
1

Information Retrieval Methods

Helena Ahonen-Myka
Spring 2007, part 5

Matching methods (1/2)
Translation from Finnish: Greger Lindén

2

In this part

• Exact matching
– Boolean search

• Partial matching
– The vector model

– Similarity measures

3

Exact matching: Boolean search

• Boolean query:
– A list of terms that are combined with logical

connectives AND, OR and NOT
– The answer is the documents that satisfy the

conditions of the query
– text AND compression AND retrieval

• The document is included in the answer if each of
these three terms is found in the document (free
order)

4

Exact matching: Boolean search

• ”...the compression and retrieval of large
amounts of text is an interesting problem...”

• ”...this text describes the fractional
distillation scavenging technique for
retrieval of argon from air after
compression”...

5

Processing a Boolean query

• query: ”text AND compression AND retrieval”
• The search engine finds each query term (possibly

modified) in the dictionary file
– The dictionary tells in how many documents the term

occurs (df)
• text: 8
• compress: 4
• retrieve: 6

• The terms are sorted in increasing order of their
document frequency df: compress, retrieve, text

6

Processing a Boolean query

• The system reads the least frequent term’s
inverted list from the inverted file

• The candidate list = a set of documents that have
not yet been eliminated and that can be part of the
answer

• The inverted lists of all remaining terms are
merged in turn with the candidate list
– Terms are processed in increasing order of their df

2

7

Example

• The inverted list of the term ’compress’:
– <4; 2, 5, 12, 16>

• The inverted list of the term ‘retrieve’ :
– <6; 2, 7, 12, 16, 20, 21>

• “compress AND retrieve”
– <3; 2, 12, 16>

• The inverted list of the term ‘text’:
– <8; 1, 4, 8, 12, 16, 20, 21, 30>

• “compress AND retrieve AND text”
– <2; 12, 16>

8

Queries with AND
• In an AND query, a document cannot be part of

the answer if it does not belong to all inverted lists
– � The candidate list cannot get longer during the

processing of a query
– When processing term t, the system goes through the

candidate list, and documents which are not in the
inverted list of t are removed

– The candidate list may become empty before all terms
have been processed

• When all terms have been processed, the
remaining documents in the candidate list are the
answer

9

Queries with OR

• ”text OR data OR image”
• The terms can be processed simultaneously: when

merging inverted lists, documents are included only
once
– text: <8; 1, 4, 8, 12, 16, 20, 21, 30>
– data: <12; 2,4,7,8,10,12,13,15,19,20,21,28>
– image: <5; 4,5,9,11,12>

• answer:
<18;1,2,4,5,7,8,9,10,11,12,13,15,16,19,20,21,28,30>

10

A conjunction of disjunctions

• A conjunction of disjunctions is a typical type of
queries
– ”(text OR data OR image) AND (compression OR

compaction) AND (retrieval OR indexing OR
archiving)”

– As a start value for the candidate list we choose the
document set of the “smallest” disjunction; we estimate
the size, e.g., by summing up the df values of the terms

• This is a pessimistic estimate: we do not take any possible
overlap into account

– In the following phase, we merge the candidate list with
the “second smallest” set, etc.

11

More general queries

• All Boolean queries can be transformed into a
conjunction of disjunctions

• ”(information AND (retrieval OR indexing)) OR
((text OR data) AND (compression OR
compaction))”

• � ”(information OR text OR data) AND (retrieval
OR indexing OR text OR data) AND (information
OR compression OR compaction) AND (retrieval
OR indexing OR compression OR compaction)”

12

Transformation

• (A and B) or (C and D) =
(A or C) and (B or C) and
(A or D) and (B or D)

3

13

Queries with NOT

• NOT queries cannot be on their own, they are
actually AND NOT queries

• ”text AND NOT data”
– text: <8; 1, 4, 8, 12, 16, 20, 21, 30>
– data: <12; 2,4,7,8,10,12,13,15,19,20,21,28>

• We first compute ”text AND data”
– <4,8,12,20,21>

• We merge the inverted lists of the term ”text” and
”text AND data” in such a way that we remove
documents that appear in both lists
– <1,16,30> 14

Problems with exact matching

• We do not find documents that almost
match the query

• The order of the answer set is random

• It is rather difficult to form Boolean queries

• It is hard to restrict the size of the answer

15

Problems with exact matching
(more in detail)

• We do not find documents that almost match the
query
– It is hard to specify the information need

unambiguously with search terms� a very strict border
between exact matching and partial matching is not
motivated

• The order of the answer set is random
– The order might be, e.g., the order in which the records

have been stored
– A better result would be the documents in the order of

descending probable relevance

16

Problems with exact matching

• It is rather difficult to form Boolean queries
– A user will easily make mistakes in forming

queries

– ”ski resorts in Sweden and Norway”�
”(Sweden OR Norway) and ski resort”

• It is hard to restrict the size of the answer
– The result of AND queries is often too small

– The result of OR queries is often too large

17

Quorum search

• We can try to solve the problems with exact
matching by generalising the Boolean query
into a Quorum search

• Idea: we automatically extend the query by
stagewise simplifying the conditions

• E.g. the user gives the terms a, b, c and d;
the system forms the Boolean queries
– strict condition � looser conditions

18

Example

• a and b and c and d

• (a and b and c) or (a and b and d) or (a and c
and d) or (b and c and d)

• (a and b) or (a and c) or (a and d) or (b and c)
or (b and d) or (c and d)

• a or b or c or d

4

19

A Quorum search

• The answer set of retrieved documents will
increase when we move from one level to the
following looser level
– On the first level, there are few documents, but

relatively more relevant ones
– On more general levels there are more documents, but

relatively less relevant ones

• The user may pick the suitable level that returns a
suitable number of documents and fair recall and
precision

20

Partial matching

• With partial matching we try to solve the
problems with exact matching

• We are able to find documents that only
partially match the query

• The answer set is ordered according to how
well the document matches with the query
– The answer set is ordered in probable

decreasing relevance order

21

Partial matching

• We do not necessarily need any operators in
the query
– Any text paragraph can be used as a query

• It is easy to restrict the size of the answer
– The user specifies how many answer

documents s/he wants

22

The vector model

• Matching based on the vector (space) model is
the most common partial matching method

• Before we assumed that in the document
collection there are t separate terms; each
document is described with t terms (terms and
their weights)

• In a Boolean search, we can say that a document is
described with a set of t terms

• In the vector model each document (and the
query) is described with a vector with t
dimensions

23

The vector model

• We make a simple assumption: the terms are independent
of each other � the dimensions are orthogonal to each
other

• We have to define a similarity function that describes the
similarity between a document and a query (or between
two documents)

• The answer documents are ordered according to the
similarity value -> ranking of documents

24

The vector model

key1

key2

key3

5

25

The vector model

• Most similarity functions used in the vector model
are based on the inner product

• The inner product of document di and query qj:

• where dik is the kth term of document di and qjk is
the kth term of query qj

∑
=

⋅=
t

k
jkikji qdqdsim

1

),(

26

The inner product of vectors

• If the weights of the terms in a document
vector are binary (0 or 1)
– the inner product: number of shared terms (both

the document and the query have 1)

– document i: (1,0,1) and query j: (0,1,1)
• Inner product: 0+0+1 = 1

∑
=

⋅=
t

k
jkikji qdqdsim

1

),(

27

The inner product of vectors

• x = (1,1,1,0,0,0,0,0)

• y = (1,1,1,0,0,0,0,0)

• x = (1,1,1,1,1,1,1,1)

• y = (1,1,1,0,0,0,0,0)

• The inner product x • y is in both cases 3
28

The inner product of vectors

• If the weights are non-binary
– The inner product: the sum of the products of the

corresponding pairs (term weights)

– document i: (0.9, 0.1, 0.9) and query j: (0.1, 0.8, 0.9)
• Inner product: (0.9 · 0.1) + (0.1 · 0.8) + (0.9 · 0.9) = 0.09 +

0.08 + 0.81 = 0.98
– query j’: (0.9, 0.2, 0.8)

• Inner product: (0.9 · 0.9) + (0.1 · 0.2) + (0.9 · 0.8) = 0.81 +
0.02 + 0.72 = 1.55

∑
=

⋅=
t

k
jkikji qdqdsim

1

),(

29

The cosine function
• There is no upper limit on the inner product (i.e.

maximum value for the similarity)

• Usually, the inner product is normalised with the
lengths of the vectors, in which case the function
denotes the cosine between the vectors
– Two similar vectors � the angle is 0°, and cosine 1

– Very different vectors � the angle is 90°, cosine 0

• Cosine function: ∑ ∑∑
= =

=

⋅

⋅
=

t

k

t

k
jkik

t

k
jkik

ji

qd

qd
qd

1 1

22

1

)()(

),cos(

30

The cosine function

• The length of the query vector does not influence the
ranking of answer documents (the query is the same for all
documents)

• Still it can be useful: the similarity value is always in [0,1]
-> the values of different queries are comparable
– we could have a global similarity threshold to filter the answers

()∑
=

t

k
jkq

1

2

6

31

The overlap function

• If the documents are very long, the cosine function
will give very small values
– The length of the document affects the denominator

directly

– Queries are usually short, therefore the numerator will not
grow in a similar manner

– We can define a function that does not make longer
documents less significant ∑ ∑∑

= =

== t

k

t

k
jkik

t

k
jkik

ji

qd

qd
qdoverlap

1 1

1

),min(

),min(
),(

32

The vector model

• Advantages with the vector model
– Conceptually simple
– The weights of the terms are included (in a natural way)
– Order of similarity
– It is easy to modify vectors during the retrieval process

• Problems with the vector model
– We assume in the model that terms are independent

even if they are not
– The similarity measures are heuristic: there are no

theoretical grounds for using some measure in a certain
situation (or always)

33

In this part

• Exact matching
– Boolean search

– Quorum search

• Partial matching: the vector model
– Similarity measures: inner product of vectors,

cosine function, overlap function

