
1

Information Retrieval Methods

Helena Ahonen-Myka
Spring 2007, part 4

Indexing (2/2)
Translation from Finnish: Greger Lindén

2

In this part

• Making a term more narrow
– Constructing phrases

• Making a term broader
– Using a thesaurus

• Constructing an inverted file and using it

3

Making a term more narrow:
constructing phrases

• If a sequence of words (a phrase) has some
meaning, this meaning is always more narrow than
the single words in it
– “computer science” vs. “computer”

• If phrases are added to the document description,
the intension is usually to narrow down the
meaning of some terms that are too broad
– Goal: terms with a high frequency are changed to terms

with average frequency
– Two rare terms should not be combined, because the

phrase would be even more rare
4

Possible algorithm

• The head word in a phrase is a word,
– whose document frequency exceeds a certain threshold

(e.g. df > 5) or
– whose discrimination value is negative

• Other components of the phrase are rare or average terms
that occur in the context of the head word (e.g. in the same
sentence close enough to the head word)

• Stopwords are usually not included as parts of phrases, at
least not in the beginning or end of the phrase
– in some cases stopwords make a difference: “flights to London”,

“flights from London”

5

Choosing components for a phrase

• Terms other than the head word can be
chosen in many ways
– That is, ”occur in the context of” can be

interpreted in many ways

• Let us look at the following example:
– “Effective retrieval systems are essential for

people in need of information.”

6

Choosing components for a phrase

• The terms ”are”, ”for”, ”in”, and ”of” are probably
stopwords and are not taken into account

• The terms ”systems”, ”people” and ”information”
are probably frequent enough to fit as the head
words of phrases

• If we require that the head word and one other
component are subsequent, we get as phrases
– retrieval systems, systems essential, essential people,

people need, need information

2

7

Choosing components for a phrase

• If it is enough that the components are in the same
sentence, we get the additional phrases
– effective systems, systems need, effective people,

retrieval people, effective information, retrieval
information, essential information

• Maintaining the order of the terms is usually
worthwhile

• We can also put additional constraints on the head
word and the components
– If we know the part of speech for the words, we could

accept only e.g. adjective-noun or noun-noun pairs
8

Choosing components for a phrase

• If we are able to parse the syntactic structure of
the text, we can require that the components in a
phrase are included in the same
syntactic/functional component, e.g., in a subject
phrase, a verb phrase or an object phrase

• Syntactic phrases in the example:
– Subject phrase: effective retrieval systems
– Verb phrase: are essential
– Object phrase: people in need of information

• We would accept the following phrases: effective
systems, retrieval systems, people need, need
information

9

Choosing components for a phrase

• With tighter constraints we will produce fewer
phrases

• Both loose and tight constraints may produce both
good and bad phrases

• We could continue and try to find out the semantic
relationships between words
– “high frequency transistor oscillator”: high frequency is

ok, frequency transistor is not
– It might be difficult and laborious and may not improve

the results significantly

• “wrong” phrases may also help in matching
between queries and documents 10

Variation in phrase structures

• Because of matching methods, we should be able
to merge phrases that mean the same thing but are
different (syntactically)
– “information retrieval” vs. “retrieval of information”
– synonyms, different word orders, fillers

• We can try to normalise phrases into some
canonical form

• Or construct alternative phrases of each original
phrase

• Both alternatives are in practice quite troublesome

11

Example on variations

• Basic form: text analysis system
• variations:

– System analyses the text
– Text is analysed by the system
– System carries out text analysis
– Text is subjected to analysis by the system
– Text is subjected to system analysis

• Synonyms that could replace terms
– text � documents, information items
– analysis � processing, transformation, manipulation
– system � program, process 12

Finding phrases

• Instead of extracting phrases directly from
documents (as above), phrases can be found
in many ways
– Common phrases in search logs

– Using heuristic rules for special types of
phrases (e.g. patterns for names of people or
companies)

3

13

Making a term broader:
using a thesaurus

• A term that occurs too rarely can be replaced by a
more general term
– A more general term can be found in a conceptual model

(thesaurus, ontology)

• A thesaurus groups narrow terms into classes
– The combined occurrence frequency of the members in the

groups are on average level
– E.g. ‘refusal’, ‘declining’, ‘non-compliance’, ‘rejection’,

and ‘denial’ could belong to the same group
– Occurrences of the group members in a document can be

replaced by a group identifier, which can be one of the
members (e.g. ‘refusal’) 14

Constructing a thesaurus
• We can construct a thesaurus either automatically

or manually
• Manual thesauruses are e.g..

– WordNet: a general thesaurus in English
– Topical thesaurus in some particular field

• Manual work can be supported by automatic
methods, e.g., we can automatically produce lists
of
– all occurrences of a word in the collection � the word

may take on different meanings in different contexts
– different terms occurring in similar environments �

the terms belong to the same group

15

Constructing a thesaurus

• Automatic methods
– We compare the co-occurrence of terms

– We use a set of retrieval tasks and associated
relevance evaluations

16

Document-term matrix

T1 T2 ... Tt

D1 w11 w12 ... w1t

D2 w21 w22 ... w2t

. . .

. . .

. . .

Dn wn1 wn2 ... wnt

17

Co-occurrence of terms

• We want to find terms that occur frequently
together

• The similarity between two terms may be denoted
by the following similarity measure

• Where N is the number of documents
• When we have computed pair-wise similarity

values, we can cluster terms that are similar into
the same groups

∑
=

⋅=
N

i
ikijkj wwTTsim

1

),(

18

Clustering terms

• There are several ways to cluster, for instance
– A term is added to a cluster if the similarity value of the

term with at least one member of the cluster exceeds a
given threshold

• This method usually produces fewer and larger clusters

– A term is added to a cluster if the similarity values of
the term and all the terms in the cluster exceed a given
threshold

• This method usually produces much smaller clusters

• Terms in a cluster form a thesaurus group

4

19

Using retrievals and relevance
estimates

• We assume that we can use a document collection, a set of
retrieval tasks, and their corresponding relevance estimates

• We assume that term Tj occurs in the query Q and another term
Tk in the document D, which is relevant for the query Q

• If Tj and Tk are grouped in the same thesaurus group, the
similarity between Q and D will increase (which is desirable)
– Tj and Tk are also replaced by the same group identifier in the

documents

• We can also make sure that the thesaurus groups do not contain
two terms where one occurs in a retrieval task and the other in
a document that is non-relevant for the task

20

Constructing a thesaurus
automatically

• If we use an automatically constructed thesaurus,
we can use it only to replace terms when indexing
the same kinds of texts
– Or otherwise we have to use very diverse texts so that

the groups that we obtain are general enough

• If we take retrieval tasks and relevance estimates
into account, the tasks must also cover the
different topics of the collection very well

21

Summary: constructing
descriptions for documents

• Collect all the words that occur in a
document

• Remove stopwords
• Modify the remaining words, if needed
• Compute weights for terms in all documents

using the tf·idf function
• Describe the document with a set of terms

and their weights
},;...;,;,{ 2211 ittiii wTwTwTD =

22

Alternative method

• Collect all the words that occur in a document
• Remove stopwords
• Modify the remaining words, if needed
• Compute a discrimination value for all terms
• Replace all terms with a discrimination value close

to zero (i.e. very rare terms) with more general
terms, with the help of a thesaurus

• Replace terms with a negative discrimination
value (i.e. very common terms) with phrases

23

Alternative, cont.

• Compute weights for single terms, phrases and concepts of
the thesaurus
– The weight of a phrase is e.g. the average weight of the

components

• Describe each document with a set of single terms,
phrases, and thesaurus groups, as well as corresponding
weights

• In both alternatives we can say that in the collection there
are T terms and each document is described with these T
terms
– If a term does not occur in a document, its weight is zero

24

Descriptions for queries

• If queries are given in natural language, their
descriptions are formed just as in the case of
documents
– terms + weights

• Because queries are usually short, the term
frequency (tf) does not have any significance
– As weight we use only the inverse document frequency

(idf)

5

25

Constructing an index

• After selecting a set of terms and computing their
weights, we have a stored set of terms (in a
sequential file) for each document

• A query contains a set of terms
– In a retrieval task we have to find the documents where

the terms occur quickly
• We construct an inverted file where for each term

we have the documents in which the term occurs
• In addition, we have a dictionary file as an index

for the inverted file

26

22313213323df

...lkjhgfedcbaterms

2459157213748868924637136documents

...lkjhgfedcbaterms

...dkdefbgjacdjkcftabgchtagjterms

......987654321documents

dictionary file:

inverted file:

base file:

27

Constructing an inverted file

• An inverted file can be constructed in several
different ways, e.g.,

• The base file is read one document at a time
– We construct a list of (term, document) pairs

• (a,1), (g,1), (j,1), (c,2), (h,2), (t,2), (a,3), (b,3), (g,3), (c,4),
(f,4), (t,4), (j,5), (k,5), (a,6), (c,6), (d,6),…

• The list is ordered in ascending order of the terms
(if same term, in order of the document number)

• (a,1), (a,3), (a,6), (b,3), (c,2), (c,4), (c,6), (d,6), (f,4), (g,1),
(g,3), (h,2), (j,1), (j,5), (k,5), (t,2), (t,4),…

28

Constructing an inverted file

• At the end we combine pairs with the same term:
we add all document numbers to the same term in
an ordered list
– (a,<1,3,5>), (b,<3>), (c,<2,4,6>), (d, <6>), (f,<4>), (g,

<1,3>), (h, <2>), (j,<1,5>), (k, <5>), (t,<2,4>),…

– From this representation we can also form the
dictionary file

• The list of document numbers for a term are also
called postings

29

About implementation

• In the previous example, we left out the term
weights in the documents; but they are also
considered to be in the base file
– We pick triplets (term, document, term weight)

– If we use tf · idf weights, it is enough to store the tfs
because the idf of a term is the same in all documents

– (That is: idf can be computed from the dictionary file; tf
can be computed from the inverted file)

30

About implementation

• In this method, the most expensive
operation is sorting the (term, document)
pairs

• When the document collection is fairly big,
sorting cannot be made in main memory
– But it can be done by external merge sort

6

31

Sorting

• We assume that
– The (term, document) pairs are stored on disk
– The main memory can hold k (term, document) pairs at

once

• We read k (term, document) pairs into the main
memory and sort them with e.g. quicksort

• The ordered list is written back onto the disk
• We repeat this until all pairs have been sorted once

(all lists of k pairs sorted)

32

Sorting

• Merging:
– We read the first two lists from the disk and

merge them into one list and write them back
onto the disk

– We read the next two lists etc. and continue
until all lists of length k have been processed

– Then we read the first two lists of length 2k and
merge them, etc.

– We continue until there is only one list left

33

Performance

• The more pairs that can fit into the main
memory, the faster the indexing method is

• The method requires a lot of disk space
– During the sorting we need two copies of the

file containing the pairs

• Very large collections must be sorted with
other methods

34

Index granularity

• In the previous slides, we stored information about
the positions of the terms on the accuracy level of
a document

• If we want to support proximity queries or return
text fragments smaller than a whole document, we
can mark positions more accurately in the index

• We could also define a document to be a text
paragraph, a sentence or a word
– But we would lose information about the hierarchy of

the components in a document

35

Index granularity

• The ”normal” case:
– information: <D345, D348,D350,…>
– retrieval: <D123, D128, D345,…>

• We add information about in which sentence a term
occurs:
– information: <D345,25; D345,37; D348, 10; D350,8;…>
– retrieval: <D123,5; D128,25; D345,37; D345,40;…>
– We can quickly answer the query : “’information’ in same

sentence as ‘retrieval’”� D345
– More space is required due to two reasons: 1) the sentence

number and 2) terms that occur more than once in documents
produce more elements in the list (before only one element)

36

Index granularity

• We could also add information about the position of a
term in the sentences
– information: <D345,25,4; D345,37,3; D348, …>
– retrieval: <D123,5,2; D128,25,4; D345,37,4;…>
– We can answer queries like

• “information adjacent to retrieval”
• “information and retrieval within five words”

• If we have also stored meta data about documents
(author, title, publisher, …) we can add information to
the index about the position in some meta data
– We can answer queries like “the author is John Irving”

7

37

Index granularity

• If we do not expect to make many queries
using proximity (nearness) operators,
indexing on the document level is enough
– Proximity constraints can be checked from the

answer sets in the postprocessing phase

38

Using an inverted file

• We fetch the records from the dictionary corresponding to the search
words in the query
– The records hold pointers to the corresponding records in the inverted file

• We fetch the records corresponding to the terms from the inverted file
– These records hold lists of (pointers) to the documents where the terms

occur

• We use the document lists according to the format of the query
– E.g.. ”a and g”: we find documents that are on the lists of terms a and g

• We fetch the documents based on their numbers from the base file
• If we were not able to solve all conditions with the help of the inverted

file, we scan the documents and check the remaining conditions

39

Keys

Occurrence #

Keys

Record
numbers

Records

Keys and bib files 40

In this part

• Constructing phrases on more general terms

• Replacing terms with more general concepts
from a thesaurus

• Constructing a thesaurus automatically

• Constructing an inverted file by sorting

• Index granularity

• Using an inverted file

