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Conditional Functional Dependencies (CFDs) have been proposed as a new type
of semantic rules extended from traditional functional dependencies. They have
shown great potential for detecting and repairing inconsistent data. Constant
CFDs are 100% confidence association rules. The theoretical search space for
the minimal set of CFDs is the set of minimal generators and their closures in
data. This search space has been used in the currently most efficient constant
CFD discovery algorithm. In this paper, we propose pruning criteria to further
prune the theoretic search space, and design a fast algorithm for constant CFD
discovery. We evaluate the proposed algorithm on a number of medium to large
real world data sets. The proposed algorithm is faster than the currently most
efficient constant CFD discovery algorithm, and has linear time performance in
the size of a data set.

INTRODUCTION

Poor data quality has been a major problem in many
organisations. Erroneous and inconsistent data has
costed US business hundreds of billions of dollars
because of poor business decisions resulting from the
poor data quality [1]. Recently, conditional functional
dependencies (CFDs) have shown great potential for
detecting and repairing inconsistent data in relational
data sets [2, 3]. For example, the following CFD was
discovered in US airline traffic data in our experiment.
”((Origin State Name, Distance Group — Destination
State Name), Hawaii, 1 || Hawaii). It means that if
the Origin State is Hawaii and the Distance Group is
in 1 (e.g. less than 1000 km), then the Destination
must be Hawaii. Normally, there is no functional
dependency (FD) between attributes (Origin State,
Distance Group) and attribute Destination State. In
other words, two flights departing from the same state
and flying within the same distance group (e.g. less
than 1000 km), they may fly to different destination
states. However, when the original state is Hawaii
and the distance group is 1, the destination state is
dependent on the values of two attributes. In this
example, the destination state has to be Hawaii. This
is a conditional functional dependency where the value
dependency only holds for some specific attribute values
(not for all values).

Conditional Functional Dependencies are designed
for the detection and repairing of inconsistencies of
data. For example, suppose that the above CFD has
been found in January data. In February, we found

a record with the following information (Origin State
Name = Hawaii, Distance Group=1, Destination State
Name = Washington). We have very strong reason to
suspect an erroneous value in the record. Or if a CFD
can be formed when very few records are disregarded,
then these records may contain erroneous values. It is
important for an organisation to have a complete set
of integrity constraints that reflect the organisation’s
policies and domain semantics to improve and maintain
the data quality of the organisation. CFD discovery
helps an organisation to build a set of such constraints.

CFDs can also be used in database design to enforce
the semantical constraints for maintaining high quality
databases. However, most CFDs are to be obtained
from databases since they could not be identified as
functional dependencies at the database design stage.
Firstly, they represent local constraints that domain
experts are not aware of. Secondly, some CFDs are
formed in daily practices and hence they can only be
revealed from data. Therefore, the discovery of CFDs
is the first and very important step for applying CFDs
to data quality enforcement.

The study on the discovery of CFDs has just started.
A few algorithms have been published in the last few
years. An algorithm using an attribute lattice to
generate candidate embedded FDs is published in [1].
A greedy approximation algorithm is proposed in [4]
to compute a close-to-optimal tableau for a CFD when
the embedded FD is given. Three algorithms called
CTANE, CFDMiner, and FastCFD were proposed in
[5]. The rule discovery based method, CFDMiner, has
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been shown to be several orders of magnitude faster
than two other functional dependency based methods.
One major reason is that the rule discovery based
method makes use of the frequency and closure pruning
strategies developed in rule discovery [6, 7].

Constant CFD discovery is a special case of
association rule discovery [5]. In the light of rule
discovery research, a theoretical search space for the
minimal set of CFDs is the set of minimal generators
and their closures in data [3, 9, 7]. This search space has
been used by CFDMiner [5], the currently most efficient
constant CFD discovery algorithm. In this paper, we
will show that the discovery of minimal set of CFDs
does not need all minimal generators and closures. We
will propose new criteria to further prune this search
space. We will then propose a fast algorithm for the
discovery of minimal set of CFDs. The algorithm is
evaluated on some real world data sets and has been
shown to be faster than CFDMiner [5].

2. CONDITIONAL FUNCTION DEPEN-
DENCIES AND CFD DISCOVERY

Assume a table R over a set of attributes
{Ay,As,...,An}. Let dom(A) be a set of values
(or tuples) of attribute (or attribute set) A. Let t;[A]
be the projection of tuples ¢; on attribute (or set)
A. 1In this paper, a capital letter stands for a set or
an attribute, and a lower case letter for an attribute

value. We call a tuple over the set of all attributes
{41, As,..., A} arecord.

DEFINITION 2.1 (Functional dependency (FD)). An
FD over R is represented as X — Z, where (1) X is a
set of attributes and Z is a single attribute and Z ¢ X,

For example, the following two FDs hold in Table 1.

fl: [CC,AC)—CT
f2:  [CC,AC,PN] — STR

f1 requires that two customers with the same country
and area codes also have the same city code; f2 requires
that two customers with the same country and area
codes and the same phone number also have the same
street address.

We only need to consider a single attribute on the
right hand side (RHS) since X — Y Z is equivalent to
X —-Yand X — Z.

DEFINITION 2.2 (Conditional functional dependency
(CFD) [5]). A CFD ¢ over R is a pair (X — Z,t,),
where (1) X — Z is a standard FD, referred to as
the FD embedded in ¢. (2) t, is a pattern tuple with
attributes in X and Z. For each attribute set B C
X U Z, t,[B] is either a constant in dom(B) or an
uninstantiated (or unnamed) variable ‘.’ that stands
for any wvalue of dom(B). Tuple t in R matches the
pattern tuple t, in ¢ if for any attribute set B C XU Z,

CC | AC PN NM STR CcT Z1P

t1 01 908 11111 Mike | Tree Ave. MH 07974
to 01 908 | 11111 Rick | Tree Ave. MH 07974
t3 01 212 | 22222 Joe 5th Ave. NYC | 01202
tg 01 908 | 22222 Jim Elm str. MH 07974
ts 44 131 | 33333 | Ben High st. EDI EH4
te 44 131 | 44444 Tan High st. EDI EH4
tr 44 | 908 | 44444 Tan Port PI MH W1B
tg 01 131 22222 Sean 3rd Str. UN 01202

TABLE 1. An example data set from [5]. Each row
specifies phone details of a customer. CC stands for country
code, AC for area code, PN for (phone number), NM for
(name), STR for street, CT for city, and ZIP for zip code.

t[B] = t,[B] or tp[B] = ‘.7 (t agrees with t, on all
instantiated (or named) attributes of t,.) Relation R
satisfies ¢ if ¥ i,j, t;,[X] = t;[X] and both match
t,[X], then t,[Z] = t;[Z] and both match tp[Z]. Let
LHS(t,) = t,[X] and RHS(t,) = t,[Z].

The following are some CFDs that hold in Table 1. ||
is the divider of LHS (Left Hand Side) and RHS (Right
Hand Side).

¢o ([CC,ZIP] — STR, (44, ]|-))

¢ ([cc, AC) — CT,(01,908||M H))

b2 : ([cC,AC) — CT, (44,131||EDI))
¢s:  ([CC,AC] — CT, (01,212||NYC))

CFDs specify 1) the specific cases of an FD in a data
set, and/or 2) some conditions where FD holds in parts
of a data set. For example, CFDs ¢1, ¢2, ¢3 specify
special cases of FD f1. FD [CC, ZIP] — STR does not
hold in data set 1, but holds for the part of the data
set where C'C' = 44. This has been summarised as a
CFEFD ¢g. An FD can be considered as a special case of
CFD when the tuple pattern contains only the unnamed
variable. For example, FD f1:[CC, AC] — CT can be
represented as a CFD f1: ([CC, AC] — CT, (-, -||-)).

DEFINITION 2.3 (Support of CFDs). The support of a
CFD is the fraction of records in a data set that satisfies
the CFD.

For example, the support of ¢; is 3/8 since three
tuples in the example data set satisfy ¢;. Given a
minimum support requirement, a CFD is frequent if its
support is at least as large as the minimum support.

The major purpose of CFDs is for data quality
enforcement. CFDs should be applicable for future
cases. Many low support CFDs do not generalize and
they are not of interest for data quality enforcement.
For example, we may have CFDs ((ID — Name),
10011110 || John), and ((ID — Name), 10011111 ||
Smith). They explain the current data set but have no
use for future data quality enforcement. Furthermore,
many low support CFDs may be results of random
matches, and they have no use for quality enforcement.
Therefore, we are interested in frequent CFDs.
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DEFINITION 2.4 (Constant CFDs [5]). A CFD is a
constant CFD if its pattern tuple t, consists of constants
only. Specifically, for a constant CFD (X — Z,tp),
tp[Z] is a constant and for all B € X, t,[B] is a
constant.

For example, ¢1, ¢2, and ¢3 are constant CFDs.

If a CFD is not constant, it is wvariable [2]. A
variable CFD represents a set of constant CFDs in
finite domains. For example, the variable CFD
(lIcC,ZzIP| — STR,(44,||-)) in Table 1 can be
specialized as {(|CC, ZIP| — STR, (44, 908||Port PI)),
and (|CC, ZIP| — STR, (44,131||High St))}.

In this paper we only consider constant CFDs for the
following three reasons. First, constant CFDs represent
general CFDs at the value level and are necessary to
the satisfaction check of general CFDs. Second, all
variable CFDs can be upgraded from constant CFDs
for finite domains [2]. Third, in data quality control or
assessment, constant CFDs will be used for consistency
checking [1]

DEFINITION 2.5 (The relationship of constant
CFDs). Let t, and t, be two tuple patterns of constant
CFDs. t, is more general than t, if LHS(t,) C LHS(t4)
and RHS(t,) = RHS(t;). Equally, t, is more specific
than t,. This relationship is denoted as t, < t,.

For example, (|CC, ZIP| — STR, (44, 131||[High St))
is more general than (|CC,ZIP,Phone Number| —
STR, (44,131, 33333||High St)). The second CFD is
implied by the first one and hence is redundant.
Whenever a tuple satisfies the second CFD, it satisfies
the first CFD too. Furthermore, the second CFD
explains at most the same number of tuples as the first
CFD. In work [5], a non-redundant CFD is called left
reduced CFD.

DEFINITION 2.6. [Minimal set of constant CFDs] A
set of CFDs is said to be minimal if no tuple pattern in

the set is more specific than another one. The minimal
set of CFDs includes non-redundant CFDs only.

For example, let a set of CFDs be
{(j]cC,ZIP| — STR,(44,131||High St)), (|CC,ZIP,
Phone Number| — STR,(44,131,33333 || High St)),
(|CC, ZIP,Phone Number| — STR,(44,131,44444 ||
High St)), (|CC, ZIP| — STR, (44,908 || Port PI))}.
The minimal set of CFDs is {(|CC,ZIP| —
STR, (44,131 || High St)), (|CC, ZIP| — STR, (44,908
|| Port PI))}.

In terms of consistency check, the minimal set of
CFDs is as good as the complete set of CFDs. An
inconsistency in a record is identified when the record
contains the LHS of a CFD but does not contain its
RHS. Note that a redundant CFD, say ry, contains
extra values in the LHS with respect to a more general
CFD, say ry, in the minimal set. All inconsistencies
discovered by ro are discovered by 71 too. Therefore,
the set excluding r, does not lose any capability for

consistency check.

DEFINITION 2.7 (The problem of constant CEFD
discovery). CFD discovery is to discover the minimal
set of frequent constant CFDs.

In the following discussions, CFDs are constant CFDs
since we do not consider variable CFDs.

3. A THEORETICAL SEARCH SPACE FOR
CONSTANT CFDS

Constant CFD discovery has a close relationship with
association rule discovery. We firstly discuss their
relationship, and then discuss the search space for
constant CFDs.

We firstly introduce notions in association rule
discovery. A tuple can be equivalently represented
as a set of attribute value pairs, called a pattern.
Given a scheme (Name, Postcode, Phone Number), a
tuple is represented as (John Smith, 077144, 12345678).
The order is important since values have to match
attributes. However, the tuple can be represented as
a set (Name = John Smith, Postcode = 077144, Phone
Number= 12345678). In this representation, the order
is insignificant since values are associated with their
attributes. The tuple representation has been used in
FD discovery, and the set representation has been used
in rule discovery. A pattern is a sub (or super) pattern
of another pattern if its set of attribute value pairs is
a sub (or super) set of the set of attribute value pairs
of another pattern. We use set representation in the
following discussions.

DEFINITION 3.1 (Association rule [10]). Let p be a
pattern and z be an attribute value pair where z & p.
p — z is called an implication. The support of p in
relation R is the fraction of records in R containing p,
the support of z the fraction of records in R containing
z, and the support of p — z or pz (a shorthand for pUz)
the fraction of records containing both p and z in R. The
confidence of p — z is the ratio of the support of pz to
the support of p. Implication p — z is an association
rule if its support s and confidence c are at least as large
as the minimum support and confidence, denoted as an
(s,c) association rule. Confidence and support will be
denoted as conf and supp.

For example, (CC = 01, AC = 908 ) — CT =
MH is an association rule with the support of 3/8 and
confidence of 1. We say that it is a (0.375, 1) association
rule.

OBSERVATION 1. The pattern tuple ¢, of a constant
CFD (X — Z,tp) is equivalent to an (e, 1) association
rule where € is a small positive number.

The above observation has been made in [5]. We
provide a proof in the following for the self-containment
of this paper.

Proof. The pattern tuple ¢, occurs at least once in
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abed (1)

abc (1) abd (2] acd(1) bed (2)

f/i‘lf

ab (2} ac{1) ad (3) be(3) dzy (2
d(4)

a(3) b (4] £(3)

FIGURE 1. The search lattice of Example 1. The support
count is listed with a pattern. One group of generators and
their closure are highlighted in bold.

the data set, and hence has some support ¢ >
0. If any tuple in the data set contains LHS(tp),
it contains RHS(t,). Therefore, supp(LHS(t,)) =
supp(LHS(t,) U RHS(tp,)) and conf(LHS(t,) —
RHS(tp)) = 1. Rule LHS(t,) — RHS(tp) is an (€, 1)
association rule.

Consider now an (e, 1) association rule p — z. Since it
has support € > 0, it occurred at least once in the data
set. Since the confidence is 1, any tuple containing p
must contain z too. Therefore, p — z is a pattern
tuple. O

The confidence of a CFD is the same as that of its
corresponding rule because of their equivalence.

For example, ¢o : ([CC, AC] — CT,(44,131||EDI))
is a (0.25, 1) association rule, (CC = 44, AC = 131) —
CT = EDI.

The next question is how to discover (e, 1) association
rules. This discovery is closely related to closure
operator [3, 11].

Consider a data set R and a pattern p. The closure
of p is its longest super pattern p. D p such that
supp(pe) = supp(p). p. is also called the closed pattern
of p and p is called a generator of p.. In other
words, a closure is the pattern which does not have
a super pattern with the same support. If p,, is the
shortest pattern that maps to the closure p., p,, is
called a minimal generator. In other words, the minimal
generator is a pattern which does not have a sub pattern
with the same support. We give an example to illustrate
the concepts.

ExaMpPLE 1. Consider the following data set. For
simplicity, we only list attribute values that we are
interested in.

A B C D
b ¢ d

a d

a b d

a b ¢ d
b

The search lattice for all patterns in the table is

illustrated in Figure 1. The support is listed with
each pattern. Patterns ac, abc, acd have the same
closure as abcd. abc, acd and ac are its generators
and ac is the minimal generator. In the data
set, other minimal generators and their closures are
{(a,ad), (¢, be), (ab, abd), (cd, bed) }.

We will use minimal generators and closures for
efficient CFD discovery. Firstly, we will discuss the
search space for CFD discovery.

DEFINITION 3.2 (Search space for constant CFDs).
Given a data set, all attribute values and their
combinations form a lattice, which is the complete
search space. The search space is the set of nodes in
the lattice to be traversed in order to discover a set of
constant CFDs.

Normally, the size of the lattice is very large even for
a data set with only a few attributes. For example,
consider a data set of 16 attributes, each of which
contains 4 values. When we search for CFDs with
up to 6 attribute values in the LHSs and 1 attribute
value in each RHS, the size of the lattice (the search
space without pruning) is 242 (see the last paragraph
of Section 5.4 for details.). A large search space makes
the discovery of CFDs challenging.

Forward pruning can be used to make the search
space smaller by predicting nodes that do not contain
CFDs and by removing these nodes from the search
space. The infrequent nodes can be pruned following
the Apriori principle for frequent pattern mining [6].
All descendant nodes (patterns) of infrequent ones are
infrequent and hence are pruned. The pruned search
space is significantly smaller than the unpruned search
space.

The search for a minimal generators and their
closures is another well defined search task [9, 11] and
it is closely related to the non-redundant rule (CFD)
discovery [5]. We do not use all information in the
search space for determining CFDs but only closures
and their minimal generators. For example, nodes a, b,
d, ab, ad, bd, and abd in Figure 1 are nodes in the search
space, but only nodes a, ad, ab and abd are used for
determining CFDs. The four nodes form a search space
for CFDs in this example. We will provide detailed
discussions in the following.

The following result has been discussed in previous
work [7, 8, 9]. A generator and its closure will form a
100% confidence association rule (CFD). For example,
generator ab and its closure abd form a 100% confidence
rule ab — d because of supp(ab) = supp(abd) in
Figure 1.

OBSERVATION 2. All (¢, 1) rules can be derived from
generators and their corresponding closures.

Proof. Let p be a generator and p. be its closure.
conf(p — p\p) = 1 where \ is the set difference
operator. p — p.\p is an (e, 1) rule.
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If p. is not the closure for generator ¢, then supp(q) #
supp(p.) and there is no possibility to form an (e, 1) rule
between them. O

For example, (e,1) association rules in Example 1
include abc — d, acd — b, and ac — bd (equivalently,
ac — b and ac — d). Therefore, a search space for
constant CFDs is the set of generators and closures.
For simplicity of presentation, we use rules to represent
CFDs in this and following sections.

However, we also note the redundant rules between
a non-minimal generator and its closure. For example,
rule acd — b is a redundant rule with respect to rule
ac — b. As a result, the search space for a minimal set
of CFDs is further refined as the following.

OBSERVATION 3. The search space for the minimal
set of CFDs is the set of minimal generators and their
closures.

ExamMpLE 2. Following Example 1, many closed
pattern (and minimal generator) mining algorithms,
such as [12, 13, 7, 14, 15, 16] can find the set of
minimal generators and their closures in the data set.
All minimal generators, their closures and CFDs are
listed in the following table.

minimal generators closures CFDs
a ad a—d
c be c—b
ab abd ab —d
cd bed cd —b
ac abed ac— b, ac — d

Based on Definition 2.6, the final minimal set of
constant CFDs includes a — d and ¢ — b.

Previous work [5] makes use of this search space to
generate the minimal set of CFDs. All five closures are
to be searched to generate the minimal set of CFDs.
However, we will demonstrate that this search space
can be further pruned. In the above example, we do
not search for the closures in the last three rows, i.e.
abd, bed and abed, and we do not miss any CFDs in the
the minimal set of CFDs.

4. FURTHER PRUNING THE THEORETI-
CAL SEARCH SPACE

In this section, we will show that it is not necessary
to use all minimal generators and their closures for
the discovery of the minimal set of constant CFDs.
CFDs from some minimal generators will not be in the
minimal set of CFDs and can be pruned. For easy
understanding, we should show how closures abd, bcd
and abed in Example 2 are pruned step by step by
presenting pruning criteria. We then give an example
to show how the criteria work together to reduce the
search space.

The objective of pruning is to remove nodes from
the search space. The removal of one node effectively
removes all its descendant nodes from the search space

in a branch and bound search. Therefore, we should be
sure that no eligible CFDs will be derived from a node
or any of its descendant nodes before we remove the
node. Formally, a node in the search lattice is prunable
based on two conditions. Firstly, there are no CFDs
that can be produced from the node to be included in
the minimal set of CFDs. Secondly, there are no CFDs
that can be produced from all descendant nodes of the
node to be included in the minimal set of CFDs.

We first present notations for CFD candidates in
the search lattice. Let pair (abd,{a,b,d}) stand for
the node abd in the lattice of Figure 1 and the set of
RHSs of potential CFDs in the node and its descendant
nodes. In node (abd,{a,b,d}), three potential CFDs
are bd — a, ad — b, and ab — d. Formally, a CFD
candidate is represented as a pair (pattern, RHS set).
The first part pattern indicates a node in the search
lattice (when we refer to the search lattice, it is easy
to understand a candidate as a node. However, in the
algorithm, we do not use the lattice as the search space.
Instead, we directly deal with patterns. Therefore, we
use a pattern rather than a node here.). The RHS set
is a set of RHSs of potential CFDs in the node and its
descendant nodes. The removal of one attribute value
pair x in the RHS set indicates the removal all potential
CFDs in the node and all its descendant nodes with
the LHS of x. For example, (abd, {a,d}) indicates two
CFDs bd — a and ab — d. Since value b is removed
from the RHS set of node abd, the value b will be
absent from RHS sets of all descendant nodes of node
abc too. For example, the candidate in node abcd will
be (abed, {a,c,d}). There will be no CFD acd — b.

When we reference the candidates in the search
lattice, we call them descendant nodes and ancestor
nodes. When we do not reference them in the
search lattice, we call them sub candidates and super
candidates. Formally, (P;,77) is a sub candidate of
(P2, Ty) if P C P,. Equivalently, (P, T») is a super
candidate of (P, T}).

The ideas of pruning are outlined as the following.
We firstly prune attribute value pairs in the RHS set of
a node. Using candidate (abd, {a,b,d}) as an example,
if b is pruned from the RHS set, the candidate becomes
(abd,{a,d}). This means that candidate CFD ad — b
and all its more specific candidate CFDs are not in the
minimal set of CFDs. In the following discussions, we
use ad@) — b for any @) to represent all more specific
CFDs of ad — b. Secondly, we consider pruning the
candidate when all attribute values in its RHS set are
pruned, for example, (abd,(). Once a candidate is
pruned, all its super candidates will not be generated.
We need to be sure that no CFDs will be in the minimal
set of CTDs from all super candidates of a pruned
candidate. For example, we prune candidate (abd, ()
only if we know that CFDs from candidate (abdX,Y)
for any X and Y € X will not be in the minimal set of
CFDs. We present two RHS set pruning criteria, and
two candidate pruning criteria in the following.
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CRITERION 1 (RHS set pruning 1). Assume a CFD
candidate (Pz,T). If there is a sub candidate (P,T})
such that supp(P) = supp(Pz), then z will not be in the
RHS sets of all super candidates of (Pz,T) and hence
z can be pruned from RHS set 7'

Proof. P — =z is a CFD because of supp(P) =
supp(Pz). Since P — z is a CFD, all its more specific
candidate CFDs will be CFDs too. However, those more
specific CFDs should be excluded from the minimal set
of constant CFDs by the definition. O

In Example 1, candidate (abd,{a,b,d}) is pruned
to (abd,{a,b}) since supp(ab) = supp(abd). can-
didate (bed, {b,c,d}) is pruned to (bed,{c,d}) since
supp(bed) = supp(cd).

We then look at another RHS set pruning criterion.
Let —z be any value that is not z. supp(P—z) means
the fraction of records containing P but not z. That is

supp(P—z) = supp(P) — supp(Pz).

CRITERION 2 (RHS set pruning 2). Assume a CFD
candidate (Pzz,T). If there is a sub candidate (Pz,T})
such that supp(P—z) = supp(Px—z), then z will not be
in RHS sets of all super candidates of (Pzz,T) and
hence z can be removed from RHS set 7'

Proof. The main point is that if PQx — z is a CFD,
then PQQ — z must be a CFD. So, PQx — z is not
in the minimal set of CFDs. We have the following
deductions.

supp(P-z) = supp(Pz—z) =

supp(PQ—z) = supp(PzQ—z2).

conf(PzQ — z) = supp(PzQz)/supp(PzQ)
= supp(PzQz)/(supp(PrQz) + supp(PrQ-z))
supp(PzQz)/(supp(PzQz) + supp(PQ-z))
supp(PQz)/(supp(PQz) + supp(PQ-z))
conf(PQ — 2)

Therefore, PQx — z will not be in the minimal set
of CFDs since its confidence is at most the same as that
of PQ — z. O

A

Following the example before, candidate (abd, {a,b})
is pruned to (abd, {a}) since supp(a—b) = supp(ad—b).
Candidate (abd, {a}) is further pruned to (abd.f) since
supp(d—a) = supp(bd—a). In the same way, candidate
(bed, {c,d}) is pruned to (bed, ) because of supp(b—c) =
supp(bd—c) and supp(c—d) = supp(be—d).

Now there is not a single potential CFD in candidate
(abd, ) since its RHS set is an empty set. This satisfies
condition 1 stated in the second paragraph of this
section. However, we are unable to prune candidate
(abd, D) since the second condition is not satisfied. For
example, if candidate (abd, ) is pruned, then there is
no possibility to generate candidate (abed, {c}) if we use
an efficient algorithm based on forward pruning. In this
case, CFD abd — ¢ is potentially lost. A candidate has
to be kept even if its RHS set is empty.

Now we discuss criteria for candidate pruning. (.59, )

means that there is not a CFD in candidate (node) S.
However, in order to prune it from the search space we
need to make sure that there is not a potential CFD in
all its super candidates (descendant nodes) in the search
space. The removal of a node in the search space means
the removal of all its descendant nodes from the search
space.

CRITERION 3 (Candidate pruning 1). Candidate
(S,0) is prunable if there is subset U C S such that

supp(S) = supp(U).

Proof. Let S = Pz where z is an attribute value pair
and z ¢ P. Since all values in the RHS set of pattern
S are pruned by Criteria 1 and 2, we know that there
are not CFDs like PQ — z for any (). However, the
candidate is not prunable because there may be CFDs
like SQ — z for any @ where z is an attribute value
pair and = ¢ SQ. Now, we will show that CFDs like
S@Q — x are impossible in the minimal set of CFDs.
Since supp(S) = supp(U) and U C S, for a CFD
SQ — =z, there must be another CFD UQ — =z.
Therefore, SQ — z will not be in the minimal set of
CFDs O

Following the example before, candidate (abd, () is
prunable since supp(ab) = supp(abd). Candidate
(abed, ¢) is pruned too because it is a super candidate
of (abd,0). Candidate (bed,() is prunable since
supp(cd) = supp(bed).

Up to now, three closures abd, bed and abed in Ex-
ample 2 have been pruned since they are unnecessary
for the discovery of the minimal set of CFDs.

We will present another criterion for candidate
pruning, which is related to the CFD candidate
generation.  We will discuss how candidates are
generated before we are able to present the pruning
criterion.

For forward pruning, the Apriori candidate genera-
tion [6] is an effective approach. It takes two steps to
generate candidates: combination and pruning. In the
combination process, prefix sets are used. For exam-
ple, abe, abd, and abe are three sets with the prefix of
ab. The last single values, ¢, d, and e make them dis-
tinct. Candidates are generated from the combination
of two sets with the same prefix. Three candidates are
generated as abed, abce and abde. In the combination
process, each candidate only makes use of two subsets
in the previous level. The existence of a candidate needs
the existence of all its subsets in the previous level. The
pruning process will prune a newly generated candidate
whose any subset does not exist. For example, if bed
does not exist, then candidate abed should be pruned.

CFD candidate generation is more complicated than
the Apriori candidate generation because of the RHS
set. Let us look at two candidates, (abe,®) and
(abd, {a,b,d}). We firstly combine the two to a
new candidate (abed,T) using the Apriori candidate
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generation to generate the pattern part of the new
candidate. The next step is to determine the RHS
set T. Let us firstly set T = {a,b,c,d}. Then we
prune attribute value pairs from the RHS set {a, b, ¢, d}.
Candidate (abc, ) means that none of ab — ¢, ac — b,
bc — a and their more specific CFDs will be in the
minimal set of CFDs. Therefore, only abc — d and its
more specific CFDs are potentially in the minimal set of
CFDs, and the new candidate should be like (abcd, d).
How do we achieve this? Firstly, we expand the RHS
set of each CFD candidate. For (abc, ), the RHS set
is expanded to () U d since d is new to the candidate.
For (abd,{a,b,d}), the RHS set is expanded to abd U ¢
since ¢ is new to the candidate. Secondly, the RHS
set of the new candidate takes the intersection of two
expanded RHS sets. That is T = {d} N {a,b,c,d}.
The new candidate is (abed, {d}). This candidate is
further pruned by its other sub candidates, such as
(abd,{a,b}) and (bcd, {b,c,d}). In the pruning stage,
if any sub candidate of (abed,{d}) does not exist,
candidate (abed, {d}) should be pruned. Let us assume
that two remaining sub candidates (abd,{a,b}) and
(bed, {b,c,d}) exist. Then, we further prune the RHS
set of (abed, {d}) by the remaining sub candidates. We
use sub candidate (abd, {a,b}) as an example. The RHS
set of (abd, {a,b}) is expanded to abc since ¢ is new to
it. The RHS set of new generated candidate (abed, {d})
intersects with the expanded RHS set abc, and the result
is the RHS set of the new generated candidate set. The
new generated candidate set becomes (abed, ().

Let us look at an example to motivate the following
pruning criterion. Let (abe, 0)), (abd, {a,b}), (abe, {a,b})
be all candidates prefixed by ab in the level 3 candidate
set. We have to keep candidate (abc,d) since we
do not know if candidates (abed,{d}), (abce,{e}) or
(abcde, {d,e}) exist. By combining the first two
candidates, we have (abcd, (). At this stage, we have
to keep (abed, () since we do not know if candidate
(abede, {e}) exists. By combining the first and the third
candidate, we have (abce, (). until now, we know that
(abcde, {e}) does not exist and hence (abc, () can be
pruned. The following criterion will enable us to prune
(abe, 0) earlier.

CRITERION 4 (Candidate pruning 2). Consider a
CFD candidate (Sp,0). If for every candidate (Sq,Ty)
with the same prefix S there is ¢ ¢ T}, then candidate
(Sp, D) is prunable.

Proof. We first examine the next level candidates. All
values in Sp will not be in the RHS set of new candidate
(Spq, T) because of (Sp,0). However, q is possible
because of the expansion process in the candidate
combination. ¢ will be eliminated eventually in the
intersection operation since g ¢ T,. We obtain (Spg, 0)
in the next level candidate. Moreover, we obtain
(SQp, D) for any Q # 0 in a recursive way. Therefore,
no CFD can be generated from the candidate (SQp, 0),
and (Sp, D) is prunable. O

Let us re-examine the motivating example before the
Criterion. Attribute values ¢, d, and e make candidates
(abe, D), (abd, {a,b}) and (abe, {a,b}) distinct. Since d
is not in the RHS set of (abd, {a,b}) and e is not in the
RHS set (abe,{a,b}). Based on the criterion, (abe, )
is prunable and we do not search for (abcd, 9), (abee, 0)
and (abcde, ().

We now use another example to show the criteria are
able to prune the search space without generating all
minimal generators and their closures.

ExamMpLE 3. Consider the following data set. For
easy illustration, we only list attribute values that we
are interested in.

A B C D FE

b ¢ d e
a d e
a b d e
a b ¢ e
a b ¢ d

There is not a single CFD in the table, but this
has only been found out after the following closures
(minimal generators) have been examined. No closed
pattern mining methods can reduce the following
search space.

all closures (or minimal generators); [support]

a‘? b7 C’ d7 e; [4/5]
ab, ac, ad, ae, be, bd, be, cd, ce, de; [3/5]
abc, abd, abe, acd, ace, ade, bed, bee, bde, cde; [2/5]

abed, abce, abde, acde, bede; [1/5]

All level 3 candidates are pruned by Criteria 2 and 4
and no level 4 candidates are examined. We use
candidate (abc,{a,b,c}) as an example for pruning.
Since supp(a—c) = supp(ab—c), value ¢ is removed from
the RHS set and the candidate becomes (abe,{a,b}).
Similarly, values a and b are removed from the RHS set
because of supp(b—a) = supp(bc—a) and supp(a—b) =
supp(ac—b). The candidate becomes (abe,(). In the
same way, we have candidates (abd,() and (abe,0).
Based on Criterion 4, candidate (abe, ) is pruned. All
level 3 candidates are pruned in the same way. No level
4 candidates are generated and examined.

In this section, we have demonstrated that it is
unnecessary to use all minimal generators and their
closures to generate the minimal set of CFDs. The
search space for the minimal set of CFDs can be pruned
by the four proposed Criteria. In the next section, we
will present an algorithm that makes use of the four
criteria.

We have shown that the search space by using the
four pruning criteria is smaller than that for the closed
patterns and minimal generators. This work follows
the idea of rule based pruning (in contrast to pattern
based pruning used in closed pattern discovery), and
Criterion 2 is a typical optimality pruning criterion [17,
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]. The major distinction is that RHSs in the optimal
rule discovery are fixed to the class attribute and RHSs
of CFDs in this paper are not fixed and they can be
any attribute values. When the RHSs are not fixed, we
will need to predict whether any attribute values can be
RHSs of all descendant nodes of the current node (or
whether the RHS set of the current node is permanently
empty.). This constitutes the major complexity in the
above discussions and also in the implementation in the
next Section.

5. ALGORITHM OF CFD DISCOVERY

In this section, we present an algorithm for fast
CFD discovery using the pruning criteria presented in
the previous section. These criteria can be used in
conjunction with frequency pruning [6, 9, 19]. The
closure pruning [9] is implied by Criteria 1 and 3 and
need not be employed separately.

5.1. Candidate representation

We store attribute value pairs in lexicographic order.
We do not wuse attribute information explicitly.
However, no node in the search lattice will be formed
by attribute value pairs from the same attribute. This
will be enforced in the candidate generation of this
algorithm. For example, if a;, as are two values from the
same attribute. supp(ai,as) = 0, and pattern (a1, az)
is pruned in the second level of candidate generation,
and all its super patterns will not appear in the search
lattice.

Using notations in the previous section, a candidate is
a pair (pattern, RHS set), denoted by (P, T). The RHS
set T is a set of attribute value pairs that are possible
RHSs of CFDs. RHS set T is a sub or equal set of P
and candidate (P,T') represents a number of potential
CFDs. For example, candidate (abc, {a,b,c}) indicates
three potential CFDs ab — ¢, ac — b and bc — a,
and candidate (abe, {a, b}) indicates two potential CFDs
ac — band bc — a. The removal of attribute value pairs
from RHS set T is determined by Criteria 1 and 2 as
discussed in the previous section. Candidate (P,() is
a legal candidate, and it can be pruned only when it
satisfies Criteria 3 or 4.

5.2. Candidate generator

The algorithm is based on the branch and bound search.
For easy understanding and comparison, we present
Candidate generator in a similar way as the Apriori
candidate generation [(], the most famous branch and
bound algorithm for rule discovery. We call a candidate
l[-candidate if its pattern contains [ attribute value pairs.
An [-candidate set includes all [-candidates. In the
following discussions, we assume that attribute value
pairs in a pattern are stored in a lexicographic order
to avoid generating duplicate candidates like (abe, {a})

and (cba, {a}). Si+1\S; means the set difference of S
and 5.

FunctioN 1. Candidate generator

1. for each pair of candidates (S;_1p,T,) and
(Si—1q,Ty) in l-candidate set do
2:  insert candidate (Sj+1,7T) where S;+1 = S;—1pq
and T = (T,q) N (Typ) in the (I +1)-candidate set
3:  for each S; C S;41 except S;—1p and S;—19 do

4: if candidate (S;,7T;) does not exist then

5: remove candidate (S;4+1,7) and move to the
next pair of candidates

6: else

7 T =T N (T;z) where z = S;11\S;

8: end if

9: if T=0and (S;+1,0) satisfies Criterion 3 or 4

then

10 remove candidate (S;4+1,0) and move to the
next pair of candidates

11: end if

12:  end for

13: end for

The function takes two steps for candidate genera-
tion: combination and pruning. Lines 1 and 2 are for
combination, and lines 4 to 10 are for pruning. We
firstly illustrate the combination. Suppose that we have
two candidates (abc, {a}) and (abd, {a,d}). They have
the same prefix ab, and the pattern of the new candidate
is abcd by joining patterns of two candidates. For the
RHS set of the new candidate, both RHS sets are firstly
expanded as {a,d} and {a,d,c} since d and ¢ are new
to candidates (abc,{a}) and (abd,{a,d}) respectively.
Then the RHS set of the new candidate takes the inter-
section of both expanded RHS sets. The new candidate
is (abed, {a,d}). The intersection of RHS sets here and
on line 7 is to ensure that removed potential RHSs from
the RHS set of a candidate never appear on the RHS
sets of its super candidates. The correctness is guaran-
teed by pruning Criteria 1 and 2.

Secondly we show the pruning process. Suppose
that other 3-candidates are: (acd, {c,d}) and (bed, {b}).
For the new candidate (abed,{a,d}), we need to
make sure that all its sub candidates are in the 3-
candidate set. In this example, they are and hence
candidate (abcd, {a,d}) is kept. RHS set expansion and
intersection are applied to every sub candidate. With
sub candidate (acd, {c,d}), the RHS set of (abed, {a,d})
becomes d. With sub candidate (bed, {b}), the RHS set
becomes (). Now, the new candidate becomes (abcd, 0).
The removal of this candidate will be determined by the
satisfaction of Criteria 3 or 4.

5.3. Pruning and CFD testing

In this subsection, we present another pruning process
after counting the support of candidates in addition to
the one in candidate generation. This is a key to the
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efficiency of the algorithm. In the following algorithm,
€ is the minimum support, and {S\z} means the set
difference between S and {z}.

FuNCTION 2. Prune and test (I + 1) candidate set
(I + 1) is the new level after supports are
counted.
1: for each candidate (S,T) in (I + 1)-candidate set
do
2:  if supp(S) < € then

3: remove candidate (S,T) and move to the next
candidate

4:  end if

5: for each z € T do

6: if supp(S\z) = supp(S) {Criterion 1} then

7: add (S\z) — z to the CFD set, remove z

from T and label candidate (S, T) restricted
8: else

9: if there is an « € (S’ = S\z) such that
supp((S’\z)—z) = supp(S’—z) then

10: remove z from T {Criterion 2}

11: end if

12: end if

13:  end for

14: end for

15: for each candidate (S, ) in (I+1)-candidate set do
16:  if (Sj41,0) satisfies Criterion 3 or 4 then

17: remove candidate (S;y1,0)
18: end if
19: end for

A candidate is pruned from two aspects, the
infrequency of the pattern and the satisfaction of
Criterion 3 or 4. On line 2 a candidate with infrequent
pattern is removed. From lines 6 to 10, we limit
attribute value pairs in the RHS set of a candidate based
on Criteria 1 and 2. On lines 16 and 17, we consider
removing a candidate based on Criterion 3 or 4.

We introduce a concept restricted candidate to easily
test the satisfaction of Criterion 3.

DEFINITION 5.1. Candidate {Pxz,T} is restricted if
there is a candidate (P,T1) such that supp(Px) =

supp(P).

To test if candidate {Px,T} satisfies Criterion 3,
we need to test if its support equals to the support
of any of its sub candidate. ~When the length of
Px is long, there are many such sub candidates, and
the test will affect efficiency. In this algorithm, we
only test this support equality with its immediate sub
candidates whose patterns have one attribute value
pair less. If their supports are equal, we label the
candidate as restricted. All super candidates of a
restricted candidate are restricted too. This is because
supp(Pz) = supp(P) = supp(PQx) = supp(PQ) for
any @. This means the restricted status is inheritable
from any of its sub candidates. Furthermore, the RHS
set of a restricted candidate is not expandable and only

prunable based on Criterion 2. A restricted candidate
is prunable when its RHS set is empty.

We use an example to show how function Pruning
and Testing works.

ExaMpPLE 4. Given the following data set. We
list one attribute value in each attribute for easy
illustration.

A B C D E
b ¢ e

a b ¢ e

a c d e

a b d e
b ¢ d

The candidate generation and pruning are illustrated
in Figure 2. For brevity, we do not draw all edges.
All candidates are grouped by the same prefixed
pattern for the easy observation of candidate generation
and termination. Candidates in dash-lined boxes are
restricted. In level 3, restricted candidates are pruned
by Criterion 3, and others are pruned by Criterion 4.

In the second level, only one RHS value is pruned.
Candidate (ae,{a}) is restricted since supp(ae) =
supp(a). CFD a — e is generated and e is removed from
the RHS set of the candidate following Criterion 1. All
its super candidates are restricted too.

In the third level of candidate tree.  We use
candidates (abe, D), (abe,d) and (ade,() to illustrate
how candidates are generated and pruned.

Candidate (abe,{a,b,c}) is generated initially with
all possible RHSs since each of its sub candidate has
complete RHS set. Since supp(a—c) = supp(ab—c),
¢ is removed from the RHS set. Since supp(a—b) =
supp(ac—b), b is removed from the RHS set. Similarly,
a is removed from the RHS set because of supp(b—a) =
supp(bc—a).  Therefore, the candidate set becomes
(abc,0) after the pruning.  Candidate (abc,() is
eventually pruned by Criterion 4 because candidates
(abd, ) and (abe,P) do not have RHS values d and
e respectively. Candidates (abd, (), (acd,®), (bcd, D),
(bce, D), and (cde, D) are generated and pruned in the
same way.

Candidate (abe,{a}) is initially generated with one
RHS value inherited from candidate (ae, {a}) since they
are restricted. The RHS value a is then pruned because
of supp(e—a) = supp(be—a). Candidate (abe,() is
pruned since it satisfies Criterion 3. Candidate (ace, 0))
is generated and pruned in the same way.

Candidate (ade,{a}) is initially generated with one
RHS value inherited from candidate (ae, {a}) since they
are restricted. Since supp(de) = supp(ade), CFD
de — a is generated and a is removed from the RHS
set of the candidate following Criterion 1. Candidate
(abe, 0) is pruned since it satisfies Criterion 3.

No candidate is left. The program returns CFDs
{a — e,de — a} and terminates.
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Pattern 138
RHSset  ‘ae’

FIGURE 2. All candidates in Example 4

5.4. Algorithm

Now we are able to present our CFD discovery
algorithm in Algorithm 1. Two main functions have
been discussed in the previous subsections.

Algorithm 1 Fast Algorithm for CFD Discovery
(FACD)

Input: data set D and the minimum support €.
Output: The minimal set of CFDs.

set CFD set F' = )

count the support of 1 and 2 patterns

build 1 and 2-candidate sets

prune and test 1 and 2-candidate sets

add CFDs to F

generate 3-candidate set

while new candidate set is not empty do
count support of patterns for new candidates
prune and test the new candidate set
add CFDs to F
generate next level candidate set

- end while

: return

== = e

Algorithm 1 is self explanatory. Level 1 and 2
candidates are counted by an array. We still build and
prune level 1 and 2 candidates to produce the RHS
sets and restricted status for the following candidate
generation.  After that, candidate generation and
pruning are applied to each level of candidates before
and after the support count. CFD selection has been
conducted at each level too. The returned CFD set is
the minimal set of CFDs.

THEOREM b5.1. Algorithm 1 generates the minimal
set of CFDs correctly

Proof. Firstly, without any pruning, the first two lines
of Candidate-generator will generate the complete set
of patterns and hence all candidate CFDs will be
examined.

Secondly, all pruning of candidate CFDs is based on
Criteria 1, 2, 3, and 4, which guarantee that the pruned
CFDs will not be in the minimal set of CFDs.

Thirdly, once a CFD is formed, Criterion 1 will
remove the candidates for producing any of its more
specific CFDs, and hence the output CFDs is the
minimal set of CFDs.

Therefore, Algorithm 1 generates the minimal set of
CFDs correctly. O

The time complexity of Algorithm 1 is mainly
determined by the size of search space. Let N be the
size of the search space, and n be the size of a data
set. The complexity of the algorithm is O(Nn). It is
difficult to estimate IV after the pruning. Let m be the
number of attributes, and p be the average domain size
of attributes. Let us search for CFDs with up to [ values
in their LHSs. Note that this does not mean that the
longest LHS of discovered CFDs is [. It is possible that
all candidates have been searched, but no single CFD
is found. In the worst case, Npax = Zig(C(m,z)pl)
where C(m, i) denotes the number of combinations of
i attributes from m attributes and p’ indicates the
number of value combinations within 4 attributes. In
the worst case, the complete search space has been
searched. Npax ~ (mp)*! when | < m. In the
best case, Nupin = Sorq (C(m,i)p') ~ (mp)?. In the
best case, it becomes clear that all other candidates do
not contain CFDs after level 2 candidates have been
searched. For example, let m = 16, [ = 6 and p = 4.
Npax = 2*2 and N, = 2'2. The difference between
Npax and Nyyiy is huge. Generally speaking, the search
space can be any size in between. There is not a good
estimation of N because the effectiveness of pruning
depends on the value distribution in a data set. In
practice, IV is much closer to Ny, than Npy... Let
N = [BNpax where (§ is a very small number and is
determined by the value distribution of a data set. The
complexity is still high for data sets of many attributes.
In sum, the algorithm scales well with the data size,
but does not scale well with the number of attributes.
This is common for association and non-redundant rule
discovery algorithms [6, 9, 11, 19]. We will assess its
efficiency and scalability in experiments.

6. INTERESTING CFDS

We normally find many CFDs from a medium data set.
Are they all interesting?

A CFD (X — Z,z||z) summarises a fact that when
value (tuple) = occurs in attribute X of a record then
value z must occur in attribute Z of the same record.
When we ignore the database scheme, this means that
the set of records containing x is a subset (or an equal
set) of the set of records containing z. We define the
covering set of a tuple as all records containing the
tuple. We denote this relationship as cov(z) C cov(z).
A key question is if cov(z) C cov(z) occurs just by
chance. For example, let the size of a data set be 1000,
and let z occur in the data set 500 times. We assume
that  only occurs twice. The chance of cov(z) C cov(z)
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is 1/2*1/2 = 0.25. This means that even if CFD
(X — Z,z||2) has been discovered, it likely occurs
just by chance and has nothing to do with a database
constraint.

Fundamentally, we do not wish to have a CFD (X —
Z,x||z), with & and z being independent. Chi square
test can be used to test if z and z are independent.
Let the observation from a data set be summarised as
follows.

z -z
x | supp(zz) supp(x—z)
-z | supp(—zz) supp(—x—z)

Here -z and —z mean that x and z do not occur

in a record. supp(zz) means the proportion of

records containing both z and z. supp(—z—z) means

the proportion of records containing neither = or z.

supp(z—z) means the proportion of records containing

2 but not z, and supp(—xz) means the proportion of

records containing z but not z.

If x and z are independent, the expected supports in
cells are listed in the following table.

z -z
x| supp(z) xsupp(z)  supp(z) * supp(—~z)
—a | supp(—z) * supp(z) supp(—z) * supp(-z)

Here supp(—z) and supp(—z) mean the proportion of

records that do not contain x and z respectively.

Chi square value indicates the variance of the
observed supports to the expected supports.

4
X* =) _(supp] — suppf)?/ supp;

i

where ¢ is a cell in a contingency table, and supp{
and supp{ are observed and expected supports in the
corresponding cell.

The chi square values can be mapped to statistical
significance, in this case with two degrees of freedom.
For instance, x? > 5.99 indicates a p-value of 0.05.
However, since we conduct a huge number of such tests,
many associations are also caused by chance. This is
a result of multiple comparisons [20]. Because of this
multiple testing, the nominal p-values should not be
interpreted as correct statistical significance. However,
the p-values or the chi square values are useful as a tool
to rank patterns

In our previous example, x occurred only twice, and
both times with z, which in turn occurred in 500 out
of 1000 tuples. x? = 0.33. This indicates that they
are actually independent. Therefore, the CFD is not
interesting.

Chi square test should not be used for small sample
sizes because it is only an approximation of the true
distribution [22]. In our case this is not a problem,
since a frequency threshold will prune rare CFDs. If
needed, Fisher’s exact test [22] can be used for small
sample sizes to compute exact nominal p-values.

Data sets Size #Attributes
US Airline 520417 23
Mushroom 8124 23
Census Income | 299285 21
Audiology 200 70

TABLE 2. A description of data sets

7. EXPERIMENTS
7.1. Efficiency and scalability

We have conducted experiments on the data sets as
described in Table 2.

The US Airline data set has been downloaded
from (http://www.transtats.bts.gov/). We have
downloaded one month data and removed rows with
the majority of missing values. We have also removed
irrelevant and redundant attributes and we keep 23
attributes. The dimension of US airline data set looks
not high, but it has 15242 attribute values. This means
that each attribute has on average 662 values. Such a
large number of attribute value pairs is challenging for
a CFD discovery algorithm.

Census income, Mushroom and Audiology data sets
have been downloaded from the UCI Machine Learning
data repository [21]. The Census Income data set is
merged with the training and test data sets. Numerical
attributes and irrelevant attributes have been removed.
The Audiology data set has 70 attributes, and we use it
to test the scalability of the algorithm with the number
of attributes. The Audiology data set is a small data
set, but its dimension is higher than other data sets.
We use it to test the scalability of the algorithms.

There are functional dependencies in the US Airline
data set. There are many CFDs in the US airline data
set too, e.g. 28955 with the minimum support of 0.001.
There are not functional dependencies in other data
sets, however, there are many CFDs in these data sets.

To demonstrate the efficiency of the proposed
algorithm, we compare the proposed algorithm with
the currently most efficient CFD discovery algorithm
CFDMiner [5]. The core component of CFDMiner is
to find minimal generators and their closures. There
are many algorithms for closed pattern mining [16].
Each one has its own strengths and weaknesses. For
example, frequent pattern tree based methods [12,

, 7] are normally time efficient but may not
handle high dimensional data because of their large
memory consumption.  Branch and bound search
based methods [14, 15] are normally memory efficient
but may not be time efficient for small data sets
since they scan a data set many times. To have a
fair comparison, we have implemented a branch and
bound algorithm, A-CLOSE [15], for minimal generator
discovery, as the core for CFDMiner (we could not
obtain the original implementation because of potential
commercial interest on it.). Our aim is to handle
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FIGURE 4. The scalability of the algorithm FACD with the data size and the number of attributes

large and very large data sets with the low minimum
support. Memory efficiency is very important given the
fact that some fast closed pattern mining algorithms do
not handle large data data well or could not discover
patterns with the low minimum support [16].

Experimental results of FACD in comparison to

CFDMiner are listed in Figure 3. FACD is faster than
CFDMiner on all three data sets. To understand the
results, we list the number of candidates searched in
Figure 3. The trend for time efficiency is the same as
the trend for the size of search space. The improvement
of efficiency is obtained by the pruning search space of
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the proposed algorithm.

The scalability of the proposed algorithm with the
data set size and the number of attributes are listed in
Figure 4. FCAD scales well with the size of a data set.
So does CFDMiner. We note that some data points
deviate from the straight lines in the figure. This is
because the size of search space changes with the change
of data sets. The overall trends of both algorithms
are consistent. FACD does not scale well with the
number of attributes. However, FACD performs better
than CFDMiner with the increase of the number of
attributes. All rule and FD discovery algorithms do not
scale well with the number of attributes since their time
complexity are eventually exponential to the number of
attributes [6, 19, 9, 11]. 70 attributes are high for these
algorithms.

7.2. Significance of discovered CFDs

To wunderstand the discovered CFDs, we study
the support of LHS and RHS with the statistical
significance of CFDs. Chi square test [22] is used to
test if LHS and RHS are independent. Normally, if a
chi square value is less than 2, LHS and RHS are very
likely to be independent. The higher a chi square value,
the lower possibility of independency between LHS and
RHS. To obtain a reliable chi square value estimation,
we need to keep the expected count in every cell of
a contingency table above 5. We set the minimum
support as 0.0031 to ensure that the expected support
number of (supp(zx,z)) of a CFD tuple pattern  — z
is more than 5. We removed CFDs with the expected
support number of less than 5 in any other cell from the
discovered CFDs. We obtained 2091 CFDs from the US
airline data set.

The distribution of chi square values of the discovered
CFDs is listed in Figure 5. All chi square values are
larger than 5. The distribution has two peaks. Many
CFDs have very high chi square values (more than
10000 with the highest ones of 520417) and many have
chi square values between 5-10 . Not many other CFDs
locate in between. We list some typical ones in Table 3.

Most CFDs with very high chi square values are those
with the strongest association (one to one mapping from
the LHS to the RHS). For example, the first CFD in
Table 3 instantiates FD “Destination World Area Code
— Destination Name”. There are a number of CFDs
with different Destination Cities.

Some CFDs with very high chi square values do not
associate with FDs. For example, the second CFD in
Table 3 does not correspond with an FD. However, it
explains a number of flights flying between cities in
Hawaii. Their characteristic is the short distance, which
is too short to fly off Hawaii. These types of constraints
are most likely not designed in a database but form in
data.

A CFD with a middle level of chi square value is
shown as the third CFD in Table 3. This captures a

1: ((Destination Wac* — Destination Name), 91 || California)
supp(LHS) = 60211, supp(RHS) = 60211, x? = 520417
*Wac: World area code

2: ((Origin Sate Name, Distance Group —
Destination State Name), Hawaii, 1 || Hawaii)
supp(LHS) = 7150, supp(RHS) = 9436, x2 = 392596

3: (( CRS Departure Time, Arrival Delay Groups —
Departure Delay,), 6:00, -2 || 0)
supp(LHS) = 1625, supp(RHS) = 429163, x2 = 346

4: ((Destination Wac*, Departure Time Block, Arriving Time
Block — Diverted), 91, 18:00-18:59, 19:00-19:59 || 0)
supp(LHS) = 2085, supp(RHS) = 519163, x? = 5.1
*Wac: World area code

TABLE 3. Some typical examples of discovered CFDs

common sense in data — “If a flight arrives earlier than
the schedule by 16-30 minutes, it most likely departs on
time”. However, this information has not been captured
by an FD because of few violations. The third CFD
shows a subcase of flights departing at 6:00. There are
a number of similar CFDs for different departure times.

Some CFDs can be uninteresting even though they
have a chi square value higher than 2. The fourth CFD
in Table 3 shows an example. It says that a flight
departing between 18:00 and 19:00 and arriving at its
Destination of World Area Code 91 between 19:00 and
2:00 has not been diverted. Given that 99.76% of flights
have not been diverted, people may not be interested
in such a “trivial truth”. A number of CFDs carry the
similar semantic meanings.

Figure 5 shows the relationship of chi square values,
supports of LHS and RHS. We see that CFDs with
highest chi square values locate at the diagonal of the
plane formed by supports of LHS and RHS. This means
that they correspond to CFDs of one to one mapping
between LHS and RHS. Other CFDs with high chi
square values locate at the corner of low RHS support.
CFDs with a highly supported RHS normally do not
have high chi square values.

The discovered CFDs will mainly be used for data
quality improvement, especially for detecting and fixing
value inconsistencies. =~ We have not discussed the
application of CFDs in this paper. We refer readers
to the following work [2, 3, 23] for the use of discovered
CFDs.

8. CONCLUSIONS

In this paper, we have studied the problem of
discovering the minimal set of constant CFDs that
hold in some given data. As in previous work, we
take advantage of the observations that constant CFDs
essentially are 100% confidence association rules, and
that the minimal set of CFDs can be produced from
the set of minimal generators and their closures. We
proposed new pruning criteria to further reduce the
search space, removing unnecessary generators and
closures.

We designed an efficient algorithm based on the new
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