
1

1

Information Retrieval Methods

Helena Ahonen-Myka
Spring 2007, part 8

Text-scanning methods
Translation from Finnish: Greger Lindén

2

In this part

• Text-scanning methods
– Usage: searching for a query string in a text

when the document collection is small

– Methods
• Brute force method

• Fast string matching: MP, KMP, BM

3

Text-scanning systems

• When the document collection is large, the best
way to implement a retrieval system is usually to
use an inverted file

• If the document collection is small and can fit into
main memory, we can also implement a search by
comparing the query word directly to the text of
the document

• Normal usage: post-processing of search results
– E.g. implementing the proximity operator: do the search

words occur close enough in the document?

4

Text-scanning systems

• The query word is searched through sequential
scanning by comparing the characters in the word
to the characters of the document starting from the
first character in the document

• We assume, that document S is a string of
characters
– S = s0s1...sn-1, where si is a character of some

vocabulary
• And the search pattern P is also a string

– P = p0p1...pm-1, where pj is a character of the vocabulary
• m ≤ n

5

Example

• document S: abracabracadabra

• pattern P: abracadabra

6

Brute force methodabracabracadabraabracadabraabracadabraabracadabraabracadabraabracadabraabracadabra

2

7

Brute force method

• In the worst case, the pattern will match the
text in every character comparison until the
last character of the pattern
– We need n · m comparisons � O(nm)

• S = aaaaaaaaaab, P = aab
• Usually the pattern does not match the text in

a certain position and this can be proven only
after comparing a few characters

8

S = aaaaaaaaaabP = aab++---S = aaaaaaaaaabP = aab++--…S = aaaaaaaaaabP = aab++--S = aaaaaaaaaabP = aab+++ (match!)
9

Fast string matching
• The brute force method moves the pattern only

one character at each comparison
• The method does not benefit from any information

about which characters the pattern contains
• More efficient methods analyse the pattern first

and recognise repeated characters in the pattern
• Based on the analysis, the pattern can be moved

several characters at each comparison
• methods: MP (Morris-Pratt), KMP (Knuth-Morris-

Pratt) and BM (Boyer-Moore)

10

MP (Morris-Pratt)

• S = ... si si+1 si+2 si+3 si+4 s i+5 | si+6 si+7...
• P = p0 p1 p2 p3 | p4

• The first part of the pattern, p0..3 , is found in
the text, but si+6 and p4 do not match

• An occurrence of a pattern P can start in this
fragment at si+2..i+5 only if some prefix of P is
identical to a suffix of the matching part of S

11

MP (Morris-Pratt)• S = ...barba | papa...• P = barba | ari• P = ba rbaari• S = ...sey | chelles...• P = sey | moyr• P = seymoyr
12

MP (Morris-Pratt)

• It is enough to analyse only the pattern,
because
– The prefix of the pattern has matched a text

fragment

– The suffix of the fragment is identical to the
suffix of the prefix of the pattern, before the
point where the characters differ

3

13

MP (Morris-Pratt)

• Preprocessing the pattern:
– We look for the substrings in the pattern that

are repeated

– We construct a transition table mpNext
• mpNext[i] tells which is the longest prefix of P0..i-1

which is also a suffix of P0..i-1

• if the characters up to i-1 matched and ith did not �
i – mpNext[i] positions can be safely skipped

14

void preMP (char *x, int m, int mpNext[]) {int i,j;i = 0;j = mpNext[0] = -1;while (i < m) {while (j > -1 && x[i] != x[j])j = mpNext[j];mpNext[++i] = ++j;}}
15

0 1 2 3 4 5 6 7 8G C A G A G A GG C ≠ G, -> mpNext[2] = 0G A ≠ G, -> mpNext[3] = 0G G = G, -> mpNext[4] = 1G C GA ≠ GC -> j=mpNext[1]=0G A ≠ G, -> mpNext[5] = 0G G = G, -> mpNext[6] = 1G C GA ≠ GC -> j=mpNext[1]=0G A ≠ G, -> mpNext[7] = 0G G = G, -> mpNext[8] = 1
16

MP (Morris-Pratt)

• Searching phase:
– The algorithm moves a window over the text and a

pointer inside the window

– Each time a character matches, the pointer is advanced
• If the pointer reaches the end of the window, a match is

reported

– Each time a character does not match, the window is
shifted forward in the text, to the position given by
mpNext

• The position in the text does not change

17

Void MP (char *x, int m, char *y, int n) {int i, j, mpNext[XSIZE];preMP(x, m, mpNext); /* Preprocessing */i = j = 0; /* Searching */while (j < n) {while (i > -1 && x[i] != y[j])i = mpNext[i];i++; j++;if (i >= m) {OUTPUT(j – i);i = mpNext[i];}}} 18

MP (Morris-Pratt)

• P = a b r a c a d a b r a
• next = -1 0 0 0 1 0 1 0 1 2 3 4• S = abracadab | babracadabra• P = abracadab | r• P = ab | r (the same comparison!)

4

19

KMP (Knuth-Morris-Pratt)

• The MP method can be optimized � KMP
(Knuth-Morris-Pratt) method

• In preprocessing the pattern, we also
require that the characters that follow the
prefix and suffix parts are not identical

20

Void preKMP (char *x, int m, int kmpNext[]) {int i,j;i = 0;j = kmpNext[0] = -1;while (i < m) {while (j > -1 && x[i] != x[j])j = kmpNext[j];i++; j++;if (x[i] == x[j])kmpNext[i] = kmpNext[j];else kmpNext[i] = j;}}
21

KMP (Knuth-Morris-Pratt)

• P = a b r a c a d a b r a
• next = -1 0 0 -1 1 -1 1 -1 0 0 -1 4• S = abracadab | babracadabra• P = abracadab | r• P = a• P = abracadabra

22

0 1 2 3 4 5 6 7 8G C A G A G A GG C ≠ G -> kmpNext[1] = 0G A ≠ G -> kmpNext[2] = 0G G = G -> kmpNext[3] = -1G C GA ≠ GC -> kmpNext[4]=1G A ≠ GG G = G -> kmpNext[5] = -1G C GA ≠ GC -> kmpNext[6]=1G A ≠ GG G = G -> kmpNext[7] = -1
23

KMP (Knuth-Morris-Pratt)

• Searching phase
– Like in MP

– Only the transition table is different (kmpNext)

24

Void KMP (char *x, int m, char *y, int n) {int i, j, kmpNext[XSIZE];preKMP(x, m, mpNext); /* Preprocessing */i = j = 0; /* Searching */while (j < n) {while (i > -1 && x[i] != y[j])i = kmpNext[i];i++; j++;if (i >= m) {OUTPUT(j – i);i = kmpNext[i];}}}

5

25

KMP (Knuth-Morris-Pratt)

• Preprocessing of the pattern can be done in O(m) time
• The search algorithm analyses each character in the

document and for each document character at most one
character in the pattern � at most 2n comparisons

• � O(m + n)
• In practice KMP may not work better than the brute force

method
• The method can easily be extended to a situation with

several patterns
– Occurrences of all patterns are searched at the same time

26

BM (Boyer-Moore)

• We can also compare the pattern and the text starting
from the end of the pattern and continue toward its
beginning � BM (Boyer-Moore) method
– The KMP algorithm analyses the prefix of the pattern each

time; the BM algorithm analyses the suffix of the pattern
each time

• There are two principles on how to shift the pattern in
relation to the text
– Matching shift (aka good-suffix shift)
– Occurrence shift (aka bad-character shift)

• Each principle tells how many positions can be
shifted � the larger shift wins

27

BM (Boyer-Moore)

• Matching shift
– Corresponds to the transition table of the KMP

algorithm

– We store for each suffix of the pattern information if it
is repeated in the pattern

– When we move through the pattern from the end to the
start and we encounter a mismatch between the pattern
and the text, we can safely shift the previous similar
suffix of the pattern to this point

28

BM (Boyer-Moore)• S = abracab | abra...• P = abracad | abra
• b ≠ d
• matching shift

– ”abra” found � the pattern can be shifted safely 7 steps
(the first ”abra” in the pattern can be moved to the
location after the mismatch)• S = abracababra...• P = abracadabra

29

BM (Boyer-Moore)

• Occurrence shift
– assume that “c” is the character in the text at

which the prefix of the pattern does not match

– if ”c” occurs in the pattern, we can shift the
pattern so that the “c” in the pattern matches the
“c” in the text

– if ”c” does not occur in the pattern, we can shift
the pattern to the right of the “c” in the text

30

BM (Boyer-Moore)• S = abracab | abra...• P = abracad | abra
• occurrence shift

– if ”b” is part of the pattern, the closest b to the left in the
pattern can be shifted to this point � the pattern can be
shifted 5 steps• S = abracababra...• P = abracadabra

6

31

BM (Boyer-Moore)

• Matching shift: 7 positions

• Occurrence shift: 5 positions

• We choose the larger shift, i.e. 7 positions

32

BM (Boyer-Moore)

• P: G C A G A G A G

• The vocabulary: A = {A, C, G, T}

• m = 8 (length of P)

• Occurrence shifts (bad character shifts) are
stored in table bmBC

33

void preBmBc (char *x, int m, int BmBc[]) {int i;for (i=0; i < ASIZE; ++i) bmBc[i] = m;for (i=0; i < m-1; ++i)bmBc[x[i]) = m – i - 1;}
34

P: G C A G A G A GbmBC[A] = 8; bmBC[C] = 8;bmBC[G] = 8; bmBC[T] = 8bmBC[C] = 8 – 1 – 1 = 6; bmBC[A] = 8 - 1 – 2 = 5; bmBC[G] = 8 – 1 – 3 = 4;bmBC[A] = 8 – 1 – 4 = 3; bmBC[G] = 8 – 1 – 5 = 2;bmBC[A] = 8 – 1 – 6 = 1; A C G T1 6 2 8
35

BM (Boyer-Moore)

• Matching shifts (good suffix shifts) are
stored in table bmGs

• The computation uses a table suff
– for 0 < i < m,

suff[i] = max {k: x[i-k+1..i] = x[m-k..m-1]}

– P: G C A G A G A G

– suff[7] = 8; suff[6] = 0; suff[5] = 4; suff[4] = 0;
suff[3] = 2; suff[2] = 0; suff[1] = 0, suff[0] = 1

36

void suffixes(char *x, int m, int *suff) { int f, g, i; suff[m - 1] = m; g = m - 1; for (i = m - 2; i >= 0; --i) { if (i > g && suff[i + m - 1 - f] < i - g) suff[i] = suff[i + m - 1 - f]; else { if (i < g) g = i; f = i; while (g >= 0 && x[g] == x[g + m - 1 - f]) --g; suff[i] = f - g; } } }

7

37

void preBmGs(char *x, int m, int bmGs[]) { int i, j, suff[XSIZE]; suffixes(x, m, suff); for (i = 0; i < m; ++i) bmGs[i] = m; j = 0; for (i = m - 1; i >= -1; --i) if (i == -1 || suff[i] == i + 1) for (; j < m - 1 - i; ++j) if (bmGs[j] == m) bmGs[j] = m - 1 - i; for (i = 0; i <= m - 2; ++i) bmGs[m - 1 - suff[i]] = m - 1 - i; } 38

P: G C A G A G A Gsuff: 1 0 0 2 0 4 0 8bmGS: 7 7 7 2 7 4 7 1

39

void BM(char *x, int m, char *y, int n) { int i, j, bmGs[XSIZE], bmBc[ASIZE];preBmGs(x, m, bmGs); preBmBc(x, m, bmBc); /* Preprocessing */ j = 0; /* Searching */ while (j <= n - m) { for (i = m - 1; i >= 0 && x[i] == y[i + j]; --i); if (i < 0) { OUTPUT(j); j += bmGs[0]; } else j += MAX(bmGs[i], bmBc[y[i + j]] - m + 1 + i); } }
40

BM (Boyer-Moore)

• BM does not necessarily analyse each character in
the text

• Average number of comparisons
O(n log(m) / m), worst case O(mn)

• Several alternations
– We use occurrence shift principle only
– We use occurrence shift only, but apply it to the

character which is compared to the last character in the
pattern (and not to the mismatched character)

– As before, but we apply it to the character that follows
the position of the last character in the pattern

41

The proximity operator

• We are searching for several words that occur
closely together

• If we search for a phrase like “computer science”,
we can do as when searching for single words; the
space is just another character

• If the distance between and the order of the words
vary, it is more productive to first search for the
word that occurs more rarely and/or is longer
– The other words are then checked if they are in the

proximity of this word

42

In this part

• Text-scanning methods
– A brute force method

– The MP and KMP algorithms

– The BM algorithm

