Information Retrieval Methods

Helena Ahonen-Myka
Spring 2007, part 5
Matching methods (1/2)
Translation from Finnish: Greger Lindén

In this part

» Exact matching
— Boolean search
« Partial matching
— The vector model
— Similarity measures

Exact matching: Boolean search

« Boolean query:
— A list of terms that are combined with logical
connectives AND, OR and NOT
— The answer is the documents that satisfy the
conditions of the query
— text AND compression AND retrieval

« The document is included in the answer if each of
these three terms is found in the document (free
order)

Exact matching: Boolean search

« "...thecompression andretrieval of large
amounts ofext is an interesting problem...”

« "...thistext describes the fractional
distillation scavenging technique for
retrieval of argon from air after
compression”...

Processing a Boolean query

» query: "text AND compression AND retrieval’

» The search engine finds each query term (possibly
modified) in the dictionary file
— The dictionary tells in how many documents the term
occurs (df)
o text: 8
* compress: 4
« retrieve: 6
» The terms are sorted in increasing order of their
document frequency df: compress, retrieve, text

5

Processing a Boolean query

» The system reads the least frequent term’s
inverted list from the inverted file

» The candidate list = a set of documents that have
not yet been eliminated and that can be part of the
answer

* The inverted lists of all remaining terms are
merged in turn with the candidate list
— Terms are processed in increasing order of their df




Example

* The inverted list of the term 'compress’:
- <4;2,5,12,16>
» The inverted list of the term ‘retrieve’ :
- <6;2,7,12, 16, 20, 21>
» “compress AND retrieve”
- <3; 2,12, 16>
* The inverted list of the term ‘text’:
- <8;1,4,8, 12,16, 20, 21, 30>
» “compress AND retrieve AND text”
- <2;12,16>

Queries with AND

* In an AND query, a document cannot be part of
the answer if it does not belong to all invertexddli
— = The candidate list cannot get longer during the
processing of a query
— When processing term t, the system goes through the
candidate list, and documents which are not in the
inverted list of t are removed
— The candidate list may become empty before all terms
have been processed
* When all terms have been processed, the
remaining documents in the candidate list are the

answer
8

Queries with OR

* "text OR data OR image”

* The terms can be processed simultaneously: when
merging inverted lists, documents are included only
once
- text: <8; 1, 4, 8, 12, 16, 20, 21, 30>
- data: <12; 2,4,7,8,10,12,13,15,19,20,21,28>
— image: <5; 4,5,9,11,12>

e answer:
<18;1,2,4,5,7,8,9,10,11,12,13,15,16,19,20,21,28,30

\4

A conjunction of disjunctions

* A conjunction of disjunctions is a typical type of
queries

— "(text OR data OR image) AND (compression OR
compaction) AND (retrieval OR indexing OR
archiving)”

— As a start value for the candidate list we choose the
document set of the “smallest” disjunction; we estimate
the size, e.g., by summing up the df values of the terms

« This is a pessimistic estimate: we do not takeparssible
overlap into account

— In the following phase, we merge the candidate list with
the “second smallest” set, etc.

More general queries

» All Boolean queries can be transformed into a
conjunction of disjunctions

 "(information AND (retrieval OR indexing)) OR
((text OR data) AND (compression OR
compaction))”

« = "(information OR text OR data) AND (retrieval
OR indexing OR text OR data) AND (information
OR compression OR compaction) AND (retrieval
OR indexing OR compression OR compaction)”

11

Transformation

e (AandB)or(CandD) =
(AorC)and (BorC)and
(A or D) and (B or D)




Queries with NOT

* NOT queries cannot be on their own, they are
actually AND NOT queries

» "text AND NOT data”
- text: <8; 1, 4, 8, 12, 16, 20, 21, 30>
- data: <12; 2,4,7,8,10,12,13,15,19,20,21,28>

» We first compute "text AND data”
— <4,8,12,20,21>

* We merge the inverted lists of the term "text” and
"text AND data” in such a way that we remove
documents that appear in both lists
- <1,16,30> 13

Problems with exact matching

We do not find documents thaltmost
match the query

The order of the answer set is random
It is rather difficult to form Boolean queries
It is hard to restrict the size of the answer

Problems with exact matching

(more in detalil)

* We do not find documents thalimost match the
query
— ltis hard to specify the information need
unambiguously with search terssa very strict border
between exact matching and partial matching is not
motivated
» The order of the answer set is random

— The order might be, e.g., the order in which the records
have been stored

— A better result would be the documents in the order of
descending probable relevance

15

Problems with exact matching

It is rather difficult to form Boolean queries

— A user will easily make mistakes in forming
gueries

— "ski resorts in Sweden and Norway
"(Sweden OR Norway) and ski resort”

It is hard to restrict the size of the answer
— The result of AND queries is often too small
— The result of OR queries is often too large

16

Quorum search

« We can try to solve the problems with exact
matching by generalising the Boolean query
into a Quorum search

 |ldea: we automatically extend the query by
stagewise simplifying the conditions

« E.g. the user gives the terms a, b, c and d;
the system forms the Boolean queries
— strict condition> looser conditions

17

Example

aandbandcandd

(@aand b and c) or (aand b andd) or (a and
and d) or (b and c and d)

(aand b) or (aand c) or (a and d) or (b and g
or (b and d) or (c and d)

aorborcord

o

~




A Quorum search

* The answer set of retrieved documents will
increase when we move from one level to the
following looser level
— On the first level, there are few documents, but

relatively more relevant ones
— On more general levels there are more documents, but
relatively less relevant ones

* The user may pick the suitable level that ret@ans
suitable number of documents and fair recall and
precision

19

Partial matching

« With partial matching we try to solve the

problems with exact matching

» We are able to find documents that only

partially match the query

» The answer set is ordered according to how

well the document matches with the query

— The answer set is ordered in probable
decreasing relevance order

20

Partial matching

* We do not necessarily need any operators in
the query
— Any text paragraph can be used as a query
* It is easy to restrict the size of the answer

— The user specifies how many answer
documents s/he wants

21

The vector model

Matching based on theector (space) model is
the most common partial matching method

Before we assumed that in the document
collection there are t separate terms; each
document is described with t terms (terms and
their weights)

In a Boolean search, we can say that a document i
described witha set of t terms

In the vector model each document (and the
query) is described with vector with t

dimensions 2

oY

The vector model

* We make a simple assumption: the terms are independent
of each other> the dimensions are orthogonal to each
other

« We have to define a similarity function that describes the
similarity between a document and a query (or between
two documents)

« The answer documents are ordered according to the
similarity value -> ranking of documents

23

The vector model

keyl avaint

D1 = (w11, wi2, wi3d)

key2 avain2 D2 = (w21, w22, w23)

24




The vector model

» Most similarity functions used in the vector model
are based on the inner product

* The inner product of documentahd query g

t
Sim(diqu') :Zdik o
k=1

* where ¢ is the K term of document;cand g is
the K" term of query g

25

The inner product of vectors

« If the weights of the terms in a document
vector are binary (0 or 1)

— the inner product: number of shared terms (both
the document and the query have 1)

t
Sim(d\’qJ) =zd\k ka
k=1

— document i: (1,0,1) and query j: (0,1,1)
« Inner product: 0+0+1 =1

26

The inner product of vectors

* x=(1,1,1,0,0,0,0,0)
*y=(1,1,1,0,0,0,0,0)

*x=(1,1,1,11,1,11)
*y=(1,1,1,0,0,0,0,0)

e The inner product x ¢ y is in both cases 3

27

The inner product of vectors

« If the weights are non-binary

— The inner product: the sum of the products of the
corresponding pairs (term weights)

t
Sim(d\’qJ) =zd\k ka
k=1

— document i: (0.9, 0.1, 0.9) and query j: (0.1, 0.8, 0.9)

« Inner product: (0.9 - 0.1) + (0.1 - 0.8) + (0.9 )&9.09 +
0.08 +0.81=0.98

— queryj: (0.9, 0.2,0.8)

 Inner product: (0.9 - 0.9) + (0.1 - 0.2) + (0.9 )&:®.81 +
0.02+0.72=1.55

28

The cosine function

» There is no upper limit on the inner product (i.e
maximum value for the similarity)

 Usually, the inner product is normalised with th
lengths of the vectors, in which case the functid
denotes the cosine between the vectors
— Two similar vectors> the angle is 0°, and cosine 1
— Very different vectors> the angle is 90°, cosine 0

» Cosine function: .
dlk L_q]k
1

cos@d,q;) = k=

t

D

Z_(dlk)2 —~ (qlk)2 29

The cosine function

« The length of the query vector does not influence the
ranking of answer documents (the query is the same for all

documents)
Z (qjk)z

t
k=1

« Still it can be useful: the similarity value is always in [0,1]
-> the values of different queries are comparable
— we could have a global similarity threshold to filter treswers

30




The overlap function

« If the documents are very long, the cosine fumctio
will give very small values

— The length of the document affects the denominator
directly

— Queries are usually short, therefore the numerator will not
grow in a similar manner

— We can define a function that does not make longer
documents less significant t

Zmin(dik’qjk)
overlap(d,,q;) = —=— -
min(3> d,. > a;) 3
k=1

k=1

The vector model

» Advantages with the vector model
— Conceptually simple
— The weights of the terms are included (in a natural way)
— Order of similarity
— Itis easy to modify vectors during the retrieval process
» Problems with the vector model

— We assume in the model that terms are independent
even if they are not
— The similarity measures are heuristic: there are no
theoretical grounds for using some measure in a certain
situation (or always)
32

In this part

« Exact matching
— Boolean search
— Quorum search
« Partial matching: the vector model

— Similarity measures: inner product of vectors,
cosine function, overlap function

33




