needs.

3.3.3 Location update

Both C and S can change their locations and, consequently, their IP addresses during the
communication.

Typically, only one host changes its IP address and performs a location update at a time.
If the change is due to the server, then S updates its private trigger in i3 (Figure 5(d)).
The location update also causes the HIP update exchange [22] running over the data plane
between C and S.

One update to i3 is sufficient independently on the number of hosts communicating with S
via the private trigger. UPDATE1 and UPDATE2 packets can be sent in parallel. Therefore,
no significant overhead is introduced, compared to HIP.

For client C, having a trigger pair in i3 is optional. Thus, if C changes its location, then
the signaling packets, UPDATE2, run directly between hosts, and the control plane is not
used.

3.3.4 Simultaneous host movement

It may happen that both hosts change their locations at once, an event known as the double-
jump problem. Note that simultaneous mobility of C and S is rare compared with the usual
location update.

Figure 5(e) and 5(f) show what happens if both C and S change their addresses simul-
taneously. The hosts update their private triggers in i3 (Figure 5(e), UPDATE1 packets).
For C this update is optional (dashed arrows in the diagram). In parallel, the hosts start a
HIP location update over the data plane, UPDATE2 packets. The exchange fails since each
host uses the out-of-date IP address to contact the peer. This failure can be discovered by a
timeout.

At this point the hosts need the control plane to recover from the double-jump (Fig-
ure 5(f)). The double-jump can be discovered by both hosts, but the client is responsible
for starting the recovery. It sends the first packet of the HIP update exchange (UPDATE3,
addressed to HITS) to S via i3. After receiving this packet, S continues the update talking
directly to C.

11

Obviously, in this scenario the most delay is due to timeout for UPDATE2 packets. To
improve this, C can send UPDATE2 and UPDATE3 packets in parallel, especially when the
double-jump is likely. Unnecessary UPDATE packets are ignored by S.

3.3.5 HIT insertion

Let HITA be a HIT of a host A and IPA be a recent IP address of A. There are two reasons
for A to insert HITA into i3. First, A is a server, thus HITA has to be in i3 permanently;
second, A is an initiator of a pure association setup, thus HITA is used by the responder.

To insert HITA, A constructs a private i3 identifier IDA. Then A sends two requests to
i3, namely inserting the public trigger [HITA | IDA] and private trigger [IDA | IPA]. Each
request requires a Chord lookup to assign an i3 node, say S0, for storing the trigger. In
successful case, S0 sends directly to A the acknowledgment, which contains a recent node’s
IP address.

3.3.6 HIT refreshment and HIT re-insertion

Trigger’s time-to-live is limited. For instance, the recent implementation5 applies the value
of 30 sec. Keeping HITA alive in i3 requires the host A to refresh regularly both public and
private triggers, sending the refreshment requests directly to the corresponding i3 nodes.

If the i3 node crashes, the trigger is lost. The end-host can re-insert it by sending the
insertion or refreshment request to any i3 node. Similarly, if the trigger has been removed
before the refreshment was received, then the trigger is re-inserted. However, the trigger
might be located to another node, since i3 undergoes node joining and leaving.

In successful case, the acknowledgment is received. It always contains a recent IP address
of the i3 node that keeps the trigger.

3.3.7 HIT removal

HIT removal happens either automatically after the public and private triggers expire, or
explicitly by sending two requests. Although the latter case seems redundant, it can be
important for a host to remove HIT as soon as possible when an attack via the triggers has
been discovered.

3.3.8 A case with separate naming for hosts and service

Although the requests were designed without taking separating naming into account, the
corresponding modification is clear. A public identifier (HIT) is used only for a first contact
with the server. Whenever a client is trusted, it uses a given server’s private trigger, e.g., for
resolving from a double-jump or for establishing new connections.

3.4 Discussion of the design

Let us summarize the key design ideas of Hi3 architecture and their consequences. We also
compare the pros and cons of using HIP and i3 versus their combination, Hi3.

5http://i3.cs.berkeley.edu/impl/

12

The integration of the i3 triggers mechanism allows using two name layers; private triggers
identifiers form a host namespace like in HIP, and public triggers are considered as a service
namespace. The latter is close to endpoint descriptors for applications in the namespace
model of Komu et al. [12]. Hence, this Hi3 feature can be used to fill the gap between HIP
and application layers.

When this separating naming is used, the control plane performance increases since a client
talks not via the public trigger’s node but straight via the node with the private trigger. In
this case, the security can suffer since the rule of compulsory usage of public/private trigger
pair is violated. This rule is due to Secure-i3, and its violation substantially reduces the
infrastructure to the case of basic i3. Hence, extra security mechanisms should be applied
like the cryptographic delegation [21] or the HIP registration extension [15].

Any successful request ends with the acknowledgment to the end-host. Some requests can
fail owing to packet losses in a network or i3 inconsistency and unavailability. This problem
is not very significant since i3 is based on top of Chord DHT, which is known as resilient to
massive failure of nodes [29], to dynamic node joining and leaving [17], and to pathological
states [18]. Therefore, the problem happens rarely, and a simple resubmission of a request
after a timeout is adequate.

The basic HIP protocol provides efficient and secure end-to-end connectivity. If the HITs
and IP addresses of end points are known, it can work without additional infrastructure,
thus having no issues with infrastructure cost, accountability, trust, or fault-tolerance. Basic
HIP provides limited protection against DoS by enabling the responder to make the initiator
solve a computationally substantial puzzle before creating state in the responder. Mobility
of one end point at a time is supported, but there is no way to perform the reverse mapping
support 6. HIP with a rendezvous server enables mobility of both end points, while preserving
accountability and the trust model, since the rendezvous server is chosen by the responder.

The advantages of i3 include better protection against DoS, support for simultaneous
mobility, and higher fault-tolerance when using a DHT with data replication. Disadvantages
of i3 include reliance on an extensive infrastructure, server scalability, use of UDP, lack of
traffic encryption, and complexity of i3 as an overlay network. There is limited experience
with widespread i3 deployment, thus it is difficult to assess how scalable the servers are. The
latency of relayed control traffic will mostly be affected by forwarding and network delays.
However, relaying all control and data traffic through i3 infrastructure would likely prove
burdensome, and by mutual agreement, the client and the server could use i3 only for initial
contact and afterward exchange the data directly using shortcuts.

The basic i3 system does not provide data encryption, although it could be implemented
as an add-on feature. There is no encryption and privacy for control packets. When a
public infrastructure is used, i3’s extensive infrastructure requirements bring other serious
security issues including the possibility of malicious or misbehaving i3 nodes that do not
forward correctly and a lack of trust of arbitrary i3 nodes from end points. Note that Secure-
i3 introduced several constraints on the structure of triggers to prevent misuse of triggers
by third parties and formation of loops in the topology. Finally, diagnosing problems in a
distributed Internet system is always challenging, and the added indirection introduced by

6A reverse lookup from an IP address to HIT (similar to reverse DNS) provides additional functionality,
for example, for security purposes.

13

i3 further complicates the situation.
The combination approach of Hi3 helps to address some of the separate shortcomings of

HIP and i3. The advantages of using i3 as a control plane for HIP include protection from
DoS attacks, solving the double-jump problem, and providing an initial rendezvous service.
By hiding parties’ IP addresses until the HIP handshake partially authenticates them, Hi3
provides additional protection against DoS attacks. Although some protection against DoS
could be provided by a HIP rendezvous server, the client’s IP address is revealed to a server
in the first control packet. Simultaneous mobility of both hosts in i3 is supported by sending
update control packets via i3 when end-to-end connectivity is lost. Hi3 inherits the challenges
of the extensive i3 infrastructure, including trust, accountability, and cost issues.

4 Latency estimation

In this section, we analyze the latency of an Hi3 system, introducing a few key parameters,
relations among them, and assumptions on their reasonable values. Although some parame-
ters depend on a lot of factors such as instant of time, type of a request considered, or CPU
power of i3 nodes, here we focus on the most essential details. It allows analyzing upper
bounds for the parameters and defines a base for evaluation of various Hi3 properties. In
particular, an analysis of the basic latency components for the control plane is presented. An-
other application of these results can be found in our companion paper [13] that analytically
evaluates Hi3 scalability.

4.1 Primary parameters of Hi3

N

The number of nodes in i3. The values can be from several dozens, as in the current im-
plementation on PlanetLab, to several hundred or thousand for a real large-scale overlay
network.

τ

Transmission cost for sending a packet directly between two i3 nodes. The conservative
estimate for the upper bound is 50–200 ms.

µ

Processing cost for an i3 server to serve a packet received before forwarding it. The cost
depends on the infrastructure size, µ = µ(N), since an i3 node maintains O(log N) state.
Typically, the cost does not exceed 0.1–1.0 ms.

µpr

Processing cost for a host to execute HIP-related cryptography, i.e., cost of either I1/R2 or
I2/R2 processing, see Figure 1. Typically, the cost is less than 100–200 ms.

14

(a) Direct communications with i3 nodes (b) Lookups in i3 due to Hi3

Figure 6: Transmission costs of a packet in Hi3.

τHi3
A

Transmission cost for sending packets directly between a HIP host A and an i3 node, or the
one-way trip time. For wireline τHi3

A ∼ 10 ms, for wireless τHi3
A ∼ 200 ms.

There are three types of i3 nodes that may communicate directly with a HIP host A, see
Figure 6(a). The node S1 is an arbitrary i3 node that A contacts first. The node S2 keeps
the public trigger [HIT | ID] inserted by A, or a trigger of an A’s peer. The node S3 stores
the A’s private trigger.

τAB

Transmission cost for sending a packet directly between HIP hosts A and B. A reasonable
approximation is τAB = τHi3

A + τ + τHi3
B .

k

The number of packets in a request, including acknowledgment packets. Some packets can
flow in parallel, and the latency analysis either considers only the most expensive of them
or assumes conservatively that the packets are sent sequentially. For instance, a request for
the pure association setup consists of k = 4 packets, and the notification packet (path I1.c’,
Fig. 5(a), p. 10) is not taken into account. For simultaneous host movement, conservative
analysis assumes UPDATE2 and UPDATE3 packets are sent one after another.

4.2 Latency parameters

Comparing to HIP, performance overhead in Hi3 appears because of involving i3 as a third-
party. That is, let us define basic latency components caused by this triangle routing.

τHi3

Internal latency of a packet inside i3. A packet enters i3, when the first-hop i3 node receives
the packet, and exits i3, when the last-hop i3 node forwards it to the end-host.

Although this entering/exiting behavior is typical for almost all packets, some of them,
like an initial packet of the HIT insertion or an I1 packet of the optimized setup, do not leave

15

i3 running to another host. Such a packet reaches a target i3 node and does not go further;
the node processes the packet received and then sends another packet backward. Similarly,
a packet can be created inside i3; for instance, when the packet is an acknowledgment for a
trigger inserted successfully or an R1 packet in the optimized setup.

Note also that some packets can never cross i3, if direct communication between end-hosts
is possible. For instance, R2 packets always flow over the data plane in the optimized setup
since initiator’s IP address is already known to the responder.

Chord lookups

They are conducted by some packets of a request and can essentially affect the internal
latency, especially for large N . A request to the Hi3 control plane uses i3 lookups in the
following cases, see Figure 6(b). (1) An arbitrary i3 node (S1 in our case) is requested by A
to forward a packet to the public trigger location. (2) The node S2, which stores the public
trigger, looks up the private trigger.

During a lookup the packet visits usually at most O(log N) nodes [29] as a sequence of i3
hops towards the destination. Each hop takes the time τ + µ, where µ is for processing the
packet at a node of the sequence, and then τ is for traveling to the next hop. Although the
number of hops is fewer by one than the number of transmissions, the difference is negligible,
and we assume a lookup to take time t = (τ +µ)O(log N). In other words, t ≤ α(τ +µ) log N
for some positive constant α and for all large N . Taking t = α(τ + µ) log N , we obtain an
upper bound for the cost of a lookup, where α controls how many lookups are covered within
this bound. Note that experiments in [29] showed α to be equal to 1/2 on average.

τout

External latency of a packet, i.e., the time for a packet to be outside i3, both before entering
and after exiting. If a packet runs directly between end-hosts, then τout is the only latency
of the packet (τHi3 = 0).

THi3 and T out

The internal and external latencies of a request. Obviously, THi3 is a sum of internal latencies
and T out is a sum of external latencies for all packets of the request. We shall also use the
estimates THi3 = kτHi3 and T out = kτout, where τHi3 and τout take averages over all k packets
of the request.

LHi3

The total latency of a given request to the control plane.

LHi3 = THi3 + T out = k(τHi3 + τout) (1)

where τHi3 and τout are averaged over all k packets.

16

Table 1: Latency estimates of requests to the Hi3 control plane. (C ↔ S communication.)

Request type k THi3 = kτHi3 T out = kτout

Pure association setup 4 6α(τ + µ) log N 4τHi3
C + 2µpr + 4τHi3

S

Optimized association setup 4 2α(τ + µ) log N 3τHi3
C + 2µpr + τHi3

S + τSC

Location update, A ∈ {C,S} 2 τ + µ 2τHi3
A

Double-jump 2 α(τ + µ) log N τHi3
C + τHi3

S + τSC

HIT insertion, A ∈ {C,S} 4 2α(τ + µ) log N 4τHi3
A

HIT refreshment/removal, A ∈ {C,S} 4 2(τ + µ) 4τHi3
A

4.3 Latency of available requests

The latency estimates are summarized in Table 1. Note that we consider the conservative case
when i3 does not use caching of nodes. The optimistic case is discussed later in Section 4.4.

4.3.1 Pure association setup

There are k = 4 packets, namely I1, R1, I2, and R2, each crossing i3. HIP-related crypto-
graphic processing with the cost µpr is needed at both end-hosts: R1/I2 (initiator) and I2/R2
(responder). Therefore, T out = 4τHi3

C + 2µpr + 4τHi3
S . Two first packets (I1 and R1) use two

i3 lookup each. For two last packets (I2 and R2) one lookup is sufficient. In total, there are
six lookups and THi3 = 6α(τ + µ) log N .

4.3.2 Optimized association setup

The same packets are used as in the pure association setup, but the I1/R1 processing is
delegated to the i3 node where [HITS | IPS] is stored. One lookup for the I1 packet is used
to find this node. Both I1 and R1 packets are outside i3 for time τHi3

C each. The I2 packet
leaves i3 after one lookup to route between the nodes with a public and a private trigger, the
external time is τHi3

C +τHi3
S . The R2 packet does not use i3 and travels directly from S to C in

time τSC . The cost of cryptographic processing is the same as for the pure association setup.
In total, there are two lookups, THi3 = 2α(τ +µ) log N , and T out = 3τHi3

C +2µpr +τHi3
S +τSC .

4.3.3 Location update (IP update)

Assuming a host A, either C or S, keeps HIT in i3, an address change IPA → IP′
A requires

A to update its private trigger [IDA | IPA] → [IDA | IP′
A]. Two packets are involved (k = 2),

an update request by A and the response. The request packet travels directly from A to
the i3 node storing the private trigger and the node replies backs. The external latency
is T out = 2τHi3

A . The internal latency THi3 = τ + µ estimates the cost of i3 update and
forward operations.

17

4.3.4 Simultaneous host movement

When C has discovered the double-jump by a timeout it sends the first packet of the HIP
update exchange to i3. As in the location update, k = 2. We assume that C remembers the
IP address of an i3 node storing HITS . The first packet crosses i3 with one lookup and with
external latency latency τHi3

C + τHi3
S . Then, S sends the response packet that travels directly

to C in time τSC .

4.3.5 HIT insertion

Host A sends a packet to any i3 node (cost τHi3
A); the packet is routed to the target i3 node to

store the public trigger, and in the worst case the Chord lookup is used (cost α(τ +µ) log N);
then the acknowledgment runs backward (cost τHi3

A). Insertion of the private trigger is similar.
Considering sequential order of the insertion for public and private triggers, such a request
takes THi3 = 2α(τ + µ) log N and T out = 4τHi3

A .

4.3.6 HIT refreshment and HIT removal

As both requests have the same packet flow, we assume that there is no difference in latency.
Having recent IP addresses of both i3 nodes, host A sends directly a packet to each and then
receives an acknowledgment. Internal latency of such a packet together with its acknowledg-
ment is estimated as τ + µ, accounting thereby the consumption of both transmission and
processing resources of i3. The external latency is 2τHi3

A . Considering the sequential scenario
of sending the packets, the total latency is doubled.

Note that when HIT refreshment becomes HIT re-insertion, the latency is the same as in
HIT insertion.

4.4 Discussion

The analysis shows that the most expensive latency components are due to 1) Chord lookups
and 2) triangle routing via i3 nodes. Nevertheless, this overhead is not very high.

Even if a request involves Chord lookups, the performance is not affected significantly.
First, such a request is rare. Association setup and HIT insertion appear at most on per
connection basis. The double-jump can happen only when both end-hosts are mobile and the
probability that they move simultaneously is usually low.

Second, any i3 node may cache IP addresses of another i3 node that happens to be a target
of a Chord lookup. The next lookup with this target will take one hop instead of O(log N).
More precise, i3 node first tries to use the cache and then, if there is no appropriate address
in the cache or the address is not valid, the node calls the Chord lookup. Thus, the internal
latency is reduced to 2(τ + µ) since only two i3 nodes are involved.

The following conditions make the i3 cache usage more efficient: 1) end-hosts are active
and communications are repeatable (a lot of requests and many connections between the
same end-points); 2) i3 is stable (node joining and leaving make the cache inconsistent). The
former is typical for many applications, while the latter depends on the overlay network.

The external latency can be reduced by appropriate trigger allocation. First, end-hosts
should first contacts i3 nodes that are close to them. Second, since an end-host constructs

18

its private trigger, the trigger can be stored at a nearby i3 server; hence, the overhead due to
communication with the end-host via this node is low. Third, some mechanisms, like prefixes
to HITs, are going to appear in future implementations of i3 to control allocation of public
triggers.

5 Experimental evaluation

In this section, we present results comparing the performance of Hi3, i3, direct HIP, and
direct plain IP. It is obvious that a direct connection between C and S has better throughput
and latency than solutions based on i3 or Hi3. Our goal is a high-level estimation of the
overhead of additional functionality offered by Hi3. We consider a scenario where a mobile
host C (e.g. laptop) as an initiator contacts a stationary server S.

5.1 The Hi3 implementations

We used the Linux OpenHIP implementation [9] to perform the experiments. The Hi3
prototype currently supports only the basic HIP exchange over i3. The implementation,
in addition to HIP and i3, is less than 500 lines of code. In the implementation, HIP
control packets including the IP header are tunneled through i3 servers running on Plan-
etLab. Our Hi3 implementation was included into the public OpenHIP release (available
from http://www.openhip.org).

We have also implemented and tested Hi3 for HIP on Linux (HIPL) implementation
(available from http://hipl.hiit.fi). It has following differences from the OpenHIP implemen-
tation. First of all, HIPL always answers using the same method as it has received the I1
(i.e., if it receives an I1 packet through i3 it will answer through i3 otherwise it will answer
directly). Secondly, HIPL inserts into i3 four pairs of triggers, as HIPL has two RSA HITs
and two DSA HITs. Every pair of DSA or RSA HITs consists of one public and one anony-
mous HIT. The public HIT should be available to everyone, while anonymous is available for
friendly hosts only and is being changed from time to time. Thirdly, the I1 and R1 packets
do not contain any IP addresses. We do not want to reveal IP addresses too early to avoid
direct DoS attacks. Only after the sender solves the puzzle in the R1 packet (solution goes
inside the I2 packet together with IP addresses of the sender) we send IP addresses in the R2
packet. The field for IP addresses is called LOCATOR and defined in the HIP specification.
Generally, HIP uses this field only if the number of IP addresses is greater than one. In the
Hi3 implementation for HIPL we always send this field even if there is only one IP address,
as there is no standard IP header in Hi3 messages.

5.2 Data throughput and latency in LAN

We first consider a case where both a client and a server reside in a local network. Both
hosts register their HITs on i3 servers on PlanetLab. As a base line, we use a direct TCP
connection between the hosts via IP. This is a conservative scenario, as it presents the worse
case for i3 and Hi3. We measured TCP connections setup, TCP throughput and round-trip
time. The results given in Table 2 are averaged over a small number of repetitions, as the
variance of measurements was negligible.

19

Table 2: Performance results of IP, i3, and Hi3 for throughput and latency.
Solution TCP

setup
latency,
ms

TCP
throughput,
Mbyte/s

RTT,
ms

IP 0.4 10 0.2
i3 620 0.08 280
Hi3 900 5 1

The results above are heavily influenced by lack of i3 shortcuts, and by the fact that all
i3 servers were located in the US while the client and the server were located in Europe.
Furthermore, some PlanetLab servers are limited to use only a certain bandwidth by the
system administrators and there is a smaller internal limit per an executing task.

The TCP connection setup is the time from sending the SYN segment to the receiver, till
the time when an acknowledgment of SYN-ACK is sent. In case of direct communication,
all packets are exchanged in a local network only. For i3, all packets flow through i3 servers
with additional time required for packet routing inside i3 infrastructure. In Hi3, the HIP
base exchange packets flow through the i3 infrastructure, while the TCP three-way hand-
shake occurs directly between the sender and the receiver with additional overhead of IPsec
encryption.

The TCP connection throughput is measured with ttcp omitting the connection setup.
For direct communication, packets flow in a local network and throughput is the highest. In
i3, all data flow through proxies and the infrastructure that results in a high overhead. In
Hi3, data flow directly but encrypted with IPsec that decreases the throughput over plain
IP approximately by half.

The RTT is measured with ping after the initial connection setup. For plain IP, the
definition of RTT is standard. For i3, the RTT is taken after the client and the server have
cached the location of the triggers. For Hi3, the RTT is taken within an IPsec tunnel directly
between the client and the server.

Despite the conservativeness of the scenario, the throughput and latency of Hi3 remain
at a reasonable level with plain IP.

5.3 Data throughput and latency in WAN

After evaluating the case where the client and the server were placed in the same LAN, we
measured Hi3 performance when the client and the server are located far from each other.
In particular, the client was located in Helsinki, Finland and the server in Berkeley, USA. We
measured the time to establish a HIP security association between the client and the server,
throughput of data transmission, and RTT. The one-way latency between the client and the
server was approximately 100 ms.

Figure 7 shows the duration of establishing a HIP security association through Hi3 and
directly over IP. The time was measured with ping and includes one RTT in addition to the
delay of HIP base exchange. For plain IP, the operation took on the average 900 ms. In this
scenario, the IP address of the server is known to the client immediately and the client could

20

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60

M
ill

is
ec

on
ds

Sample #

hi3
hip

Figure 7: Duration of the association establishment.

start the flooding attack. We also measured the operation over i3 where IP addresses of
communicating parties remain hidden until both are authenticated. When the base exchange
is run over i3 it takes about two seconds with several samples of 2.7 seconds. We conjecture
that the spikes might appear from the task scheduling delays on busy PlanetLab servers.

Throughput of a TCP data transmission is shown in Figure 8. In this experiment, we
compared throughput of unprotected connection over IP, throughput over direct HIP, over
Hi3, and over i3. The throughput of direct IP, HIP and Hi3 is on the level of 2.5 Mbps. This
fact suggests that at this transmission speed, the overhead of HIP encryption is insignificant.
Furthermore, it illustrates the efficiency of data transmission in Hi3. In contrary, throughput
of i3 is twice less, about 1.3 Mbps. It is because the data packets have to be sent through i3
servers located on PlanetLab that slows down the transmission.

The RTT measured with ping between the client and the server is shown in Figure 9. For
plain IP, HIP and Hi3, the RTT is the same (210 ms) with little variation. For i3, the RTT
is higher (380 ms) and more variable as the ping packets go through i3 servers.

The presented results cannot be used as a definite bound of Hi3 and i3 performance, since
i3 servers in the experiments were located on public PlanetLab servers. Some servers might
be under high CPU or traffic load that affected the throughput and RTT results. However,
the measurements do suggest the general trend that the data plane of Hi3, based on direct
connectivity between hosts, is more efficient than tunneling all data through infrastructure
as in i3.

6 Conclusions

In this paper, we addressed in an integrated manner the problems of mobility, multi-homing,
and IP-layer security, including protection against distributed denial-of-service attacks. Re-

21

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

M
bp

s

Time, seconds

ip
hip
hi3
i3

Figure 8: Data throughput.

lying on the Host Identity Protocol (HIP), we separated the end-point identifier and locator
functions of IP addresses and introduced a new sublayer to the TCP/IP stack. Based on the
observation that a HIP rendezvous server and a single Internet Indirection Infrastructure (i3)
server node provide functionally the same service, we integrated i3 with HIP, resulting in a
clear separation of HIP control packets and user data packets. To provide protection against
distributed denial of service attacks, we added an optional layer of IP-address-hiding middle
boxes at the data path. These middle boxes are controlled by the end-hosts, making deploy-
ment and accountability easy. Finally, we separated service and host identifiers from each
other. The resulting service identifiers are secure (but not human friendly). Mere possession
of a single service identifier is sufficient for creating a secure connection with an instance of
the service.

We compared the resulting system to HIP and i3. Our qualitative analysis shows that the
system is more robust and secure than either of the base systems. The analysis shows that
the signaling latency in the system is dominated by inter-node transmission times within the
infrastructure. Our performance measurements show that in terms of throughput and data
path latency, Hi3 improves over i3.

Acknowledgments

The authors want to thank Jari Arkko, Börje Ohlman, Jukka Ylitalo, and Jan Melen for
fruitful discussions on this problem space. The authors are also grateful to Tom Henderson,
Ion Stoica, Karthik Lakshminarayanan, Dilip Joseph, Miika Komu, Teemu Koponen, and
Anthony Joseph for useful comments that helped to improve the paper.

22

 0

 200

 400

 600

 800

 1000

 0 10 20 30 40 50 60 70 80 90 100

M
ill

is
ec

on
ds

Sample #

ip
hip
hi3
i3

Figure 9: Data plane RTT.

References

[1] D. Adkins, K. Lakshminarayanan, A. Perrig, and I. Stoica. Towards a more functional
and secure network infrastructure. Technical Report UCB/CSD-03-1242, University of
California at Berkeley, 2003.

[2] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica, and
M. Walfish. A layered naming architecture for the Internet. In Proc. of ACM SIG-
COMM’04, pages 343–352, Aug. 2004.

[3] C. Candolin and P. Nikander. IPv6 source addresses considered harmful. In Proc. of
Sixth Nordic Workshop on Secure IT Systems, Nov. 2001.

[4] D. Clark, R. Braden, A. Falk, and V. Pingali. FARA: Reorganizing the addressing
architecture. ACM Computer Communication Review, 33(4):313–321, 2003.

[5] D. Crocker. Multiple address service for transport (MAST): An extended proposal:
draft-crocker-mast-01.txt, Sept. 2003. Work in progress. Expired in February, 2004.

[6] J. Eriksson, M. Faloutsos, and S. Krishnamurthy. PeerNet: Pushing peer-to-peer down
the stack. In Proc. of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS
’03), Berkeley, CA, USA, Feb. 2003. Springer-Verlag.

[7] P. Francis. IPNL: A NAT-extended Internet architecture. In Proc. of ACM SIG-
COMM’01, San Diego, CA, USA, Aug. 2001.

[8] A. Gurtov, D. Korzun, and P. Nikander. Hi3: An efficient and secure networking archi-
tecture for mobile hosts. Technical Report TR-2005-2, HIIT, June 2005.

23

[9] T. R. Henderson, J. M. Ahrenholz, and J. H. Kim. Experience with the Host Identity
Protocol for secure host mobility and multihoming. In Proc. of the IEEE Wireless
Communications and Networking Conference (WCNC’03), Mar. 2003.

[10] M. Ishiyama, M. Kunishi, and F. Teraoka. An analysis of mobility handling in LIN6.
In Proc. of International Symposium on Wireless Personal Multimedia Communications
(WPMC’01), Aug. 2001.

[11] P. Jokela, P. Nikander, J. Melen, J. Ylitalo, and J. Wall. Host Identity Protocol: Achiev-
ing IPv4 - IPv6 handovers without tunneling. In Proc. of Evolute workshop 2003: “Be-
yond 3G Evolution of Systems and Services”, Nov. 2003.

[12] M. Komu, S. Tarkoma, J. Kangasharju, and A. Gurtov. Applying a Cryptographic
Namespace to Applications. In Proc. of the first ACM workshop on Dynamic Intercon-
nection of Networks (DIN 2005), Cologne, Germany, Sept. 2005. ACM Press.

[13] D. Korzun and A. Gurtov. On scalability properties of the Hi3 control plane. Computer
Communications, 29(17):3591–3601, Nov. 2006.

[14] J. Laganier and L. Eggert. Host identity protocol (HIP) rendezvous extension: draft-
ietf-hip-rvs-05, June 2006. Work in progress. Expires in December, 2006.

[15] J. Laganier, T. Koponen, and L. Eggert. Host Identity Protocol (HIP) registration
extension: draft-koponen-hip-registration-02, June 2006. Work in progress.

[16] K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Stoica. On securing forwarding
infrastructures: Protecting the data plane from an untrusted control plane, 2005. Un-
published manuscript.

[17] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek. Comparing the performance
of distributed hash tables under churn. In Proc. of the 3rd International Workshop on
Peer-to-peer systems, pages 87–99, 2004.

[18] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Observations on the Dynamic Evo-
lution of Peer-to-Peer Networks. In 1st Workshop on P2P Systems and Technologies,
Cambridge, MA, March 2002.

[19] R. Moskowitz and P. Nikander. Host Identity Protocol architecture. RFC 4423, IETF,
May 2006.

[20] R. Moskowitz, P. Nikander, P. Jokela, and T. R. Henderson. Host Identity Protocol:
draft-ietf-hip-base-10, Oct. 2007. Work in progress. Expires in May, 2008.

[21] P. Nikander and J. Arkko. Delegation of signalling rights. In Proc. of the 10th Inter-
national Workshop on Security Protocols, pages 203–212, Cambridge, UK, Apr. 2002.
Springer.

[22] P. Nikander, J. Arkko, and T. Henderson. End-host mobility and multi-homing with
host identity protocol: draft-ietf-hip-mm-05, Mar. 2007. Work in progress, Expires
September, 2007.

24

[23] P. Nikander, J. Arkko, and B. Ohlman. Host identity indirection infrastructure (hi3).
In The Second Swedish National Computer Networking Workshop, November 2004.

[24] P. Nikander, H. Tschofenig, X. Fu, T. Henderson, and J. Laganier. Preferred alternatives
for tunnelling HIP (PATH): draft-nikander-hip-path-01.txt, Mar. 2006. Work in progress.

[25] P. Nikander, J. Ylitalo, and J. Wall. Integrating security, mobility, and multi-homing in a
HIP way. In Proc. of Network and Distributed Systems Security Symposium (NDSS’03),
San Diego, CA, USA, Feb. 2003. Internet Society.

[26] J. Postel and S. Crocker. A possible protocol plateau. RFC 48, Apr. 1970.

[27] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN: Simple traversal of
user datagram protocol (UDP) through network address translators (NATs). RFC 3489,
IETF, Mar. 2003.

[28] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet indirection infras-
tructure. In Proc. of ACM SIGCOMM’02, pages 73–88, Pittsburgh, PA, USA, Aug.
2002.

[29] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for Internet applications. In Proc. of ACM SIGCOMM’01,
San Diego, CA, USA, Aug. 2001.

[30] H. Tschofenig and M. Shanmugam. Traversing HIP-aware NATs and Firewalls: Problem
Statement and Requirements: draft-tschofenig-hiprg-hip-natfw-traversal-04, Mar. 2006.

[31] M. Walfish and H. Balakrishnan. The location/identity split is useful for middleboxes,
too. In Proc. of Workshop on HIP and Related Architectures, Nov. 2004.

[32] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and S. Shenker. Mid-
dleboxes no longer considered harmful. In Proc. of the 7th USENIX Symposium on
Operating System Design and Implementation (OSDI 2004), San Fransisco, CA, USA,
Dec. 2004. ACM Press.

[33] J. Ylitalo, J. Melen, P. Nikander, and V. Torvinen. Re-thinking security in IP based
micro-mobility. In Proc. of 7th Information Security Conference (ISC04), Sept. 2004.

[34] J. Ylitalo and P. Nikander. BLIND: A complete identity protection framework for end-
points. In Proc. of the Twelfth International Workshop on Security Protocols, Apr. 2004.

[35] J. Ylitalo and P. Nikander. A new name space for end-points: Implementing secure
mobility and multi-homing across the two versions of IP. In Proc. of the 5th European
Wireless Conference, Mobile and Wireless Systems beyond 3G (EW2004), pages 435–
441, Feb. 2004.

25

