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Previously, we have presented a data mining-based algorithmic approach to genetic association

analysis, Haplotype Pattern Mining. We have now extended the approach with the possibility of

analysing quantitative traits and utilising covariates. This is accomplished by using a linear model for

measuring association. We present results with the extended version, QHPM, with simulated

quantitative trait data. One data set was simulated with the population simulator package Populus,

and another was obtained from GAW12. In the former, there were 2–3 underlying susceptibility genes

for a trait, each with several ancestral disease mutations, and 1 or 2 environmental components. We

show that QHPM is capable of finding the susceptibility loci, even when there is strong allelic

heterogeneity and environmental effects in the disease models. The power of finding quantitative trait

loci is dependent on the ascertainment scheme of the data: collecting the study subjects from both

ends of the quantitative trait distribution is more effective than using unselected individuals or

individuals ascertained based on disease status, but QHPM has good power to localize the genes even

with unselected individuals. Comparison with quantitative trait TDT (QTDT) showed that QHPM

has better localization accuracy when the gene effect is weak.



Interest in association analysis and LD map-

ping methods for complex and quantitative traits

is increasing, especially as experience has shown

linkage mapping of complex trait susceptibility

loci to be relatively inefficient. This inefficiency is

probably due to small locus effects (locus specific

λ
s

below 2±0) expected to characterize many

complex disease loci (Risch, 2000). Power simu-
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lations have shown that the numbers of core

families or affected sib-pairs needed for mapping

loci of such faint effect with linkage methods is

beyond any reasonable effort (Hauser et al. 1996).

Compared to linkage analyses, association

methods should be more powerful when pen-

etrance of the genes is low (Abecasis et al. 2000).

Despite the obvious need for non-linkage based

approaches, serious doubts concerning the feasi-

bility of association mapping have been put

forward. The most relevant questions are (1)

whether there is enough LD in the populations to

make the LD-based gene mapping worthwhile,

and (2) whether the statistical methodology for

association analysis will be able to cope computa-
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tionally with the number of markers, disease

models, weak gene effects and environmental

effects possibly needed to find the true underlying

gene effects. Concerning the strength of LD,

recent studies of LD in the Caucasian populations

show that the genome is composed of blocks of

DNA, 20–100 kb in length, inside which the

markers are in almost complete LD (Reich et al.

2001; Abecasis et al. 2001a ; Daly et al. 2001).

Further, as few as 2–4 most common haplotypes

in a block cover 90% of a population (Daly et al.

2001). This block structure seems to imply that

an LD-based search of disease loci would perhaps

require only a few markers per block to be typed:

with a few selected SNPs a block could be

identified. Thus, there seems to be enough LD in

short distances in order to facilitate LD-based

mapping, at least in distances of a couple of

hundred thousand kilobases. Currently, a haplo-

type map describing the block structure is under

construction (Helmuth, 2001), but large-scale

studies on the extent and range of LD blocks are

still needed to evaluate their true usefulness in

LD-based gene mapping.

Concerning the ability of computational meth-

ods to cope with the expected complexity of

statistical models, and the sheer amount of data,

it seems that development of methodology is

clearly warranted. Several new approaches, both

for dichotomous and for quantitative trait as-

sociation analysis}LD mapping, have been pub-

lished during recent years. Many of the newer

tests are based on TDT (Spielman et al. 1993), and

thus use family or family trio data. A general test

of association for quantitative traits in nuclear

families (QTDT, Abecasis et al. 2000), including

test statistics proposed by many other re-

searchers (Allison, 1997; Rabinowitz, 1997;

Fulker et al. 1999), is a TDT-based approach, in

which the quantitative response is modelled by

variance component methods. Contrary to

family-based tests, an approach using population

samples consisting of unrelated individuals has

recently been published by, for example, Zhang &

Zhao (2001). Rannala & Reeve (2001) present an

interesting approach that uses MCMC methods

for the multipoint linkage disequilibrium map-

ping of a susceptibility gene. Some of the new

methods are relevant for bi-allelic markers only

(Zhang & Zhao, 2001), and some are relevant to

all types of markers (Rannala & Reeve, 2001).

Also, attempts to utilize neural networks have

been presented (Curtis et al. 2001).

Previously, we introduced a data mining in-

spired algorithmic approach, Haplotype Pattern

Mining (HPM), for genetic association analysis of

binary traits (Toivonen et al. 2000; Sevon et al.

2001). HPM utilises linkage disequilibrium be-

tween close genetic markers in relatively densely

mapped data: all trait-associated haplotype pat-

terns, potentially with small gaps, are searched

from the data. The strength of association of the

patterns is measured by a suitable statistic, such

as a simple χ# test, and a scoring function is used

for combining the information about strongly

associated patterns into a prediction of a sus-

ceptibility gene location. We showed that with

such an association method, one is able to find

disease genes with moderately small sample sizes

and low gene effects : for instance, with λ
s
¯ 1±7,

sample size 200 affected individuals and 200

controls, the probability of finding the right

genetic area (prediction error less than 4 cM) is

still greater than 80% (Toivonen et al. 2000).

In this paper, we extend the HPM method to

utilise information from quantitative traits,

either as a response variable or covariates. This is

accomplished simply by measuring the strength

of association with a linear model. Results from

power analysis with simulated data are pre-

sented, with comparison to QTDT.



The QHPM analysis for quantitative traits is

carried out as follows. We assume that either (a)

family trios with genotypes or (b) case-control

data with haplotypes are available. The family

trios are haplotyped, and the trait and covariate

values of the offspring are assigned to the trans-

mitted haplotypes of a trio, whereas the values

of the parent are assigned to the corresponding

non-transmitted haplotype. Now, all haplotype
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patterns that occur at least a specified minimum

number of times are searched for: given a marker

map M with k markers m
"
, …, m

k
, a haplotype

pattern P on M is defined as a vector (p
"
, …, p

k
),

where each p
i
is either an allele of m

i
or the ‘don’t

care’ symbol (n). The haplotype pattern P occurs

in a given haplotype vector (chromosome) H¯
(h

"
, …, h

k
) if p

i
¯ h

i
or p

i
¯ n for all i, 1% i% k.

The patterns are allowed to include gaps (n), in

order to account for missing and erroneous data

(Toivonen et al. 2000). For each pattern we fit a

linear model,

Y
j
¯αβI

pj
β

"
X

"j
β

#
X

#j
Iβ

n
X

nj
ε

j
,

where Y
j

is the (quantitative) trait value for

individual j, I
pj

is the indicator variable for the

occurrence of the haplotype pattern P in a

chromosome of individual j, X
nj

is the value for

nth explanatory variable for individual j, and ε
j
is

the error term. The explanatory variables, or

covariates, might be environmental factors, sex,

age at examination, etc. In this model the trait is

normal and the effects of covariates linear. The

significance of a pattern as a covariate was

obtained from a t-test comparing the model to

the best fitting model in which the corresponding

coefficient is zero. These nominal significances (p

values) form the basis for the scoring function for

markers used in QHPM. An example how the

method works is given in Figure 1.

Scoring function

For each marker in turn, all haplotype patterns

that include that marker are considered, the

number of which is denoted by s in the following.

Informally, the markers in which the overlapping

haplotype patterns show strong association to

the phenotype are those of most interest. The

distribution of observed nominal p values of all

haplotype patterns overlapping a marker are

compared to a uniform distribution between 0

and 1. Uniform distribution would be expected

for mutually independent patterns not associated

with the trait, under the null hypothesis of no

trait association. We acknowledge that the pat-

terns we observe and their p values are not

mutually independent, but the uniform distri-

bution is a useful approximation for the expected

distribution. As a measure of the distance be-

tween the observed distribution of p values and

the uniform distribution the following heuristic

scoring function was used: Let t
r

be the rth p

value in the sorted list of s observed p values for

a given marker, and q
r
the expectation of the rth

p value (r}(s1)), if s p values were randomly

picked from the uniform distribution. The score

was defined as the mean of the distances

(t
r
®q

r
) log(t

r
}q

r
), which is an ad hoc statistic that

was proven to perform very well in simulation

experiments. This measure yields larger distances

when the observed distribution is skewed towards

lower p values. In the experiments, the disease

gene is predicted to be at the marker with the

largest distance measure.

In addition to the distance described above,

the Kolmogorov–Smirnov goodness-of-fit test

(comparing the observed and expected distri-

butions of the p values) was tested for scoring

function. However, Kolmogorov–Smirnov did

not work even nearly as well as the heuristic

distance measure, which was therefore used for

all analyses.

For evaluation of empirical significance levels

of the scores, we propose permutation tests to be

carried out, permuting randomly the trait values

associated with the chromosomes.

QTDT

QTDT version 2.2.1 was used for the com-

parative analyses of power with quantitative

responses. QTDT is a variance component model

approach, where all available offspring can be

included in the analysis, with or without parental

information.The test is not biased on the presence

of linkage or familiality. The approach is suitable

for dense maps. For each of our own simulated

data sets, the parents of the 200 affected indi-

viduals were included, yielding in total 1200

chromosomes per set. The test was performed as

described in Abecasis et al. (2000). The prediction

of the location of the disease gene for each data

set was made to the marker with the highest
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Fig. 1. An example of the QHPM method. (A, B) First, all haplotype patterns exceeding a given frequency
threshold are searched for from haplotype data, where markers are denoted by M and chromosomes with H.
(C) Then, for each frequent pattern (P) in turn, a linear model is fitted to the data containing the response
variable Y and, in the example, a single covariate X and the dummy variable for the pattern. (D) p value for
each pattern is yielded by t-test. (E) The markers are scored by our heuristic distance measure, which
compares the p value distribution of the patterns overlapping the marker under consideration to the expected
uniform distribution under the null hypothesis.

value of F-test statistic (lowest uncorrected p

value).



Simulated data sets

We simulated data in order to evaluate the

performance of the extended HPM, and to com-

pare it with the QTDT method. The simulations

were carried out with the population simulator

Populus (Ollikainen, 2002). The simulated data

corresponds to a moderately sized, isolated popu-

lation, which has grown from 100 founder indi-

viduals to 100000 in 20 generations. The genetic

length of the simulated chromosomes was 100 cM

for both males and females. Within this region,

the disease locus was randomly selected, and 6

founder mutations were randomly assigned to the
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initial population, all of which were then as-

sociated to a different founder haplotype. No

chiasma interference was modelled. The simu-

lated microsatellite markers had 4 alleles with

frequencies of 0±4, 0±2, 0±2, and 0±2 in the founder

population. The markers were spaced 1 cM apart.

We computed the liabilities to the disease for

each individual using two alternative models :

DM
"
¯ 2x

g
x

e"
x

e#
x

r
C

"
,

and

DM
#
¯ 5x

g
x

e"
x

e#
x

r
C

#
,

where x
g
is an indicator variable for the presence

of at least one of the disease-predisposing muta-

tions, yielding a dominant disease model with

reduced penetrance. Variables x
e"

and x
e#

are

simulated environmental components affecting

the liability, which are observed for each in-

dividual in analysis, and x
r

is an unobserved

random component, all of which follow a stan-

dard normal distribution N(0,1). Constants C
"

and C
#
represent the baseline liability, and they

are adjusted in an extra pre-sampling phase to

make the prevalence of the disease as close to the

target value of 5% as possible. When the liability

of an individual has been computed, the disease

statuses are statistically defined: an individual’s

probability of being affected is obtained from

formula

log
p

1®p
¯DM

i
,

where i¯ 1 for model DM
"

and i¯ 2 for model

DM
#
.

For quantitative analysis, five traits, Q
"
–Q

&
,

were simulated. The value for each trait Q
j
, j

denoting the strength of genetic effect, was

computed from the formula

Q
j
¯ jx

g
x

e"
x

e#
r,

where x
g
, x

e"
, and x

e#
are the genetic and en-

vironmental liability components described

above, and r is a random value between zero and

unity. Since the trait values differ only by the

coefficient of the genetic component, equation

Q
"
¯I¯Q

&
holds when no disease gene is

present, whereas equation Q
j
¯Q

j−"
1 holds

( j ` ²2, …, 5´) when the individual has inherited a

disease-predisposing mutation.

The sampling from the simulated population

was done on the basis of affection status for both

quantitative traits and the disease status: 200

independent trios with an affected offspring were

randomly sampled. For the analysis of quan-

titative traits no further sampling based on

values of quantitative traits was done. This

ascertainment scheme closely resembles real

studies in the sense that often data are collected

through an affected proband, and there are

correlated quantitative traits which have been

measured and need to be analysed in the data.

The effect of fixed prevalence is that there are

more carriers of the liability alleles in a sample of

affected individuals given by DM
#

than those

created by DM
"
. Thus, the affection status as well

as the quantitative traits will be more ‘geneti-

cally’ determined in the group DM
#
compared to

DM
"
, rendering the data that have been simulated

under the model DM
#

easier for gene mapping

purposes.

GAW12 data

In addition to our own simulated data, GAW12

data (Almasy et al. 2001) was used, in order to

compare the performance of the QHPM method

with different simulated data sets, and to ensure

its robustness against varying population and

disease model parameters. GAW12 data consist

of 50 replicates of a simulated isolated popu-

lation. Each replicate includes 1497 individuals

in 23 extended pedigrees. For each individual,

five quantitative traits, Q
"
–Q

&
, and affection

status have been measured. The genetic back-

ground for the traits is complex, involving five

major genes for Q
"
–Q

&
, and one for affection

status, with complex gene–gene and gene–

environment interactions. In total 2855 marker

genotypes, spanning the whole genome (22 chro-

mosomes), were given per each individual alive.

Marker mean heterozygosity was 0±81, and the

average marker spacing 1 cM. Because QHPM

uses haplotype data as input, we designed a
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Fig. 2. An example of a successful disease gene localization. The vertical line shows the true location of the
disease gene (70.36 cM from the start of the region). The curve corresponds to the marker-wise scores.

simple algorithm for ascertaining independent

family trios from the pedigrees, based on (1)

affection status of the offspring or the value of the

quantitative trait being studied in the offspring,

and (2) the genotype information availability in

the trios. The quantitative trait values were

chosen either from (I) the upper 10% tail of the

quantitative trait distribution, and the control

individuals from the lower 10% end of distri-

bution or (II) the upper quartile and lower

quartile. Only one trio per pedigree was chosen,

to ensure the independency of the trios. The

choices were made in 25 replicates in order to

achieve a reasonable number of affected indi-

viduals from the data. The actual number of

individuals sampled was a little less than 600,

depending on the trait. The family trios were

haplotyped by an algorithm defining the allele

phases for each trio. Alternatively, haplotypes

can be obtained by, e.g., using the haplotyping

feature of the GENEHUNTER (Kruglyak et al.

1996) software package.

The GAW12 data differs from our own simu-

lated data in the following: (1) the GAW12

isolated populations are smaller ; (2) the disease

model is more complicated with dichotomous

disease status affected by one major gene, 5

quantitative traits, and a household effect; (3)

high (25%) disease prevalence; (4) each quan-

titative trait has a complex background with

both genetic and environmental effects, as well as

interactions affecting them; (5) age-dependent

penetrance for affection status.

QHPM parameters

The QHPM analyses were made mostly using

one set of parameter values: the maximum length

of the haplotype patterns to search for was set to

7 markers, and the maximum number of gaps per

pattern to 1, with the maximum gap length being

1 marker. The minimum number of occurrences

of a pattern was 10 (frequency threshold), to

exclude patterns for which significant association

could not be obtained. Experiments with other

parameter settings, analysing dichotomous re-

sponse variable, have been described in our

previous paper (Toivonen et al. 2000), in which it

was shown that the method is robust to different

choices of parameters.

Localization accuracy

To illustrate the QHPM method, a typical

example with correct disease gene localization is

shown in Figure 2. True vs. predicted locations
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Fig. 3. Predicted vs. correct location of the disease gene in 100 simulated data sets for the trait with the
strongest genetic determinant (Q5) and the disease model with a strong genetic effect (DM

#
). The sample of

200 trios had been ascertained based on affectation status alone.

for 100 simulated data sets with simulation para-

meters as described above, with the quantitative

trait model DM
#
, trait Q

&
, are shown in Figure 3.

The power of the QHPM was analysed with 100

replications of data in all simulation settings:

both models DM
"

and DM
#
, with all five quan-

titative traits Q
"
–Q

&
each. The power is illustra-

ted by the cumulative percentage of data sets in

which localization error was the same or less than

that given from the x-axis (Fig. 4A, C). Clearly,

the simulated data varied from practically im-

possible to very easy for this method. Com-

parisons with QTDT (Fig. 4B, D) clearly show

that QHPM has a slightly better localization

accuracy than QTDT. The effect was seen with

both disease models DM
"

and DM
#
, and is

pronounced with the more difficult quantitative

traits, Q
#
and Q

$
, but not with Q

"
, which seems to

have been too difficult for both approaches

(Fig. 4).

Next, the quantitative traits were dichoto-

mized and QHPM was compared to the original

HPM approach. The comparison was done with

our own simulated data sets, with model DM
"

(‘difficult ’ model) and all five quantitative traits.

The dichotomization was made by rearranging

the data with respect to the values of the

quantitative trait in question, and dividing the

arranged data set into two parts of equal size. The

half with the lower values is labelled as ‘controls ’,

and that with higher values as ‘cases ’, to keep the

sample size the same for both approaches. HPM

was run with the following parameter settings:

threshold for the strength of association was set

to χ#¯ 6; maximum pattern length 7; and

maximum number and maximum length of gaps

was 1 (for parameter settings, see Toivonen et al.

2000). The analysis on dichotomized variables,

compared with quantitative analysis by QHPM

(Fig. 5), revealed that the probability of correct

prediction is very similar with both methods

when there is sufficiently high genetic effect for

the traits (in our example, traits Q
$
–Q

&
). How-

ever, when the genetic control of the trait

decreases (traits Q
"
and Q

#
), the advantage of the

genuinely quantitative analysis becomes clear, as
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Fig. 4. (a) Probability of correct disease gene localization with QHPM as a function of tolerated localization
error (x-axis). We used the disease model DM

#
with a strong genetic effect. Label RG corresponds to random

guessing. (b) Same as previous, but for QTDT. (c) Like (a), but utilising disease model DM
"
with a weaker

genetic effect than DM
#
. (d) Same as previous, but for QTDT.

the probability of correct prediction gets higher

using QHPM than HPM.

Analyses with GAW12 data

Ascertainment from the tails of the distribution

The results of QHPM genome scans on the

disease status and all quantitative traits Q
"
–Q

&

have been published in Sevon et al. (2001). Using

approximately 600 cases and 600 controls per

phenotype, we were able to correctly localize the

susceptibility genes. In this paper, the emphasis

is on the effect of (1) differing ascertainment

schemes and (2) number of cases and controls on

the signal of the susceptibility gene when such a

gene is known to exist.

The quantitative traitQ
&
was chosen for testing

the effect of the ascertainment scheme. First,

QHPM was run for a data set in which the ‘cases ’

were chosen from the upper and lower quartile of

the trait distribution. Then, the data were

dichotomized and HPM was run with these data.

We also used a more stringent ascertainment

scheme, where cases were sampled from the upper

10% and lower 10% tail of the Q
&

distribution,

and made analyses with these data sets both with

QHPM and, after dichotomization of the data,

with HPM. With the latter, more extreme data

set, both methods could localize the correct

susceptibility gene. However, with the less ex-

treme sampling scheme, QHPM could correctly

pinpoint the susceptibility locus, whereas HPM

could not.
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Fig. 5. Performance of QHPM using continuous (Q1–Q3) vs. dichotomised (DichotQ1–DichotQ3) variables.
The probability of correct disease gene localisation is shown as a function of tolerated localisation error
(x-axis) for the disease model with a weak genetic effect (DM

"
). Label RG corresponds to random guessing,

again. Curves for traits Q4 and Q5 are omitted, as they closely resemble the upper curves in the figure.

Sample sizes were kept constant with both

ascertainment criteria.

Effect of sample size

Given that the genome scans were done on

reasonably large data sets, which are not often

available in reality, we also tested the effect of

differing sample sizes with the GAW12 data using

variables Q1 and Q4. We chose chromosomes 2

and 19 for trait Q1, and 9 and 17 for Q4, each of

which had been simulated to harbour one sus-

ceptibility gene for the above-mentioned traits.

The sample sizes were 100, 200, 300 or 600 cases

and the same number of controls ; the analyses

were made with both QHPM and HPM. With

n¯ 100 none of the four susceptibility genes was

pinpointed; with n¯ 200, 2}4 were localized with

HPM and 2}4 with QHPM. 300 cases and controls

resulted in only a slightly better performance:

3}4 with QHPM and 2}4 with HPM (data not

shown).



We have shown that a data mining based

approach, combined with a suitable measure of

statistical association of a quantitative trait, can

produce good localization accuracy even with

small data sets. We have also shown that the

method is more efficient than the existing ‘state-

of-the-art’ method, QTDT, thus giving improved

possibilities for trait gene localization. This prob-

ably reflects the ability of our method to take

account of all associating patterns in an area, and

not just one haplotype.

For complex traits, it is expected that using

quantitative scores gives much more information

than simple disease status, i.e., the disease status

may essentially be just a combination of different

symptoms and quantitative measurement scores

which has been agreed upon as the clinical

diagnosis (for example, as in the definition of

rheumatoid diseases). Genetically, such a trait is

quite artificial : there may not exist any simple

genetic basis for such an entity. Thus, analysis of

the quantitative traits on which the diagnosis is

based might improve the ability to map genes

behind the complex traits. In this paper we

showed that in contrast to analyzing such a

dichotomized quantitative trait, a truly quan-

titative analysis offers power gains especially

when gene effects are low compared to environ-

mental effects. If dichotomization is carried
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out, the choice of cut-off points for dichoto-

mization affects the efficiency of finding genes: if

cases and controls can be chosen from the tails of

the distribution, the analysis of dichotomized

data may become as powerful as real quantitative

analysis (based on our experiments with GAW12

data). This is closely related to the use of selection

strategies in linkage studies.

In order to maximize the probability of finding

true disease associations, one should try to

maximize the genotype–phenotype correlation in

the study population. To this end, several dif-

ferent selection strategies have been developed,

especially for quantitative trait linkage studies.

The use of extreme phenotypes has been shown to

greatly improve the power to detect QTLs

(Lander & Botstein, 1989; Risch & Zhang, 1995,

1996; Zhang & Risch, 1996). Selection strategies

include extended family collection and sib-pair

designs: concordant, discordant, extreme dis-

cordant, and single-selection (in which a sibship

is ascertained if one offspring has an extreme

phenotype). The same selection strategies are

not necessarily optimal for association studies.

Usually, the data sets have actually been ascer-

tained for a linkage study, and thus the most

relevant problem is probably the lack of power to

detect association in data ascertained for other

purposes. Effects of linkage analysis selection

strategy on the power of an association study of

quantitative variables have been studied in

Abecasis et al. (2001b). There, the power to find

a QTL with QTDT was best if a discordant

sib-pairs or extreme-proband design had been

applied. If single selection had been used, the

power depended more on allele frequencies of

both marker and trait alleles. Another com-

parison of linkage vs. association methods in

the framework of variance component modelling

showed that for both the power was mostly

dependent on the proportion of phenotypic vari-

ance attributable to the QTL (Sham et al. 2000).

The main difference between the two was that

the power declined more rapidly for linkage,

as the QTL heritability decreased.

The second important result shown in this

paper concerns the effect of the original ascer-

tainment scheme on the efficiency of the QHPM

method. We assumed that the sampling has been

carried out based on disease status, and other

characteristics have been measured as surrogates,

or out of general interest. Thus, the distribution

of these additional variables depends on the

correlation between the original variable used for

ascertainment and the quantitative trait in ques-

tion. This might make the use of such a trait less

efficient for gene mapping in which a particular

quantitative trait distribution (usually normal)

is assumed. However, here we showed that even

when the data were indeed ascertained based on a

simulated affection status with which the quan-

titative traits were correlated, the quantitative

trait genes could still be localized.

The method of assessment of genetic and

environmental variables could be, for example, a

variance component (VC) model instead of a

linear model, as these are statistically more

refined and flexible. VC models allow for more

complex (realistic) disease models, i.e. different

genes and covariates affect the outcome. They

would enable the estimation of allele effects, and

the estimation of proportion of variance attribu-

table to different components.

Finally, covariates could be utilized more

efficiently: instead of looking at one variable at a

time, it might be more interesting to try to find

the best combinations of different variables for

which there would be reason to believe there to be

a common, and strong, genetic basis : ‘mining’ for

the best combinations could be useful.
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