Fte263 / 582418 Proof Theory and Proof Search, spring 2004.

- 1. Show that in **G3cp** extended with the axioms for the theory of partial order (page 146 in the book) minimal derivations satisfy the subterm property (in other words, all terms in the minimum-size derivation of $\Gamma \Rightarrow \Delta$ are subterms of terms in Γ, Δ).
- 2. Show that $\Box A \supset \Box \Box A$ is valid in a Kripke model $\langle W, R, v \rangle$ for an arbitrary evaluation v iff R is transitive. Give an example of a model where $\Box A \supset \Box \Box A$ is not true.
- 3. Show that the following formulas are valid in every model:
 - (a) $\Box A \& \Box B \supset \Box (A \& B)$
 - (b) $\Box(A \supset B) \supset (\Box A \supset \Box B)$
- 4. Show that if *R* is symmetric and transitive then $\Diamond A \supset \Box \Diamond A$ is valid.
- 5. (Extra exercise) Show that $\Diamond \Box A \supset \Box \Diamond A$ is valid in a Kripke model $\langle W, R, v \rangle$ for an arbitrary *v* iff *R* is directed. (Directedness means that if *xRy* and *xRz*, then there exists *u* such that *yRu* and *zRu*.)