
1

Information Retrieval Methods

Helena Ahonen-Myka
Spring 2007, part 12

Parallel and distributed IR

2

In this part

• Parallel information retrieval
• Distributed information retrieval

3

Parallel and distributed IR

• The amount of electronic information is huge
– Web
– Commercial collections
– Corporate intranets

• Disk space becomes cheaper and electronic
content becomes easier to produce, download
and store

4

Parallel and distributed IR

• As document collections grow larger, they become
more expensive to manage with an IR system
– Searching and indexing costs grow with the size of the

underlying document collection
– Larger collections result in longer response times

• As more documents are added to the system,
performance may deteriorate to the point where the
system is no longer usable

• à parallel and distributed architectures and
algorithms are needed

5

Taxonomy of parallel architectures

• SISD: single instruction stream, single data
stream

• SIMD: single instruction stream, multiple data
stream

• MISD: multiple instruction stream, single
instruction stream

• MIMD: multiple instruction stream, multiple
data stream

6

MIMD architectures

• A MIMD computer contains N processors, N
instruction streams, and N data streams

• Each processor has its own control unit,
processing unit, and local memory

• MIMD systems usually include shared
memory or a communication network that
connects the processors to each other
– A high degree of interaction: tightly coupled
– A low degree of interaction: loosely coupled

2

7

MIMD architectures

• Multitasking
– Each of the processors runs a separate,

independent search engine
– Search engines do not cooperate to process

individual queries, but they may share data
– A broker accepts search requests and distributes

them among the available search engines
– Throughput is increased, as more requests can be

processed, but the response time of individual
queries remains unchanged

8

MIMD architectures

• Challenges of multitasking
– How to balance hardware resources: when the

number of processors grow, also the number of
disks and I/O channels has to grow

– If the inverted index does not fit into main memory
à the processors compete for disk accessà
bottleneck at the disk could eliminate the
throughput gains from the addition of more
processors

9

MIMD architectures
• To improve query response time, the computation

required to process a single query can be partitioned
into subtasks and distributed among the multiple
processors

• The broker accepts a query and distributes it among
the search processes

• Each of the search processes evaluates a portion of
the query and transmits an intermediate result back to
the broker

• The broker combines the intermediate results into a
final result for presentation to the end user

10

MIMD architectures

• Typical in IR computation: a small amount of
processing per data item applied to a large amount of
data

• How to partition the computationà how to partition
the data

• Two approaches:
– Document partitioning divides the documents among the

subtasks
– Term partitioning divides the index terms among the

processors

11

MIMD architectures
• Document partitioning

– The N documents in the collection are distributed across the
P processors in the system

• P subcollections of N/P documents each
– During query processing, each processor evaluates the query

on the subcollection assigned to it
– Results from each of the subcollections are combined into a

final result list
• Term partitioning

– Divides terms among the P processors such that the
evaluation procedure for each document is spread over
multiple processors in the system

12

Partitioning

• Logical document partitioning
• Physical document partitioning
• Term partitioning

3

13

Logical document partitioning

• The inverted file is extended to give each
parallel process direct access to that portion of
the index related to the processor’s
subcollection of documents

• Each term dictionary entry is extended to
include P pointers into the corresponding
inverted list
– jth pointer indexes the block of document entries in

the inverted list associated with the subcollection
in the jth processor

14

Logical document partitioning
• When a query is submitted to the system, the broker

first ensures that the necessary term dictionary and
inverted file entries are loaded into shared memory
– All of the parallel processes can access a single shared

copy
• The broker initiates P parallel processes to evaluate

the query
• Each process executes the same document scoring

algorithm on its subcollection, using the extended
dictionary to access the appropriate entries in the
inverted file

15

Logical document partitioning

• The search processes record document scores
in a single shared array of document score
accumulators and notify the broker when they
have completed

• After all the search processes have finished,
the broker sorts the array of document score
accumulators and produces the final ranked list
of documents

16

Physical document partitioning
• The documents are physically partitioned into separate,

self-contained subcollections (one for each processor)
• Each subcollection has its own inverted file, and the

processes share nothing during the query processing
• The broker distributes a query to all of the search

processes
• Each process evaluates the query on its portion of the

document collection and produces a local, intermediate
result list

• The broker collects the intermediate lists from all the
processes and merges them into a final result list

17

Physical document partitioning

• The merge procedure assumes that the parallel search
processes produce globally consistent document
scores

• Depending on the ranking algorithm, each parallel
search process may require global term statistics, e.g.
document frequency (df)

• The global term statistics can be collected
– during indexing, or
– during query processing: first global term statistics are

computed, then a query is distributed to the processors
18

Logical vs. physical document
partitioning

• Logical document partitioning requires less
communication than physical document
partitioning (with similar parallelization)à
likely to produce better overall performance

• Physical document partitioning offers more
flexibility, and conversion of an existing IR
system into parallel IR system is simpler

4

19

Term partitioning

• A single inverted file is created for the
document collection

• Inverted lists are spread across the processors
• During query evaluation, the query is

decomposed into terms and each term is sent to
the processor that holds the corresponding
inverted list

• The processors create result lists with partial
document scores and return them to the broker

20

Term partitioning

• The broker combines the result lists according
to the semantics of the query
– Boolean query: union, intersection, or subtraction
– Ranked query: the result lists contain term scores

that must be combined acording to the ranking
formula

21

Distributed IR

• Distributed computing is the application of
multiple computers connected by a network to
solve a single problem

• A distributed computer system is like a MIMD
parallel processor with
– a relatively slow inter-processor communication

channel
– a freedom to employ a heterogenous collection of

processors in the system
22

Distributed IR

• Distributed systems typically consist of
– A set of processes, each running on a separate

processing node (server)
– A broker process is responsible for

• accepting client requests,
• distributing the requests to the servers,
• collecting intermediate results from the servers, and
• combining the intermediate results into a final result for

the client

23

Distributed IR vs. parallel IR

• In distributed computing, the subtasks run on
different computers and the communication
between the subtasks is performed using a
network protocol such as TCP/IP

• It is also more common to employ a procedure
for selecting a subset of the distributed servers
for processing a particular request rather than
broadcasting every request to every server in
the system

24

Algorithmic IR issues

• How to distribute documents across the
distributed search servers?
– Collection partitioning

• How to select which servers should receive a
particular search request?
– Source selection

• How to combine the results from the different
servers?
– Merging the results

5

25

Collection partitioning in a
decentralized system

• In a system comprising independently
administered, heterogenous search servers, the
distributed document collections will be built
and maintained independently
– There is no central control of the document

partitioning procedure
– It may be that each search server is focused on a

particular subject area

26

Collection partitioning in a centralized
system

• The collection can be replicated across all of
the search servers
– Appropriate when the collection is small enough to

fit on a single search server, but high availability
and query processing throughput are required

– The parallelism in the system is being exploited
via multitasking, and the broker’s job is to route
queries to the search servers and balance the loads
on the servers

27

Indexing of partitions (in a centralized
system)

• Indexing the documents is handled in one of
two ways
– Each search server separately indexes its replica of

the documents
– Each server is assigned a mutually exclusive

subset of documents to index and the index subsets
are replicated across the search servers

• a merge of the subsets is required at each server to
create the final indexes

28

Updates (in a centralized system)

• Document updates and deletions must be
broadcast to all servers in the system

• Document additions may be broadcast, or they
may be batched and partitioned depending on
their frequency and how quickly updates must
be reflected by the system

29

Collection partitioning in a centralized
system

• The second option: random distribution of the
documents
– Appropriate when a large document collection

must be distributed for performance reasons, but
the documents will always be viewed and searched
as if they are part of a single, logical collection

– The broker broadcasts every query to all of the
search servers and combines the results for the user

30

Collection partitioning in centralized
system

• The third option: explicit semantic partitioning
of the documents, which are either
– already organized into semantically meaningful

collections, such as by technical discipline, or
– an automatic clustering or categorization

procedure is used to partition the documents into
subject-specific collections

6

31

Source selection
• Source selection is the process of determining which

of the distributed document collections are most
likely to contain relevant documents for the current
query (and therefore should receive the query for
processing)

• Simple approach: assume that every collection is
equally likelyà always broadcast the query to all
collections
– Appropriate when documents are randomly partitioned, or

there is significant semantic overlap between the
collections

32

Source selection
• The collections can also be ranked according to their

likelihood of containing relevant documents
• This is appropriate

– if documents are partitioned into semantically meaningful
collections, or

– it is prohibitively expensive to search every collection every
time

• The basic technique:
– Treat each collection as if it were a single large document
– Generate a collection vector for each collection
– Evaluate the query vector against each collection vector to

produce a ranked listing of collections

33

Source selection

• A standard cosine similarity measure can be
used: to calculate a tf*idf term weight in the
collection vector,
– term frequency tfi,j is the total number of

occurrences of term i in collection j,
– and the inverse document frequency idfi for term i

is log(N/ni), where N is the total number of
collections and ni is the number of collections in
which term i appears

34

Source selection

• A danger of this approach is that although a particular
collection may receive a high query relevance score,
there may not be individual documents within the
collection that receive a high query relevance score

• The problem can be avoided by indexing each
collection as a series of blocks, where each block
contains B documents
– The query is evaluated against each block
– The score for a collection is computed from the scores of

its blocks

35

Source selection

• Alternative approach to indexing collections: training
queries

• A set of training queries are used to build a content
model for each collection

• When a new query is submitted to the system, its
similarity to the training queries is computed and the
content model is used to determine which collections
should be searched and how many documents from
each collection should be returned

36

Query processing

• Query processing in a distributed IR system:
1. Select collections to search
2. Distribute query to selected collections
3. Evaluate query at distributed collections in

parallel
4. Combine results from distributed collections into

final result

7

37

Query processing

• Step 1 may be eliminated if the query is always
broadcast to every document collection in the system

• Otherwise, one of the selection algorithms is used and
the query is distributed to the selected collections

• Each of the participating search servers then evaluates
the query on the selected collections using its own
local search algorithm

• Finally, the results are merged

38

Merging the results

• A number of scenarios
• If the query is Boolean and the search servers

return Boolean result sets
– the final result set = union of the result sets

• If the query involves free-text ranking, a
number of techniques are available ranging
from simple to complex/accurate

39

Merging the results

• Simplest approach: combine the ranked result lists
using round robin interleaving
– 1: 1st document from the 1st list,
– 2: 1st document from the 2nd list,
– ... N: 1st document from the Nth list,
– N+1: 2nd document from the 1st list,...

• Likely to produce poor quality results, since hits from
irrelevant collections are given status equal to that of
hits from highly relevant collections

40

Merging the results

• Improvement: merge the result lists based on
relevance score

• Unless proper global term statistics are used to
compute the document scores, we may get
incorrect results

• If documents are randomly distributed such
that global term statistics are consistent across
all of the distributed collections, the merging
based on relevance score is sufficient

41

Merging the results
• If the document collections are semantically

partitioned or maintained by independent parties, then
reranking must be performed

• Reranking, e.g. , by weighting document scores based
on their collection similarity computed during the
source selection step

• The weight for a collection can be computed as

– where |C| is the number of collections searched, s is the
collection score, and is the mean of the collection scores

() sssCw /1 −⋅+=

42

Merging the results
• More accurate technique for merging ranked result

lists is to use accurate global term statististics
• If the collections have been indexed for source

selection, that index will contain global term statistics
across all of the distributed ollections

• The broker can include these statistics in the query
when it distributes the query to the search servers

• The servers can use these statistics in their processing
and produce relevance scores that can be merged
directly

8

43

Merging the results

• If a collection index is unavailable, query
distribution can proceed in two rounds of
communication

• In the first round, the broker distributes the
query and gathers collection statistics from
each server

• These statistics are combined by the broker
and distributed back to the servers in the
second round.

44

Merging the results
• The search protocol can also require that the servers

return global query term statistics and per-document
query term statistics

• The broker is then free to rerank every document
using the query term statistics and a ranking
algorithm of its choice

• The end result is a list that contains documents from
the distributed collections ranked in the same order as
if all of the documents had been indexed in a single
collection

45

Parallel and distributed IR

• Many parallel IR algorithms are well suited to
both multiprocessor and distributed
implementations

• By using an appropriate abstraction layer for
inter-process communication, we can easily
implement a parallel system that works well on
both multiprocessor and distributed
architectures with relatively little modification

46

Parallel and distributed IR

• Challenges
– How to measure retrieval effectiveness on large

text collections?
• How to generate relevance assessments for queries?
• Pooling techniques used in TREC may not work

– How to build distributed IR systems from
heterogeneous components (=meta-search)?

• Lack of term statistics from the back-end search servers:
reranking of results not possible

• Each server may have its custom query language:
meaning of the query may change

47

In this part

• Parallel IR
– Multitasking
– Multiple processors for a query

• Document partitioning (logical and physical)
• Term partitioning

• Distributed IR
– Collection partitioning
– Source selection
– Merging the results

