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Abstract. Itemset mining typically results in large amounts of redun-
dant itemsets. Several approaches such as closed itemsets, non-derivable
itemsets and generators have been suggested for losslessly reducing the
amount of itemsets. We propose a new pruning method based on combin-
ing techniques for closed and non-derivable itemsets that allows further
reductions of itemsets. This reduction is done without loss of informa-
tion, that is, the complete collection of frequent itemsets can still be
derived from the collection of closed non-derivable itemsets. The number
of closed non-derivable itemsets is bound both by the number of closed
and the number of non-derivable itemsets, and never exceeds the smaller
of these. Our experiments show that the reduction is significant in some
datasets.

1 Introduction

Itemset mining often results in a huge amount of itemsets. Unfortunately the
result usually contains a large number of redundant itemsets. Redundancy is
inherent in the collection of all frequent itemsets and is the result of the fact
that many itemsets are uninformative if the user is already aware of some other
itemsets in that collection. In technical terms, an itemset can be considered re-
dundant if its support can be inferred from other itemsets. Removing redundant
itemsets produces a condensed representation of all frequent itemsets.

The best known condensed representations are closed itemsets [1] (or gener-
ators/free sets) and non-derivable itemsets [2]. The collection of non-derivable
itemsets often is smaller than the collection of closed sets, but given an arbi-
trary dataset either one may contain fewer itemsets. In this paper we propose
a method that combines the ideas of closed and non-derivable itemsets, and is
guaranteed to be at least as efficient as the better of the two, while retaining the
cabability of losslessly recovering the full collection of frequent itemsets.

2 Basic Concepts from Related Work

The frequent itemset mining problem can be described as follows [3]. We are
given a set I of items and a dataset (multiset) D of subsets of I called transac-
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tions. A set X of items is called an itemset. The support s(X) of X is the number
of transactions that contain X . An itemset is called frequent if its support is no
less than a given minimum support threshold δ. We denote the collection of all
frequent itemsets by Freq. In the rest of the paper, we work on collections of
frequent itemsets, but often drop “frequent” for lingvistical simplicity.

One condensed representation of itemsets is based on the concept of clo-
sure [1]. The closure cl(X) of an itemset X is the maximal superset of the item-
set X with the same support as the itemset X . The closure is always unique.
An itemset X is a closed itemset if and only if its closure is the itemset X itself.
We denote the collection of closed frequent itemsets by Closed.

Given Freq we can obtain Closed by taking the closure of each frequent
itemset. Vice versa, given Closed and an itemset, we obtain the support of the
itemset by finding its most frequent superset.

A more recent proposal [2] for pruning redundant itemsets takes advantage
of the inclusion-exclusion principle. If Y ⊂ X and |X \ Y | is odd, then the
corresponding deduction rule for an upper bound of s(X) is

s(X) ≤
∑

I:Y ⊂I⊂X,I 6=X

(−1)|X\I|+1s(I). (1)

If |X \ Y | is even, the direction of inequality is changed and the deduction rule
gives a lower bound instead of an upper bound. Given all subsets of X , and their
supports, we obtain a set of upper and lower bounds for X . When the smallest
upper bound equals the highest lower bound, we have obtained the exact support
of X . Such an itemset is called derivable. The collection of non-derivable frequent
itemsets, denoted NDI , is a lossless representation of Freq. NDI is downward
closed [2]. In other words, all supersets of a derivable itemset are derivable, and
all subsets of a non-derivable itemset are non-derivable.

Example Consider the small transaction dataset of four items a, b, c and d

and six transactions given in the left panel of Figure 1. The deduction rules for
computing bounds for {a, c, d} are given in the right panel of Figure 1.

Example Dataset Deduction rules for s({a, c, d})

a b c d

c d

a b

a b d

a c

a c d

s({a, c, d}) ≤ s({a, c}) + s({a, d}) + s({c, d})
−s({a}) − s({c}) − s({d}) + s({})
= 3 + 3 + 3 − 5 − 4 − 4 + 6 = 2

s({a, c, d}) ≥ s({a, c}) + s({a, d}) − s({a}) = 3 + 3 − 5 = 1
s({a, c, d}) ≥ s({a, c}) + s({c, d}) − s({c}) = 3 + 3 − 4 = 2
s({a, c, d}) ≥ s({a, d}) + s({c, d}) − s({d}) = 3 + 3 − 4 = 2
s({a, c, d}) ≤ s({a, c}) = 3
s({a, c, d}) ≤ s({a, d}) = 3
s({a, c, d}) ≤ s({c, d}) = 3
s({a, c, d}) ≥ 0

Fig. 1. An example dataset and deduction rules.

The support of the itemset {a, c, d} has a highest lower bound of 2, which is
equal to the lowest upper bound making {a, c, d} derivable. �



3 Closed Non-derivable Itemsets

Both the collection of frequent itemsets and the collection of non-derivable item-
sets are downward closed, and the use of closed itemsets for compression utilizes
this property.

Definition 1. Let NDI be the collection of frequent non-derivable itemsets. The

collection of frequent closed non-derivable itemsets is CNDI = {cl(X) | X ∈
NDI}.

There are some subtleties. First, CNDI ⊂ NDI does not hold in general
(whereas always Closed ⊂ Freq). From this it also follows that NDI cannot be
reconstructed by a straightforward downward closure of CNDI .

Example Given our example dataset in Figure 1 and a support threshold of 2,
we have 12 frequent, 10 closed and 10 non-derivable itemsets, given in Figure 2.

Freq Closed

{}(6)

{a}(5) {b}(3) {c}(4) {d}(4)

{a,b}(3) {a,c}(3) {a,d}(3) {b,d}(2) {c,d}(3)

{a,b,d}(2) {a,c,d}(2)

{}(6)

{a}(5) {c}(4) {d}(4)

{a,b}(3) {a,c}(3) {a,d}(3) {c,d}(3)

{a,b,d}(2) {a,c,d}(2)

NDI CNDI

{}(6)

{a}(5) {b}(3) {c}(4) {d}(4)

{a,b}(3) {a,c}(3) {a,d}(3) {b,d}(2) {c,d}(3)

{}(6)

{a}(5) {c}(4) {d}(4)

{a,b}(3) {a,c}(3) {a,d}(3) {c,d}(3)

{a,b,d}(2)

Fig. 2. All, closed, non-derivable and closed non-derivable itemsets and their supports.

The collection of closed itemsets has been obtained by taking the closure of
each frequent itemset. With regard to NDI, we showed earlier in Figure 1 that
{a, c, d} is a derivable itemset. This is also true for {a, b, d}.

As this example shows, neither NDI nor Closed is a subset of the other. For
instance, {a, b, d} is closed but derivable whereas {b} is non-derivable but not
closed. On the other hand, CNDI ⊂ Closed. A comparison of these collections
shows how {a, c, d} is not in CNDI since it is derivable. We emphasize that
CNDI cannot in general be obtained by removing all derivable itemsets from
Closed. In this example, |CNDI | = 9, which is less than |Closed| = 10 and
|NDI | = 10. �



Depending on the dataset, either collection of closed or collection of non-
derivable itemsets may give a more condensed representation. However, the size
of the collection of closed non-derivable itemsets is guaranteed to always be at
most as large as the smallest of the two representations.

Theorem 1. The size of the collection of closed non-derivable itemsets CNDI

is smaller than or equal to the size of the collection of non-derivable itemsets

NDI: |CNDI | ≤ |NDI |.

Proof. By definition CNDI = {cl(X) | X ∈ NDI}. Since the closure operation
gives exactly one itemset, we trivially have |CNDI | ≤ |NDI |. �

Theorem 2. The size of the collection of closed non-derivable itemsets CNDI

is smaller than or equal to the size of the collection of closed itemsets Closed:

|CNDI | ≤ |Closed|.

Proof. By the definition of CNDI , given any X ∈ CNDI there exists Y ∈ NDI

such that X = cl(Y ). Since Y ∈ NDI ⇒ Y ∈ Freq ⇒ cl(Y ) ∈ Closed ⇒ X ∈
Closed, i.e., CNDI ⊂ Closed. �

Experiments in the following section show that the reduction by closed non-
derivable itemsets may be significant in comparison to the reduction given by
either of the methods alone.

The definition of CNDI directly gives the simple Algorithm 1. Correctness
of the algorithm is trivial and follows directly from the definition.

Algorithm 1 CloseNDI(D, δ)

Input: A dataset D and a support threshold δ

Output: The collection CNDI of closed non-derivable itemsets

1: CNDI ← ∅
2: Mine all non-derivable itemsets NDI with support threshold δ from dataset D

(using methods from [2, 4]).
3: for all X ∈ NDI do

4: CNDI ← CNDI ∪ {cl(X)}
5: end for

6: return CNDI

Obtaining all frequent itemsets and their supports from the closed non-
derivable itemsets is a bit more complex operation. First, given a collection
of closed non-derivable itemsets we can obtain the supports of all non-derivable
itemsets. Then the non-derivable itemsets in turn can be used to deduce the
supports of all frequent itemsets by a levelwise search of the itemset space.

Theorem 3. Algorithm 2 correctly recovers the frequent itemsets and their sup-

ports from the collection of closed non-derivable frequent itemsets CNDI.



Algorithm 2 ExpandCNDI(CNDI , δ)

Input: A collection CNDI of frequent closed non-derivable itemsets and the corre-
sponding support threshold δ

Output: The collection Freq of frequent itemsets

1: Freq← ∅
2: l← 0
3: while ∃X such that |X| = l and for all Y ⊂ X, Y 6= X: Y ∈ Freq do

4: for all X such that |X| = l and for all Y ⊂ X, Y 6= X: Y ∈ Freq do

5: if support of X can be derived from supports of its proper subsets Y then

6: s← Support of X as given by deduction rules (Equation 1)
7: if s ≥ δ then

8: Freq← Freq ∪ (X, s)
9: end if

10: else if ∃Z ∈ CNDI such that X ⊂ Z then

11: s← Support of the most frequent itemset Z ∈ CNDI for which X ⊂ Z

12: Freq← Freq ∪ (X, s)
13: end if

14: end for

15: l← l + 1
16: end while

17: return Freq

Proof. Let F be the true collection of all frequent itemsets while Freq denotes
the result of the algorithm. We first show that F ⊂ Freq by induction over
frequent itemsets X ∈ F in increasing size

– For the empty set we have s({}) ≥ δ ⇒ {} ∈ NDI ⇒ cl({}) ∈ CNDI by
definition of CNDI . The algorithm can not derive the support of the empty
set from its proper subsets (there are none). It thus proceeds to find the
support of the closure of the empty set on line 11 of the algorithm and by
properties of closed sets obtains the correct support.

– Let us now assume that the algorithm has correctly found all frequent item-
sets with size less than l, and consider a frequent itemset X ∈ F with |X | = l.
Now X ∈ F ⇒ X ∈ NDI or X ∈ F \ NDI . If X ∈ F \ NDI then by def-
inition of NDI its support can be derived from its proper subsets, which
have been correctly recovered by algorithm (the inductive hypothesis). X

and its support are thus correctly added to Freq on line 8. If X ∈ NDI

then cl(X) ∈ CNDI by definition of CNDI , and the algorithm finds the
correct support of X from its closure on line 11.

To complete the proof we need to show that Freq ⊂ F . Consider any X ∈
Freq. It must have been added to Freq on line 8 or 12. If it was added on line
8, s(X) ≥ δ due to the test on line 7. If it was added on line 12, s(X) ≥ δ since
there exists Z ∈ CNDI, X ⊂ Z (line 9) and by the definition of CNDI , Z must
be frequent. �

The most time consuming phase of the Algorithm 1 is mining NDI . Time
to close that collection depends on the number of itemsets in that collection.



Algorithm 2 uses inclusion-exclusion to check whether an itemset is derivable.
Again this is the dominant phase of the algorithm. For further analysis and
efficient ways of implementing inclusion-exclusion we refer to [2, 4].

4 Experiments

For an experimental evaluation of the proposed algorithms, we performed several
experiments on real datasets. We implemented all algorithms in C++.

For primary comparison of methods we use four dense datasets: chess, con-
nect, mushroom and pumsb, all obtained from the UCI Machine Learning Repos-
itory. The chess and connect datasets are derived from their respective game
steps, the mushroom database contains characteristics of various species of mush-
rooms, and the pumsb dataset contains census data. For further perspective into
the compression capabilities of the methods, we also use two sparse datasets,
T10I4D100K and T40I10D100K, which contain simulated market basket data
generated by the IBM Almaden Quest research group. Table 1 shows some char-
acteristics of the used datasets.

Dataset Items Avg. Trans. Size Std. Dev. of Trans. Size Transactions
chess 76 37 0 3 196
connect 130 43 0 67 557
mushroom 120 23 0 8 124
pumsb 7117 74 0 49 046
T10I4D100K 1000 10 3.7 100 000
T40I10D100K 1000 40 8.5 100 000

Table 1. Dataset characteristics

Figure 3 shows the results of the experiments: the number of closed itemsets,
non-derivable itemsets and closed non-derivable itemsets, in the six different
datasets as well as some of the results in numerical form.

The benefit of using closed non-derivable itemsets is biggest in mushroom and
pumsb datasets, where the number of closed non-derivable itemsets is about one
half of the number of non-derivable itemsets, and the reduction is even greater
when compared to the number of closed itemsets (note that y-axis is logarithmic).
In chess and connect datasets the compression for both non-derivable itemsets
and closed non-derivable itemsets, when compared to closed itemsets, is about
two orders of magnitude.

In all the dense datasets, the number of closed non-derivable itemsets is
two to four magnitudes smaller than the number of all frequent itemsets. In the
sparse market basket datasets, compression rates are much more modest, ranging
about 15− 35%. These two datasets are examples of the performance guarantee
of closed non-derivable itemsets: for T10I4D100K, there are fewer closed itemsets
than there are non-derivable itemsets, whereas in T40I10D100K the situation is
reversed. In both cases the number of closed non-derivable itemsets is guaranteed
not the exceed the smaller of these.
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(f) T40I10D100K

chess connect mushroom pumsb T10 T40
Support 1 279 43 912 325 29 428 20 1 000
Threshold (freq.) (40%) (65%) (4.0%) (60%) (0.020%) (1.0%)
|Freq| 6 472 981 9 727 092 5 131 852 19 537 366 129 876 65 237
|Closed| 1 366 834 49 707 16 733 1 075 015 107 823 65 237
|NDI| 7 185 704 14 382 21 323 109 486 42 312
|CNDI| 7 015 646 8 240 12 081 102 869 42 312

Fig. 3. The number of closed, non-derivable and closed non-derivable itemsets



5 Conclusions

We proposed a new method for lossless compression of a collection of frequent
itemsets. The method takes advantage of the properties of two well-known tech-
niques, closed itemsets and non-derivable itemsets.

We showed that the collection of closed non-derivable itemsets is a subset of
the collection of closed itemsets, and that its size is also limited by the num-
ber of non-derivable itemsets, i.e., the combined method is guaranteed to yield
better results than either one of the methods alone. We gave simple algorithms
for producing the collection of closed non-derivable itemsets and recovering the
collection of all frequent itemsets.

It is well known that closed itemsets and non-derivable itemsets give best
compression rates for dense datasets, such as the UCI datasets used in our ex-
periments, and give less benefits with sparse data, such as the IBM market basket
data. Our experiments indicate that this is the case also for closed non-derivable
itemsets. In our experiments with four real, dense datasets the reduction over
closed itemsets was always significant (50−99%). For two of them, the reduction
over non-derivable itemsets was small, but for the two others the collection of
closed non-derivable itemsets was approximately 43% smaller. This shows that
the collection of closed non-derivable itemsets can in practice be significantly
smaller than the two other condensed representations.

It is not easy to characterize datasets that compress particularly well with
closed non-derivable itemsets. An obvious factor is density: dense datasets lend
themselves better for compression. The advantage over closed and non-derivable
itemsets is largest when their compressions are complementary, as the use of
closed non-derivable itemsets can then benefit from both, as seemed to be the
case with mushroom and pumsb datasets. More research is needed to better
understand the different factors. On the other hand, for practical applications
such understanding is not needed: regardless of the data, closed non-derivable
itemsets are the optimal choice among the three compared alternatives.
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