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Abstract. Sequences of events describing the behavior and actions of users or systems can be collected in several
domains. An episode is a collection of events that occur relatively close to each other in a given partial order. We
consider the problem of discovering frequently occurring episodes in a sequence. Once such episodes are known,
one can produce rules for describing or predicting the behavior of the sequence. We give efficient algorithms for
the discovery of all frequent episodes from a given class of episodes, and present detailed experimental results.
The methods are in use in telecommunication alarm management.
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1. Introduction

There are important data mining and machine learning application areas where the data to be
analyzed consists of a sequence of events. Examples of such data are alarms in a telecom-
munication network, user interface actions, crimes committed by a person, occurrences
of recurrent illnesses, etc. Abstractly, such data can be viewed as a sequence of events,
where each event has an associated time of occurrence. An example of an event sequence
is represented in figure 1. HereA, B,C, D, E, andF are event types, e.g., different types
of alarms from a telecommunication network, or different types of user actions, and they
have been marked on a time line. Recently, interest in knowledge discovery from sequential
data has increased (see e.g., Agrawal and Srikant, 1995; Bettini et al., 1996; Dousson et al.,
1993; Hätönen et al., 1996a; Howe, 1995; Jonassen et al., 1995; Laird, 1993; Mannila et al.,
1995; Morris et al., 1994; Oates and Cohen, 1996; Wang et al., 1994).

One basic problem in analyzing event sequences is to find frequentepisodes(Mannila
et al., 1995; Mannila and Toivonen, 1996), i.e., collections of events occurring frequently
together. For example, in the sequence of figure 1, the episode “E is followed byF” occurs
several times, even when the sequence is viewed through a narrow window. Episodes, in
general, are partially ordered sets of events. From the sequence in the figure one can make,
for instance, the observation that wheneverA andB occur, in either order,C occurs soon.

Our motivating application was in the telecommunication alarm management, where
thousands of alarms accumulate daily; there can be hundreds of different alarm types.
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Figure 1. A sequence of events.

When discovering episodes in a telecommunication network alarm log, the goal is to find
relationships between alarms. Such relationships can then be used in the on-line analysis
of the incoming alarm stream, e.g., to better explain the problems that cause alarms, to
suppress redundant alarms, and to predict severe faults.

In this paper we consider the following problem. Given a class of episodes and an
input sequence of events, find all episodes that occur frequently in the event sequence. We
describe the framework and formalize the discovery task in Section 2. Algorithms for
discovering all frequent episodes are given in Section 3. They are based on the idea of
first finding small frequent episodes, and then progressively looking for larger frequent
episodes. Additionally, the algorithms use some simple pattern matching ideas to speed up
the recognition of occurrences of single episodes. Section 4 outlines an alternative way of
approaching the problem, based on locating minimal occurrences of episodes. Experimental
results using both approaches and with various data sets are presented in Section 5. We
discuss extensions and review related work in Section 6. Section 7 is a short conclusion.

2. Event sequences and episodes

Our overall goal is to analyze sequences of events, and to discover recurrent episodes. We
first formulate the concept of event sequence, and then look at episodes in more detail.

2.1. Event sequences

We consider the input as a sequence of events, where each event has an associated time of
occurrence. Given a setE of event types, aneventis a pair(A, t), whereA ∈ E is an event
type andt is an integer, the (occurrence) time of the event. The event type can actually
contain several attributes; for simplicity we consider here just the case where the event type
is a single value.

An event sequences on E is a triple(s, Ts, Te), where

s= 〈(A1, t1), (A2, t2), . . . , (An, tn)〉

is an ordered sequence of events such thatAi ∈ E for all i = 1, . . . ,n, andti ≤ ti+1 for all
i = 1, . . . ,n− 1. Further on,Ts andTe are integers:Ts is called the starting time andTe

the ending time, andTs ≤ ti < Te for all i = 1, . . . ,n.

Example. Figure 2 presents the event sequences= (s, 29, 68), where

s= 〈(E, 31), (D, 32), (F, 33), (A, 35), (B, 37), (C, 38), . . . , (D, 67)〉.
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Figure 2. The example event sequence and two windows of width 5.

Observations of the event sequence have been made from time 29 to just before time 68.
For each event that occurred in the time interval [29, 68), the event type and the time of
occurrence have been recorded.

In the analysis of sequences we are interested in finding all frequent episodes from a
class of episodes. To be considered interesting, the events of an episode must occur close
enough in time. The user defines how close is close enough by giving the width of thetime
windowwithin which the episode must occur. We define a window as a slice of an event
sequence, and we then consider an event sequence as a sequence of partially overlapping
windows. In addition to the width of the window, the user specifies in how many windows
an episode has to occur to be considered frequent.

Formally, awindow on an event sequences = (s, Ts, Te) is an event sequencew =
(w, ts, te), wherets < Te andte > Ts, andw consists of those pairs(A, t) from s where
ts ≤ t < te. The time spante − ts is called thewidth of the windoww, and it is denoted
width(w). Given an event sequences and an integerwin, we denote byW(s,win) the set
of all windowsw on s such thatwidth(w) = win.

By the definition the first and last windows on a sequence extend outside the sequence, so
that the first window contains only the first time point of the sequence, and the last window
contains only the last time point. With this definition an event close to either end of a
sequence is observed in equally many windows to an event in the middle of the sequence.
Given an event sequences= (s, Ts, Te) and a window widthwin, the number of windows
inW(s,win) is Te− Ts + win− 1.

Example. Figure 2 shows also two windows of width 5 on the sequences. A window
starting at time 35 is shown in solid line, and the immediately following window, starting
at time 36, is depicted with a dashed line. The window starting at time 35 is

(〈(A, 35), (B, 37), (C, 38), (E, 39)〉, 35, 40).

Note that the event(F, 40) that occurred at the ending time is not in the window. The
window starting at 36 is similar to this one; the difference is that the first event(A, 35) is
missing and there is a new event(F, 40) at the end.

The set of the 43 partially overlapping windows of width 5 constitutesW(s, 5); the
first window is(∅, 25, 30), and the last is(〈(D, 67)〉, 67, 72). Event(D, 67) occurs in 5
windows of width 5, as does, e.g., event(C, 50).

2.2. Episodes

Informally, an episode is a partially ordered collection of events occurring together. Episodes
can be described as directed acyclic graphs. Consider, for instance, episodesα, β, andγ
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Figure 3. Episodesα, β, andγ .

in figure 3. Episodeα is aserial episode: it occurs in a sequence only if there are events of
typesE andF that occur in this order in the sequence. In the sequence there can be other
events occurring between these two. The alarm sequence, for instance, is merged from
several sources, and therefore it is useful that episodes are insensitive to intervening events.
Episodeβ is aparallel episode: no constraints on the relative order ofA andB are given.
Episodeγ is an example of non-serial and non-parallel episode: it occurs in a sequence if
there are occurrences ofA andB and these precede an occurrence ofC; no constraints on
the relative order ofA and B are given. We mostly consider the discovery of serial and
parallel episodes.

We now define episodes formally. Anepisodeα is a triple(V,≤, g) whereV is a set of
nodes,≤ is a partial order onV , andg : V → E is a mapping associating each node with
an event type. The interpretation of an episode is that the events ing(V) have to occur in
the order described by≤. Thesizeof α, denoted|α|, is |V |. Episodeα is parallel if the
partial order≤ is trivial (i.e.,x 6≤ y for all x, y ∈ V such thatx 6= y). Episodeα is serial if
the relation≤ is a total order (i.e.,x ≤ y or y ≤ x for all x, y ∈ V). Episodeα is injective
if the mappingg is an injection, i.e., no event type occurs twice in the episode.

Example. Consider episodeα = (V,≤, g) in figure 3. The setV contains two nodes;
we denote them byx andy. The mappingg labels these nodes with the event types that
are seen in the figure:g(x) = E andg(y) = F . An event of typeE is supposed to occur
before an event of typeF , i.e., x precedesy, and we havex ≤ y. Episodeα is injective,
since it does not contain duplicate event types. In a window whereα occurs there may, of
course, be multiple events of typesE andF , but we only compute the number of windows
whereα occurs at all, not the number of occurrences per window.

We next define when an episode is a subepisode of another; this relation is used extensively
in the algorithms for discovering all frequent episodes. An episodeβ = (V ′,≤′, g′) is a
subepisodeof α= (V,≤, g), denotedβ ¹α, if there exists an injective mappingf : V ′ →
V such thatg′(v) = g( f (v)) for all v ∈ V ′, and for allv,w ∈ V ′ with v ≤′ w also
f (v) ≤ f (w). An episodeα is asuperepisodeof β if and only if β ¹ α. We writeβ ≺ α
if β ¹ α andα 6¹ β.

Example. From figure 3 we see thatβ ¹ γ sinceβ is a subgraph ofγ . In terms of the
definition, there is a mappingf that connects the nodes labeledA with each other and the
nodes labeledB with each other, i.e., both nodes ofβ have (disjoint) corresponding nodes
in γ . Since the nodes in episodeβ are not ordered, the corresponding nodes inγ do not
need to be ordered, either.
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We now consider what it means that an episode occurs in a sequence. Intuitively, the
nodes of the episode need to have corresponding events in the sequence such that the event
types are the same and the partial order of the episode is respected. Formally, an episode
α = (V,≤, g) occursin an event sequence

s= (〈(A1, t1), (A2, t2), . . . , (An, tn)〉, Ts, Te),

if there exists an injective mappingh : V→{1, . . . ,n} from nodes ofα to events ofssuch
thatg(x)= Ah(x) for all x ∈V , and for allx, y∈V with x 6= y andx≤ y we haveth(x) < th(y).

Example. The window(w, 35, 40) of figure 2 contains eventsA, B, C, andE. Episodes
β andγ of figure 3 occur in the window, butα does not.

We define thefrequencyof an episode as the fraction of windows in which the episode
occurs. That is, given an event sequence s and a window widthwin, the frequency of an
episodeα in s is

fr(α, s,win) = |{w ∈W(s,win) | α occurs inw}|
|W(s,win)| .

Given afrequency threshold minfr, α is frequentif fr(α, s,win) ≥ min fr. The task we
are interested in is to discover all frequent episodes from a given classE of episodes. The
class could be, e.g., all parallel episodes or all serial episodes. We denote the collection of
frequent episodes with respect tos, win andmin fr byF(s,win,min fr).

Once the frequent episodes are known, they can be used to obtain rules that describe
connections between events in the given event sequence. For example, if we know that the
episodeβ of figure 3 occurs in 4.2% of the windows and that the superepisodeγ occurs in
4.0% of the windows, we can estimate that after seeing a window withA andB, there is a
chance of about 0.95 thatC follows in the same window. Formally, anepisode ruleis an
expressionβ ⇒ γ , whereβ andγ are episodes such thatβ ¹ γ . The fractionfr(γ,s,win)

fr(β,s,win)
is theconfidenceof the episode rule. The confidence can be interpreted as the conditional
probability of the whole ofγ occurring in a window, given thatβ occurs in it. Episode
rules show the connections between events more clearly than frequent episodes alone.

3. Algorithms

Given all frequent episodes, rule generation is straightforward. Algorithm 1 describes how
rules and their confidences can be computed from the frequencies of episodes. Note that
indentation is used in the algorithms to specify the extent of loops and conditional statements.

Algorithm 1.
Input: A setE of event types, an event sequences over E, a setE of episodes, a window
width win, a frequency thresholdmin fr, and a confidence thresholdmin conf .
Output: The episode rules that hold ins with respect towin, min fr, andmin conf .
Method:

1. /* Find frequent episodes (Algorithm 2): */
2. computeF(s,win,min fr);
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3. /* Generate rules: */
4. for all α ∈ F(s,win,min fr) do
5. for all β ≺ α do
6. if fr (α)/fr(β) ≥ min conf then
7. output the ruleβ → α and the confidencefr(α)/fr(β);

We now concentrate on the following discovery task: given an event sequences, a setE
of episodes, a window widthwin, and a frequency thresholdmin fr, findF(s,win,min fr).
We give first a specification of the algorithm and then exact methods for its subtasks. We
call these methods collectively the WINEPI algorithm. See Section 6 for related work and
some methods based on similar ideas.

3.1. Main algorithm

Algorithm 2 computes the collectionF(s,win,min fr)of frequent episodes from a classE of
episodes. The algorithm performs a levelwise (breadth-first) search in the class of episodes
following the subepisode relation. The search starts from the most general episodes, i.e.,
episodes with only one event. On each level the algorithm first computes a collection of
candidate episodes, and then checks their frequencies from the event sequence. The crucial
point in the candidate generation is given by the following immediate lemma.

Lemma 1. If an episodeα is frequent in an event sequences, then all subepisodesβ ¹ α
are frequent.

The collection of candidates is specified to consist of episodes such that all smaller
subepisodes are frequent. This criterion safely prunes from consideration episodes that can
not be frequent. More detailed methods for the candidate generation and database pass
phases are given in the following subsections.

Algorithm 2.
Input: A setE of event types, an event sequences over E, a setE of episodes, a window
width win, and a frequency thresholdmin fr
Output: The collectionF(s,win,min fr) of frequent episodes.
Method:

1. C1 := {α ∈ E | |α| = 1};
2. l := 1;
3. whileCl 6= ∅ do
4. /* Database pass (Algorithms 4 and 5): */
5. computeFl := {α ∈ Cl | fr(α, s,win) ≥ min fr};
6. l := l + 1;
7. /* Candidate generation (Algorithm 3): */
8. computeCl := {α ∈ E | |α| = l and for allβ ∈ E such thatβ ≺ α and
9. |β| < l we haveβ ∈ F|β|};

10. for all l do outputFl ;
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3.2. Generation of candidate episodes

We present now a candidate generation method in detail. Algorithm 3 computes candidates
for parallel episodes. The method can be easily adapted to deal with the classes of parallel
episodes, serial episodes, and injective parallel and serial episodes. In the algorithm, an
episodeα = (V,≤, g) is represented as a lexicographically sorted array of event types.
The array is denoted by the name of the episode and the items in the array are referred to
with the square bracket notation. For example, a parallel episodeα with events of types
A,C,C, and F is represented as an arrayα with α[1] = A, α[2] = C, α[3] = C, and
α[4] = F . Collections of episodes are also represented as lexicographically sorted arrays,
i.e., thei th episode of a collectionF is denoted byF [i ].

Since the episodes and episode collections are sorted, all episodes that share the same
first event types are consecutive in the episode collection. In particular, if episodesFl [i ]
andFl [ j ] of size l share the firstl − 1 events, then for allk with i ≤ k ≤ j we have that
Fl [k] shares also the same events. A maximal sequence of consecutive episodes of sizel
that share the firstl − 1 events is called ablock. Potential candidates can be identified by
creating all combinations of two episodes in the same block. For the efficient identification
of blocks, we store inFl .block start[ j ] for each episodeFl [ j ] the i such thatFl [i ] is the
first episode in the block.

Algorithm 3.
Input: A sorted arrayFl of frequent parallel episodes of sizel.
Output: Asorted array of candidate parallel episodes of sizel + 1.
Method:

1. Cl+1 := ∅;
2. k := 0;
3. if l = 1 then for h:= 1 to |Fl | doFl .block start[h] := 1;
4. for i := 1 to |Fl | do
5. current block start := k+ 1;
6. for ( j := i ;Fl .block start[ j ] = Fl .block start[i ]; j := j + 1) do
7. /* Fl [i ] andFl [ j ] havel − 1 first event types in common,
8. build a potential candidateα as their combination: */
9. for x := 1 to l doα[x] := Fl [i ][x];

10. α[l + 1] := Fl [ j ][ l ];
11. /* Build and test subepisodesβ that do not containα[y]: * /
12. for y := 1 to l − 1 do
13. for x := 1 to y− 1 doβ[x] := α[x];
14. for x := y to l doβ[x] := α[x + 1];
15. if β is not inFl thencontinue with the nextj at line 6;
16. /* All subepisodes are inFl , storeα as candidate: */
17. k := k+ 1;
18. Cl+1[k] := α;
19. Cl+1.block start[k] := current block start;
20. outputCl+1;
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Algorithm 3 can be easily modified to generate candidate serial episodes. Now the events
in the array representing an episode are in the order imposed by a total order≤. For instance,
a serial episodeβ with events of typesC, A, F, andC, in that order, is represented as an
arrayβ with β[1] = C, β[2] = A, β[3] = F , andβ[4] = C. By replacing line 6 by

6. for( j := Fl .block start[i ];Fl .block start[ j ] = Fl .block start[i ]; j := j + 1) do

Algorithm 3 generates candidates for serial episodes.
There are further options with the algorithm. If the desired episode class consists of

parallel or serial injective episodes, i.e., no episode should contain any event type more
than once, insert line

6b. if j = i thencontinue with the nextj at line 6;

after line 6.
The candidate generation method aims at minimizing the number of candidates on each

level, in order to reduce the work per database pass. Often it can be useful to combine several
candidate generation iterations to one database pass, to cut down the number of expensive
database passes. This can be done by first computing candidates for the next levell + 1,
then computing candidates for the following levell +2 assuming that all candidates of level
l + 1 are indeed frequent, and so on. This method does not miss any frequent episodes, but
the candidate collections can be larger than if generated from the frequent episodes. Such
a combination of iterations is useful when the overhead of generating and evaluating the
extra candidates is less than the effort of reading the database, as is the case often in the last
iterations.

The time complexity of Algorithm 3 is polynomial in the size of the collection of frequent
episodes and it is independent of the length of the event sequence.

Theorem 1. Algorithm 3 (with any of the above variations) has time complexity
O(l 2 |Fl |2 log |Fl |).

Proof: The initialization (line 3) takes timeO(|Fl |). The outer loop (line 4) is iterated
O(|Fl |) times and the inner loop (line 6)O(|Fl |) times. Within the loops, a potential
candidate (lines 9 and 10) andl − 1 subcandidates (lines 12 to 14) are built in timeO(l +
1+ (l − 1)l ) = O(l 2). More importantly, thel − 1 subsets need to be searched for in the
collectionFl (line 15). SinceFl is sorted, each subcandidate can be located with binary
search in timeO(l log |Fl |). The total time complexity is thusO(|Fl | + |Fl | |Fl | (l 2+ (l −
1) l log |Fl |)) = O(l 2 |Fl |2 log |Fl |). 2

When the number of event types|E| is less thanl |Fl |, the following theorem gives a
tighter bound.

Theorem 2. Algorithm 3 (with any of the above variations) has time complexity
O(l |E| |Fl | log |Fl |).
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Proof: The proof is similar to the one above, but we have a useful observation (due to Juha
Kärkkäinen) about the total number of subepisode tests over all iterations. Consider the
number of failed and successful test separately. First, the number of potential candidates
is bounded byO(|Fl | |E|), since they are constructed by adding an event to a frequent
episode of sizel . There can be at most onefailed test for each potential candidate, since
the subcandidate loop is exited at the first failure (line 15). Second, eachsuccessfultest
corresponds one-to-one with a frequent episode inFl and an event type. The numbers of
failed and successful tests are thus both bounded byO(|Fl | |E|). Since the work per test is
O(l log |Fl |), the total amount of work isO(l |E| |Fl | log |Fl |). 2

In practice the time complexity is likely to be dominated byl |Fl | log |Fl |, since the
blocks are typically small with respect to the sizes of bothFl and E. If the number of
episode types is fixed, a subcandidate test can be implemented practically in timeO(l ),
removing the logarithmic factor from the running time.

3.3. Recognizing episodes in sequences

Let us now consider the implementation of the database pass. We give algorithms which rec-
ognize episodes in sequences in an incremental fashion. For two windowsw = (w, ts, ts+
win) and w′ = (w′, ts + 1, ts + win + 1), the sequencesw andw′ of events are simi-
lar to each other. We take advantage of this similarity: after recognizing episodes inw,
we make incremental updates in our data structures to achieve the shift of the window to
obtainw′.

The algorithms start by considering the empty window just before the input sequence,
and they end after considering the empty window just after the sequence. This way the in-
cremental methods need no other special actions at the beginning or end. When computing
the frequency of episodes, only the windows correctly on the input sequence are, of course,
considered.

3.3.1. Parallel episodes.Algorithm 4 recognizes candidate parallel episodes in an event
sequence. The main ideas of the algorithm are the following. For each candidate parallel
episodeα we maintain a counterα.eventcount that indicates how many events ofα are
present in the window. Whenα.eventcount becomes equal to|α|, indicating thatα is
entirely included in the window, we save the starting time of the window inα.inwindow.
Whenα.eventcountdecreases again, indicating thatα is no longer entirely in the window,
we increase the fieldα. freq countby the number of windows whereα remained entirely in
the window. At the end,α. freq countcontains the total number of windows whereα occurs.

To access candidates efficiently, they are indexed by the number of events of each type
that they contain: all episodes that contain exactlya events of typeA are in the list
contains(A,a). When the window is shifted and the contents of the window change,
the episodes that are affected are updated. If, for instance, there is one event of typeA in
the window and a second one comes in, all episodes in the listcontains(A, 2) are updated
with the information that both events of typeA they are expecting are now present.
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Algorithm 4.
Input: A collectionC of parallel episodes, an event sequences = (s, Ts, Te), a window
width win, and a frequency thresholdmin fr.
Output: The episodes ofC that are frequent ins with respect towin andmin fr.
Method:

1. /* Initialization: */
2. for eachα in C do
3. for eachA in α do
4. A.count:= 0;
5. for i := 1 to |α| do contains(A, i ) := ∅;
6. for eachα in C do
7. for eachA in α do
8. a := number of events of typeA in α;
9. contains(A,a) := contains(A,a) ∪ {α};

10. α.eventcount:= 0;
11. α.freq count:= 0;
12. /* Recognition: */
13. for start := Ts − win+ 1 to Te do
14. /* Bring in new events to the window: */
15. for all events(A, t) in s such thatt = start+ win− 1 do
16. A.count:= A.count+ 1;
17. for eachα ∈ contains(A, A.count) do
18. α.eventcount:= α.eventcount+ A.count;
19. if α.eventcount= |α| thenα.inwindow:= start;
20. /* Drop out old events from the window: */
21. for all events(A, t) in s such thatt = start− 1 do
22. for eachα ∈ contains(A, A.count) do
23. if α.eventcount= |α| then
24. α.freq count:= α. freq count− α.inwindow+ start;
25. α.eventcount:= α.eventcount− A.count;
26. A.count:= A.count− 1;
27. /* Output: */
28. for all episodesα in C do
29. if α. freq count/(Te− Ts + win− 1) ≥ min fr thenoutputα;

3.3.2. Serial episodes.Serial candidate episodes are recognized in an event sequence by
using state automata that accept the candidate episodes and ignore all other input. The idea
is that there is an automaton for each serial episodeα, and that there can be several instances
of each automaton at the same time, so that the active states reflect the (disjoint) prefixes
of α occurring in the window. Algorithm 5 implements this idea.

We initialize a new instance of the automaton for a serial episodeα every time the first
event ofα comes into the window; the automaton is removed when the same event leaves the
window. When an automaton forα reaches its accepting state, indicating thatα is entirely
included in the window, and if there are no other automata forα in the accepting state already,
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we save the starting time of the window inα.inwindow. When an automaton in the accepting
state is removed, and if there are no other automata forα in the accepting state, we increase
the fieldα. freq countby the number of windows whereα remained entirely in the window.

It is useless to have multiple automata in the same state, as they would only make the
same transitions and produce the same information. It suffices to maintain the one that
reached the common state last since it will be also removed last. There are thus at most
|α| automata for an episodeα. For each automaton we need to know when it should be
removed. We can thus represent all the automata forα with one array of size|α|: the value
of α.initialized[i ] is the latest initialization time of an automaton that has reached itsi th
state. Recall thatα itself is represented by an array containing its events; this array can be
used to label the state transitions.

To access and traverse the automata efficiently they are organized in the following way.
For each event typeA ∈ E, the automata that acceptA are linked together to a listwaits(A).
The list contains entries of the form(α, x) meaning that episodeα is waiting for itsxth
event. When an event(A, t) enters the window during a shift, the listwaits(A) is tra-
versed. If an automaton reaches a common statei with another automaton, the earlier entry
α.initialized[i ] is simply overwritten.

The transitions made during one shift of the window are stored in a listtransitions. They
are represented in the form(α, x, t) meaning that episodeα got its xth event, and the
latest initialization time of the prefix of lengthx is t . Updates regarding the old states of
the automata are done immediately, but updates for the new states are done only after all
transitions have been identified, in order to not overwrite any useful information. For easy
removal of automata when they go out of the window, the automata initialized at timet are
stored in a listbeginsat(t).

Algorithm 5.
Input: AcollectionC of serial episodes, an event sequences= (s, Ts, Te), a window width
win, and a frequency thresholdmin fr
Output: The episodes ofC that are frequent ins with respect towin andmin fr
Method:

1. /* Initialization: */
2. for eachα in C do
3. for i := 1 to |α| do
4. α.initialized[i ] := 0;
5. waits(α[i ]) := ∅;
6. for eachα ∈ C do
7. waits(α[1]) := waits(α[1]) ∪ {(α, 1)};
8. α. freq count:= 0;
9. for t := Ts − win to Ts − 1 do beginsat(t) := ∅;

10. /* Recognition: */
11. for start := Ts − win+ 1 to Te do
12. /* Bring in new events to the window: */
13. beginsat(start+ win− 1) := ∅;
14. transitions:= ∅;
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15. for all events(A, t) in s such thatt = start+ win− 1 do
16. for all (α, j ) ∈ waits(A) do
17. if j = |α| andα.initialized[ j ] = 0 thenα.inwindow:= start;
18. if j = 1 then
19. transitions:= transitions∪ {(α, 1, start+ win− 1)};
20. else
21. transitions:= transitions∪ {(α, j, α.initialized[ j − 1])};
22. beginsat(α.initialized[ j − 1]) :=
23. beginsat(α.initialized[ j − 1]) \ {(α, j − 1)};
24. α.initialized[ j − 1] := 0;
25. waits(A) := waits(A) \ {(α, j )};
26. for all (α, j, t) ∈ transitions do
27. α.initialized[ j ] := t ;
28. beginsat(t) := beginsat(t) ∪ {(α, j )};
29. if j < |α| then waits(α[ j + 1]) := waits(α[ j + 1]) ∪ {(α, j + 1)};
30. /* Drop out old events from the window: */
31. for all (α, l ) ∈ beginsat(start− 1) do
32. if l = |α| thenα. freq count:= α. freq count− α.inwindow+ start;
33. else waits(α[l + 1]) := waits(α[l + 1]) \ {(α, l + 1)};
34. α.initialized[l ] := 0;
35. /* Output: */
36. for all episodesα in C do
37. if α. freq count/(Te− Ts + win− 1) ≥ min fr thenoutputα;

3.3.3. Analysis of time complexityFor simplicity, suppose that the class of event typesE
is fixed, and assume that exactly one event takes place every time unit. Assume candidate
episodes are all of sizel , and letn be the length of the sequence.

Theorem 3. The time complexity of Algorithm4 isO((n+ l 2) |C|).
Proof: Initialization takes timeO(|C| l 2). Consider now the number of operations in the
innermost loops, i.e., increments and decrements ofα.eventcounton lines 18 and 25. In
the recognition phase there areO(n) shifts of the window. In each shift, one new event
comes into the window, and one old event leaves the window. Thus, for any episodeα,
α.eventcountis accessed at most twice during one shift. The cost of the recognition phase
is thusO(n |C|). 2

In practice the sizel of episodes is very small with respect to the sizen of the sequence,
and the time required for the initialization can be safely neglected. For injective episodes
we have the following tighter result.

Theorem 4. The time complexity of recognizing injective parallel episodes in Algorithm4
(excluding initialization) isO( n

win |C| l + n).

Proof: Considerwin successive shifts of one time unit. During such sequence of shifts,
each of the|C| candidate episodesα can undergo at most 2l changes: any event typeA can
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haveA.count increased to 1 and decreased to 0 at most once. This is due to the fact that
after an event of typeA has come into the window,A.count≥ 1 for the nextwin time units.
Reading the input takes timen. 2

This time bound can be contrasted with the time usage of a trivial non-incremental method
where the sequence is pre-processed into windows, and then frequent sets are searched for.
The time requirement for recognizing|C| candidate sets inn windows, plus the time required
to read inn windows of sizewin, isO(n |C| l + n · win), i.e., larger by a factor ofwin.

Theorem 5. The time complexity of Algorithm5 isO(n |C| l ).
Proof: The initialization takes timeO(|C| l + win). In the recognition phase, again,
there areO(n) shifts, and in each shift one event comes into the window and one event
leaves the window. In one shift, the effort per an episodeα depends on the number of
automata accessed; there are a maximum ofl automata for each episode. The worst-case
time complexity is thusO(|C| l + win+ n |C| l ) = O(n |C| l ) (note thatwin isO(n)). 2

In the worst case for Algorithm 5 the input sequence consists of events of only one event
type, and the candidate serial episodes consist only of events of that particular type. Every
shift of the window results now in an update in every automaton. This worst-case complexity
is close to the complexity of the trivial non-incremental methodO(n |C| l + n · win). In
practical situations, however, the time requirement of Algorithm 5 is considerably smaller,
and we approach the savings obtained in the case of injective parallel episodes.

Theorem 6. The time complexity of recognizing injective serial episodes in Algorithm5
(excluding initialization) isO(n |C|).
Proof: Each of theO(n) shifts can now affect at most two automata for each episode:
when an event comes into the window there can be a state transition in at most one automa-
ton, and at most one automaton can be removed because the initializing event goes out of
the window. 2

3.4. General partial orders

So far we have only discussed serial and parallel episodes. We next discuss briefly the use
of other partial orders in episodes. The recognition of an arbitrary episode can be reduced to
the recognition of a hierarchical combination of serial and parallel episodes. For example,
episodeγ in figure 4 is a serial combination of two episodes: a parallel episodeδ′ consisting

Figure 4. Recursive composition of a complex episode.
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of A and B, and an episodeδ′′ consisting ofC alone. The occurrence of an episode in a
window can be tested using such hierarchical structure: to see whether episodeγ occurs in
a window one checks (using a method for serial episodes) whether the subepisodesδ′ and
δ′′ occur in this order; to check the occurrence ofδ′ one uses a method for parallel episodes
to verify whetherA andB occur.

There are, however, some complications one has to take into account. First, it is some-
times necessary to duplicate an event node to obtain a decomposition to serial and parallel
episodes. Duplication works easily with injective episodes, but non-injective episodes need
more complex methods. Another important aspect is that composite events have a duration,
unlike the elementary events inE.

A practical alternative to the recognition of general episodes is to handle all episodes
basically like parallel episodes, and to check the correct partial ordering only when all
events are in the window. Parallel episodes can be located efficiently; after they have been
found, checking the correct partial ordering is relatively fast.

4. An alternative approach to episode discovery: minimal occurrences

4.1. Outline of the approach

In this section we describe an alternative approach to the discovery of episodes. Instead
of looking at the windows and only considering whether an episode occurs in a window or
not, we now look at the exact occurrences of episodes and the relationships between those
occurrences. One of the advantages of this approach is that focusing on the occurrences of
episodes allows us to more easily find rules with two window widths, one for the left-hand
side and one for the whole rule, such as “ifA andB occur within 15 seconds, thenC follows
within 30 seconds”.

The approach is based on minimal occurrences of episodes. Besides the new rule for-
mulation, the use of minimal occurrences gives raise to the following new method, called
MINEPI, for the recognition of episodes in the input sequence. For each frequent episode
we store information about the locations of its minimal occurrences. In the recognition
phase we can then compute the locations of minimal occurrences of a candidate episode
α as a temporal join of the minimal occurrences of two subepisodes ofα. This is simple
and efficient, and the confidences and frequencies of rules with a large number of different
window widths can be obtained quickly, i.e., there is no need to rerun the analysis if one only
wants to modify the window widths. In the case of complicated episodes, the time needed
for recognizing the occurrence of an episode can be significant; the use of stored minimal
occurrences of episodes eliminates unnecessary repetition of the recognition effort.

We identify minimal occurrences with their time intervals in the following way. Given an
episodeα and an event sequences, we say that the interval [ts, te) is aminimal occurrence
of α in s, if (1) α occurs in the windoww = (w, ts, te) ons, and if (2)α does not occur in any
proper subwindow onw, i.e.,α does not occur in any windoww′ = (w′, t ′s, t ′e) onssuch that
ts ≤ t ′s, t ′e ≤ te, andwidth(w′) < width(w). Theset of(intervals of) minimal occurrences
of an episodeα in a given event sequence is denoted bymo(α) = {[ts, te) | [ts, te) is a
minimal occurrence ofα}.
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Example. Consider the event sequences in figure 2 and the episodes in figure 3. The
parallel episodeβ consisting of event typesA and B has four minimal occurrences ins:
mo(β) = {[35, 38), [46, 48), [47, 58), [57, 60)}. The partially ordered episodeγ has the
following three minimal occurrences: [35, 39), [46, 51), [57, 62).

An episode rule(with two time bounds) is an expressionβ[win1] ⇒ α[win2], where
β andα are episodes such thatβ ¹ α, andwin1 and win2 are integers. The informal
interpretation of the rule is that if episodeβ has a minimal occurrence at interval [ts, te)with
te− ts ≤ win1, then episodeα occurs at interval [ts, t ′e) for somet ′e such thatt ′e− ts ≤ win2.
Formally this can be expressed in the following way. Givenwin1 andβ, denotemowin1(β) =
{[ts, te) ∈ mo(β) | te − ts ≤ win1}. Further, givenα and an interval [us, ue), define
occ(α, [us, ue))= true if and only if there exists a minimal occurrence [u′s, u

′
e) ∈ mo(α)

such thatus ≤ u′s andu′e ≤ ue. The confidence of an episode ruleβ[win1] ⇒ α[win2] is
now

|{[ts, te) ∈ mowin1(β) | occ(α, [ts, ts + win2))}|
|mowin1(β)|

.

Example. Continuing the previous example, we have, e.g., the following rules and confi-
dences. For the ruleβ[3] ⇒ γ [4] we have|{[35, 38), [46, 48), [57, 60)}| in the denominator
and|{[35, 38)}| in the numerator, so the confidence is 1/3. For the ruleβ[3] ⇒ γ [5] the
confidence is 1.

There exists a variety of possibilities for the temporal relationships in episode rules with
two time bounds. For example, the partial order of events can be such that the left-hand
side events follow or surround the unseen events in the right-hand side. Such relationships
are specified in the rules since the rule right-hand sideα is a superepisode of the left-hand
sideβ, and thusα contains the partial order of each event in the rule. Alternatively, rules
that point backwards in time can be defined by specifying that the ruleβ[win1] ⇒ α[win2]
describes the case where episodeβ has a minimal occurrence at an interval [ts, te) with
te− ts ≤ win1, and episodeα occurs at interval [t ′s, te) for somet ′s such thatte− t ′s ≤ win2.
For brevity, we do not consider any alternative definitions.

In Section 2 we defined the frequency of an episode as the fraction of windows that
contain the episode. While frequency has a nice interpretation as the probability that a
randomly chosen window contains the episode, the concept is not very useful with minimal
occurrences: (1) there is no fixed window size, and (2) a window may contain several
minimal occurrences of an episode. Instead of frequency, we use the concept ofsupport,
the number of minimal occurrences of an episode: the support of an episodeα in a given
event sequences is |mo(α)|. Similarly to a frequency threshold, we now use a threshold
for the support: given a support thresholdmin sup, an episodeα is frequent if|mo(α)|
≥ min sup.

The current episode rule discovery task can be stated as follows. Given an event sequence
s, a classE of episodes, and a setW of time bounds, find all frequent episode rules of the
form β[win1] ⇒ α[win2], whereβ, α ∈ E , β ¹ α, andwin1,win2 ∈ W.
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4.2. Finding minimal occurrences of episodes

In this section we describe informally the collection MINEPI of algorithms that locate the
minimal occurrences of frequent serial and parallel episodes. Let us start with some ob-
servations about the basic properties of episodes. Lemma 1 still holds: the subepisodes
of a frequent episode are frequent. Thus we can use the main algorithm (Algorithm 2)
and the candidate generation (Algorithm 3) also for MINEPI. We have the following results
about the minimal occurrences of an episode also containing minimal occurrences of its
subepisodes.

Lemma 2. Assumeα is an episode andβ ¹α is its subepisode. If[ts, te) ∈ mo(α), thenβ
occurs in[ts, te)and hence there is an interval[us, ue) ∈ mo(β) such that ts ≤ us ≤ ue ≤ te.

Lemma 3. Let α be a serial episode of size l, and let[ts, te) ∈ mo(α). Then there are
subepisodesα1 andα2 of α of size l− 1 such that for some t1

e < te and t2s > ts we have
[ts, t1

e) ∈ mo(α1) and[t2
s , te) ∈ mo(α2).

Lemma 4. Letα be a parallel episode of size l, and let[ts, te) ∈ mo(α). Then there are
subepisodesα1 andα2 of α of size l− 1 such that[t1

s , t
1
e) ∈ mo(α1) and [t2

s , t
2
e) ∈ mo(α2)

for some t1s , t
1
e , t

2
s , t

2
e ∈ [ts, te], and furthermore ts = min{t1

s , t
2
s } and te = max{t1

e , t
2
e}.

The minimal occurrences of a candidate episodeα are located in the following way. In
the first iteration of the main algorithm,mo(α) is computed from the input sequence for all
episodesα of size 1. In the rest of the iterations, the minimal occurrences of a candidateα

are located by first selecting two suitable subepisodesα1 andα2 of α, and then computing a
temporal join between the minimal occurrences ofα1 andα2, in the spirit of Lemmas 3 and 4.

To be more specific, for serial episodes the two subepisodes are selected so thatα1

contains all events except the last one andα2 in turn contains all except the first one. The
minimal occurrences ofα are then found with the following specification:

mo(α) = {[ts, ue) | there are [ts, te) ∈ mo(α1) and [us, ue) ∈ mo(α2)

such thatts < us, te < ue, and [ts, ue) is minimal}.

For parallel episodes, the subepisodesα1 and α2 contain all events except one; the
omitted events must be different. See Lemma 4 for the idea of how to compute the minimal
occurrences ofα.

The minimal occurrences of a candidate episodeα can be found in a linear pass over
the minimal occurrences of the selected subepisodesα1 andα2. The time required for one
candidate is thusO(|mo(α1)| + |mo(α2)| + |mo(α)|), which isO(n), wheren is the length
of the event sequence. To optimize the running time,α1 andα2 can be selected so that
|mo(α1)| + |mo(α2)| is minimized.

The space requirement of the algorithm can be expressed as
∑

i

∑
α∈Fi
|mo(α)|, as-

suming the minimal occurrences of all frequent episodes are stored, or alternatively as
maxi (

∑
α∈Fi∪Fi+1

|mo(α)|), if only the current and next levels of minimal occurrences are
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stored. The size of
∑

α∈F1
|mo(α)| is bounded byn, the number of events in the input se-

quence, as each event in the sequence is a minimal occurrence of an episode of size 1. In the
second iteration, an event in the input sequence can start at most|F1|minimal occurrences
of episodes of size 2. The space complexity of the second iteration is thusO(|F1|n).

While minimal occurrences of episodes can be located quite efficiently, the size of the
data structures can be even larger than the original database, especially in the first couple of
iterations. A practical solution is to use in the beginning other pattern matching methods,
e.g., similar to the ones given for WINEPI in Section 3, to locate the minimal occurrences.

Finally, note that MINEPI can be used to solve the task of WINEPI. Namely, a window
contains an occurrence of an episode exactly when it contains a minimal occurrence. The
frequency of an episodeα can thus be computed frommo(α).

4.3. Finding confidences of rules

We now show how the information about minimal occurrences of frequent episodes can be
used to obtain confidences of episode rules with two time bounds without looking at the
data again.

Recall that we defined an episode rule with two time bounds as an expressionβ[win1] ⇒
α[win2], whereβ andα are episodes such thatβ ¹ α, andwin1 andwin2 are integers. To
find such rules, first note that for the rule to be frequent, the episodeα has to be frequent.
Rules of the above form can thus be enumerated by looking at all frequent episodesα,
and then looking at all subepisodesβ of α. The evaluation of the confidence of the rule
β[win1] ⇒ α[win2] can be done in one pass through the structuresmo(β) andmo(α), as
follows. For each [ts, te) ∈ mo(β) with te − ts ≤ win1, locate the minimal occurrence
[us, ue) of α such thatts ≤ us and [us, ue) is the first interval inmo(α) with this property.
Then check whetherue− ts ≤ win2.

The time complexity of the confidence computation for given episodesβ andα and given
time boundswin1 andwin2 is O(|mo(β)| + |mo(α)|). The confidences for allwin1,win2

in the setW of time bounds can be found, using a table of size|W|2, in timeO(|mo(β)| +
|mo(α)| + |W|2). For reasons of brevity we omit the details.

The setW of time bounds can be used to restrict the initial search of minimal occurrences
of episodes. GivenW, denote the maximum time bound bywinmax= max(W). In episode
rules with two time bounds, only occurrences of at mostwinmax time units can be used;
longer episode occurrences can thus be ignored already in the search of frequent episodes.
We consider the support, too, to be computed with respect to a givenwinmax.

5. Experiments

We have run a series of experiments using WINEPI and MINEPI. The general performance of
the methods, the effect of the various parameters, and the scalability of the methods are
considered in this section. Consideration is also given to the applicability of the methods to
various types of data sets. At the end of the section we briefly summarize our experiences in
the analysis of telecommunication alarm sequences in co-operation with telecommunication
companies.
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The experiments have been run on a PC with 166 MHz Pentium processor and 32 MB
main memory, under the Linux operating system. The sequences resided in a flat text file.

5.1. Performance overview

For an experimental overview we discovered episodes and rules in a telecommunication
network fault management database. The database is a sequence of 73679 alarms covering a
time period of 7 weeks. There are 287 different types of alarms with very diverse frequencies
and distributions. On the average there is an alarm every minute. However, the alarms tend
to occur in bursts: in the extreme cases over 40 alarms occurred in a period of one second.

We start by looking at the performance of the WINEPI method described in Section 3.
There are several performance characteristics that can be used to evaluate the method. The
time required by the method and the number of episodes and rules found by the method,
with respect to the frequency threshold or the window width, are possible performance
measures. We present results for two cases: serial episodes and injective parallel episodes.

Tables 1 and 2 represent performance statistics for finding frequent episodes in the alarm
database with various frequency thresholds. The number of frequent episodes decreases
rapidly as the frequency threshold increases, and so does the processing time.

Table 1. Performance characteristics for serial episodes with WINEPI; alarm database, window width 60 s.

Frequency Frequent Total
threshold Candidates episodes Iterations time (s)

0.001 4528 359 45 680

0.002 2222 151 44 646

0.005 800 48 10 147

0.010 463 22 7 110

0.020 338 10 4 62

0.050 288 1 2 22

0.100 287 0 1 16

Table 2. Performance characteristics for injective parallel episodes with WINEPI; alarm database, window width
60 s.

Frequency Frequent Total
threshold Candidates episodes Iterations time (s)

0.001 2122 185 5 49

0.002 1193 93 4 48

0.005 520 32 4 34

0.010 366 17 4 34

0.020 308 9 3 19

0.050 287 1 2 15

0.100 287 0 1 14



P1: MVG

Data Mining and Knowledge Discovery KL503-03-Mannila2 September 29, 1997 9:34

EPISODES IN EVENT SEQUENCES 277

Figure 5. Number of frequent serial (solid line) and injective parallel (dotted line) episodes as a function of the
window width; WINEPI, alarm database, frequency threshold 0.002.

With a given frequency threshold, the numbers of serial and injective parallel episodes
may be fairly similar, e.g., a frequency threshold of 0.002 results in 151 serial episodes or
93 parallel episodes. The actual episodes are, however, very different, as can be seen from
the number of iterations: recall that thel th iteration produces episodes of sizel . For the
frequency threshold of 0.002, the longest frequent serial episode consists of 43 events (all
candidates of the last iteration were infrequent), while the longest frequent injective parallel
episodes have three events. The long frequent serial episodes are not injective. The number
of iterations in the table equals the number of candidate generation phases. The number of
database passes made equals the number of iterations, or is smaller by one when there were
no candidates in the last iteration.

The time requirement is much smaller for parallel episodes than for serial episodes with
the same threshold. There are two reasons for this. The parallel episodes are considerably
shorter and hence, fewer database passes are needed. The complexity of recognizing
injective parallel episodes is also smaller.

The effect of the window width on the number of frequent episodes is represented in
figure 5. For each window width, there are considerably fewer frequent injective parallel
episodes than frequent serial episodes. With the alarm data, the increase in the number of
episodes is fairly even throughout the window widths that we considered. However, we
show later that this is not the case for all types of data.

5.2. Quality of candidate generation

We now take a closer look at the candidates considered and frequent episodes found during
the iterations of the algorithm. As an example, let us look at what happens during the first
iterations when searching for serial episodes. Statistics of the first ten iterations of a run
with a frequency threshold of 0.001 and a window width of 60 s is shown in Table 3.

The three first iterations dominate the behavior of the method. During these phases,
the number of candidates is large, and only a small fraction (less than 20 per cent) of the
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Table 3. Number of candidate and frequent serial episodes during the first ten iterations with WINEPI; alarm
database, frequency threshold 0.001, window width 60 s.

Episode Possible Frequent
size episodes Candidates episodes Match

1 287 287 58 20%

2 82369 3364 137 4%

3 2 · 107 719 46 6%

4 7 · 109 37 24 64%

5 2 · 1012 24 17 71%

6 6 · 1014 18 12 67%

7 2 · 1017 13 12 92%

8 5 · 1019 13 8 62%

9 1 · 1022 8 3 38%

10 4· 1024 3 2 67%

candidates turns out to be frequent. After the third iteration the candidate generation is
efficient, few of the candidates are found infrequent, and although the total number of
iterations is 45, the last 35 iterations involve only 1–3 candidates each. Thus we could
safely combine several of the later iteration steps, to reduce the number of database passes.

If we take a closer look at the frequent episodes, we observe that all frequent episodes
longer than 7 events consist of repeating occurrences of two very frequent alarms. Each of
these two alarms occurs in the database more than 12000 times (16 per cent of the events
each).

5.3. Comparison of algorithmsWINEPI andMINEPI

Tables 4 and 5 represent performance statistics for finding frequent episodes with MINEPI,
the method using minimal occurrences. Compared to the corresponding figures for WINEPI

Table 4. Performance characteristics for serial episodes with MINEPI; alarm database, maximum time bound
60 s.

Support Frequent Total
threshold Candidates episodes Iterations time (s)

50 12732 2735 83 28

100 5893 826 71 16

250 2140 298 54 16

500 813 138 49 14

1000 589 92 48 14

2000 405 64 47 13

4000 352 53 46 12
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Table 5. Performance characteristics for parallel episodes with MINEPI; alarm database, maximum time bound
60 s.

Support Frequent Total
threshold Candidates episodes Iterations time (s)

50 10041 4856 89 30

100 4376 1755 71 20

250 1599 484 54 14

500 633 138 49 13

1000 480 89 48 12

2000 378 66 47 12

4000 346 53 46 12

in Tables 1 and 2, we observe the same general tendency for a rapidly decreasing number
of candidates and episodes, as the support threshold increases.

The episodes found by WINEPI and MINEPI are not necessarily the same. If we compare
the cases in Tables 1 and 4 with approximately the same number of frequent episodes, e.g.,
151 serial episodes for WINEPI and 138 for MINEPI, we notice that they do not correspond
to the same episodes. The sizes of the longest frequent episodes are somewhat different
(43 for WINEPI vs. 48 for MINEPI). The frequency threshold 0.002 for WINEPI corresponds
to about 150 instances of the episode, at the minimum, while the support threshold used
for MINEPI is 500. The difference between the methods is very clear for small episodes.
Consider an episodeα consisting of just one eventA. WINEPI considers a single eventA to
occur in 60 windows of width 60 s, while MINEPI sees only one minimal occurrence. On
the other hand, two successive events of typeA result inα occurring in 61 windows, but
the number of minimal occurrences is doubled from 1 to 2.

Figure 6 shows the time requirement for finding frequent episodes with MINEPI, as a
function of the support threshold. The processing time for MINEPI reaches a plateau when

Figure 6. Processing time for serial (solid line) and parallel (dotted line) episodes with MINEPI; alarm database,
maximum time bound 60 s.
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the size of the maximal episodes no longer changes (in this case, at support threshold 500).
The behavior is similar for serial and parallel episodes. The time requirements of MINEPI

should not be directly compared to WINEPI: the episodes discovered are different, and our
implementation of MINEPI works entirely in the main memory. With very large databases
this might not be possible during the first iterations; either the minimal occurrences need
to be stored on the disk, or other methods (e.g., variants of Algorithms 4 and 5) must be
used.

5.4. Episode rules

The methods can easily produce large amounts of rules with varying confidences. Recall
that rules are constructed by considering all frequent episodesα as the right-hand side and
all subepisodesβ ¹ α as the left-hand side of the rule. Additionally, MINEPI considers
variations of these rules with all the time bounds in the given setW.

Table 6 represents results with serial episodes. The initial episode generation with MINEPI

took around 14 s, and the total number of frequent episodes was 92. The table shows the
number of rules with two time bounds obtained by MINEPI with confidence threshold 0 and
with maximum time bound 60 s. On the left, we have varied the support threshold. Rules
that differ only in their time bounds are excluded from the figures; the rule generation time
is, however, obtained by generating rules with four different time bounds.

The minimal occurrence method is particularly useful if we are interested in finding rules
with several different time bounds. The right side of Table 6 represents performance results
with a varying number of time bounds. The time requirement increases slowly as more
time bounds are used, and slowlier than the number of rules.

Rules with a high confidence are often the most interesting and useful ones, especially
if they are used for prediction. Figure 7 shows how the number of distinct rules varies as a
function of the confidence threshold for MINEPI. Of the over 10000 rules generated, 2000
have a confidence of exactly 1. For many applications it is reasonable to use a fairly low

Table 6. Number of rules and rule generation time with MINEPI; alarm database, serial episodes, support threshold
1000, maximum time bound 60 s, confidence threshold 0.

Varying support threshold, Varying number of time bounds,
four time bounds support threshold 1000

Support Distinct Rule gen. Number of All Rule gen.
threshold rules time (s) time bounds rules time (s)

50 50470 149 1 1221 13

100 10809 29 2 2488 13

250 4041 20 4 5250 15

500 1697 16 10 11808 18

1000 1221 15 20 28136 22

2000 1082 14 30 42228 27

4000 1005 14 60 79055 43
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Figure 7. Total number of distinct rules found by MINEPI with various confidence thresholds; alarm database,
maximum time bound 60 s, support threshold 100.

confidence threshold in order to point out the interesting connections, as is discussed in the
following subsection.

The amount of almost 80000 rules, obtained with 60 time bounds, may seem unnecessarily
large and unjustified. Remember, however, that when ignoring the time bounds, there are
only 1221 distinct rules. The rest of the rules present different combinations of time bounds,
in this case down to the granularity of one second. For the cost of 43 s we thus obtain very
fine-grained rules from the frequent episodes. Different criteria, such as a confidence
threshold or the deviation from an expected confidence, can then be used to select the most
interesting rules from these.

5.5. Results with different data sets

In addition to the experiments on the alarm database, we have run MINEPI on a variety of
different data collections to get a better view of the usefulness of the method. The data
collections that were used and some results with typical parameter values are presented in
Table 7.

Table 7. Characteristic parameter values for each of the data sets and the number of episodes and rules found by
MINEPI.

Data set Event Support Max time Confidence Frequent
name Events types threshold bound threshold episodes Rules

alarms 73679 287 100 60 0.8 826 6303

WWW 116308 7634 250 120 0.2 454 316

text1 5417 1102 20 20 0.2 127 19

text2 2871 905 20 20 0.2 34 4

protein 4941 22 7 10 n/a 21234 n/a
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The WWW data is part of the WWW server log from the Department of Computer
Science at the University of Helsinki. The log contains requests to WWW pages at the
department’s server made by WWW browsers in the Internet. We consider the WWW page
fetched as the event type. The total number of events in the data set is 116308, covering
three weeks in February and March, 1996. In total, 7634 different pages are referred to.
Requests for images have been excluded from consideration.

Suitable support thresholds vary a lot, depending on the number of events and the dis-
tribution of event types. A suitable maximum time bound for the device-generated alarm
data is one minute, while the slower pace of a human user requires using a larger time
bound (two minutes or more) for the WWW log. By using a relatively small time bound we
reduce the probability of unrelated requests contributing to the support. A low confidence
threshold for the WWW log is justified since we are interested in all fairly usual patterns of
usage. In the WWW server log we found, e.g., long paths of pages from the home page of
the department to the pages of individual courses. Such behavior suggests that rather than
using a bookmark directly to the home page of a course, many users quickly navigate there
from the departmental home page.

The two text data collections are modifications of the same English text. Each word is
considered an event, and the words are indexed consecutively to give a “time” for each
event. The end of each sentence causes a gap in the indexing scheme, to correspond to a
longer distance between words in different sentences. We used text from GNU man pages
(the gnu awk manual). The size of the original text (text1) is 5417 words, and the size of
the condensed text file (text2), where non-informative words such as articles, prepositions,
and conjunctions, have been stripped off, is 2871 words. The number of different words in
the original text is 1102 and in the condensed text 905.

For text analysis, there is no point in using large “time” bounds, since it is unlikely that
there is any connection between words that are not fairly close to each other. This can
be clearly seen in figure 8 which represents the number of episodes found with various
window widths using WINEPI. This figure reveals behavior that is distinctively different

Figure 8. Number of serial (solid line) and injective parallel (dotted line) episodes as a function of the window
width; WINEPI, compressed text data (text2), frequency threshold 0.02.



P1: MVG

Data Mining and Knowledge Discovery KL503-03-Mannila2 September 29, 1997 9:34

EPISODES IN EVENT SEQUENCES 283

from the corresponding figure 5 for the alarm database. We observe that for the text data,
the window widths from 24 to 50 produce practically the same amount of serial episodes.
The number of episodes will only increase with considerably larger window widths. For
this data, the interesting frequent episodes are smaller than 24, while the episodes found
with much larger window widths are noise. The same phenomenon can be observed for
parallel episodes. The best window width to use depends on the domain, and cannot be
easily adjusted automatically.

Only few rules can be found in text using a simple analysis like this. The strongest rules
in the original text involve either the wordgawk, or common phrases such as

the , value [2] ⇒ of [3] (confidence 0.90)

meaning that in 90% of the cases where the wordsthe value are consecutive, they are
immediately followed by the prepositionof . These rules were not found in the condensed
text since all prepositions and articles have been stripped off. The few rules in the condensed
text contain multiple occurrences of the wordgawk, or combinations of words occurring
in the header of each main page, such asfree software .

We performed scale-up tests with 5, 10, and 20 fold multiples of the compressed text file,
i.e., sequences of approximately 2900 to 58000 events. The results in figure 9 show that
the time requirement is roughly linear with respect to the length of the input sequence, as
could be expected.

Finally, we experimented with protein sequences. We used data in the PROSITE database
(Bairoch et al., 1995) of the ExPASy WWW molecular biology server of the Geneva
University Hospital and the University of Geneva (ExPASy). PROSITE contains biologi-
cally significant DNA and protein patterns that help to identify to which family of protein (if
any) a new sequence belongs. The purpose of our experiment is to evaluate our algorithm
against an external data collection and patterns that are known to exist, not to find patterns
previously unknown to the biologists. We selected as our target a family of 7 sequences
(“DNA mismatch repair proteins 1”, PROSITE entry PS00058). The sequences in the family

Figure 9. Scale-up results for serial (solid line) and injective parallel (dotted line) episodes with MINEPI; com-
pressed text data, maximum time bound 60, support threshold 10 for the smallest file (n-fold for the larger files).
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are known to contain the stringGFRGEALof seven consecutive symbols. The methods can
be easily modified to take several separate sequences as input, and to compute the support
of an episodeα, e.g., as the number of input sequences that contain a (minimal) occurrence
of α of length at most the maximum time bound. For simplicity, we transformed the data in
a manner similar to the English text: symbols are indexed consecutively, and between the
protein sequences we placed a gap. The total length of this data set is 4941 events, with an
alphabet of 22 event types.

The parameter values for the protein database are chosen on purpose to reveal the pattern
that is known to be present in the database. The window width was selected to be 10,
i.e., slightly larger than the length of the pattern that we were looking for, and the support
threshold was set to 7, for the seven individual sequences in the original data. With this
data, we are only interested in the longest episodes (of length 7 or longer). Of the more
than 20000 episodes found, 17 episodes are of length 7 or 8. As expected, these contain
the sequenceGFRGEALthat was known to be in the database. The longer episodes are
variants of this pattern with an eighth symbol fairly near, but not necessarily immediately
subsequent to the pattern (e.g.,GFRGEAL*S). These types of patterns belong to the pattern
class used in PROSITE but, to our surprise, these longer patterns are not reported in the
PROSITE database.

5.6. Experiences in alarm analysis

Our algorithms for finding episodes have been applied to the analysis of telecommunication
alarms. We briefly describe the application and summarize our experiences; see H¨atönen
et al. (1996a, 1996b) for more details.

Telecommunication networks are growing fast in size and complexity, and at the same
time their management is becoming more difficult. The task of identifying and correcting
faults in telecommunication networks is, in particular, a critical task of network manage-
ment. Network elements produce large amounts of alarms about the faults in a network, but
fully employing this valuable data is difficult due to the high volume and the fragmented
nature of the information. Moreover, changes in equipment, software, and network load
mean that the characteristics of the alarm data change.

Episodes can be used in building systems for alarm correlation, a central technique
in fault identification. In alarm correlation, a management center automatically analyzes
the stream of alarms it receives from a telecommunication network. Alarm correlation is
typically based on looking at the active alarms within a time window, and interpreting them
as a group. This interpretation can result in filtering of redundant alarms, identification
of faults, and in suggestions for corrective actions. See, e.g., Jakobson and Weissman
(1993) for a description of a representative correlation system; similar approaches have
been used successfully also in process control tasks (Milne et al., 1994). While the use
of alarm correlation systems is quite popular and methods for specifying the correlations
are maturing, acquiring all the knowledge necessary for constructing an alarm correlation
system for a network and its elements is difficult.

Our view to alarm correlation involves three phases. (1) A large database of alarms
is analyzed off-line, and frequent episodes are discovered. (2) The network management
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specialists use discovered episodes as drafts for correlation rules, when building or updating
a correlation system. (3) The correlation system is applied in real-time alarm processing.
The methodology for the first step and a supporting system, TASA, have been described in
Hätönen et al. (1996a).

Knowledge about different aspects of alarms can be discovered by specifying the event
types in alternative ways. If only the alarm type is considered as the event type, then episodes
reveal connections between types of alarms without respect to the network elements that
sent the alarms. Alternatively, e.g., the pair (sender, alarm type) can be considered to
constitute the event type, thus making it explicit that the input is merged from alarms from
several senders in the network. An episode rule found in events like this shows connections
between alarms from particular network elements. Events consisting of the (sender type,
alarm type) pair have actually proved to be one of the most useful forms: episode rules
between problems in different types of devices seem to describe the network behavior in a
reasonable level of abstraction.

Episode algorithms have been in prototype use in four telecommunication companies
since the beginning of 1995. Beginning from the first tests, discovered episodes have
been applied in alarm correlation systems. Unexpected but useful dependencies have been
found, e.g., between network elements which are not immediately connected in the network
topology. The fault management experts in the telecommunication companies have found
episodes useful in three tasks: (1) finding long-term, rather frequently occurring dependen-
cies, (2) creating an overview of a short-term alarm sequence, and (3) evaluating the alarm
database consistency and correctness. Although the algorithms are not directly applicable
for on-line analysis, they have turned out to be useful in network surveillance. Especially
when supplemented with browsing tools, such as in the TASA system, episodes can provide
useful views to the collection of recent alarms.

6. Related work

The work most closely related to ours is perhaps (Agrawal and Srikant, 1995; Srikant and
Agrawal, 1996). There multiple sequences are searched for patterns that are similar to serial
episodes with some extra restrictions and an event taxonomy. Our methods can be extended
with a taxonomy by a direct application of the similar extensions to association rules (Han
and Fu, 1995; Holsheimer et al.,1995; Srikant and Agrawal, 1995). Also, our methods can
be applied on analyzing several sequences; there is actually a variety of choices for the
definition of frequency (or support) of an episode in a set of sequences.

Patterns over multiple, synchronized sequences are searched for in Oates and Cohen
(1996). The patterns are similar to but more rigid than episodes. For instance, the in-
sertion of unrelated events into the sequences is problematic. The use of multiple se-
quences corresponds here to searching episodes from a sequence of (sender, alarm type)
pairs.

First order temporal logic has been proposed as a means of both expressing and discov-
ering temporal patterns (Padmanabhan and Tuzhilin, 1996). The formalism is strong and
allows expressing more complex patterns than episodes; it is unclear what the complexity
of different discovery tasks is. There are also some interesting similarities between the



P1: MVG

Data Mining and Knowledge Discovery KL503-03-Mannila2 September 29, 1997 9:34

286 MANNILA, TOIVONEN AND VERKAMO

discovery of frequent episodes and the work done on inductive logic programming (see,
e.g., Muggleton, 1992); a noticeable difference is caused by the sequentiality of the under-
lying data model, and the emphasis on time-limited occurrences. Similarly, the problem
of looking for one occurrence of an episode can also be viewed as a constraint satisfaction
problem.

For a survey on patterns in sequential data, see Laird (1993). Another knowledge dis-
covery method for telecommunication alarm data has been presented in Goodman et al.
(1995).

The task of discovering frequent parallel episodes can be stated as a task of discovering
all frequent sets, a central phase of discovering association rules (Agrawal et al., 1993).
The rule generation methods are essentially the same for association rules and WINEPI. The
levelwise main algorithm has also been used successfully in the search of frequent sets
(Agrawal et al., 1996); a generic levelwise algorithm and its analysis has been presented in
Mannila and Toivonen (1997).

Technical problems related to the recognition of episodes have been researched in sev-
eral fields. Taking advantage of the slowly changing contents of the group of recent events
has been studied, e.g., in artificial intelligence, where a similar problem in spirit is the
many pattern/many object pattern match problem in production system interpreters (Forgy,
1982). Also, comparable strategies using a sliding window have been used, e.g., to study
the locality of reference in virtual memory (Denning, 1968). Our setting differs from these
in that our window is a queue with the special property that we know in advance when an
event will leave the window; this knowledge is used by WINEPI in the recognition of serial
episodes. In MINEPI, we take advantage of the fact that we know where subepisodes of
candidates have occurred.

The methods for matching sets of episodes against a sequence have some similarities
to the algorithms used in string matching (e.g., Grossi and Luccio, 1989). In particular,
recognizing serial episodes in a sequence can be seen as locating all occurrences of subse-
quences, or matches of patterns with variable length do not care symbols, where the length
of the occurrences is limited by the window width. Learning from a set of sequences has
received considerable interest in the field of bioinformatics, where an interesting problem is
the discovery of patterns common to a set of related protein or amino acid sequences. The
classes of patterns differ from ours; they can be, e.g., substrings with fixed length do not
care symbols (Jonassen et al., 1995). Closer to our patterns are those considered in Wang
et al. (1994). The described algorithm finds patterns that are similar to serial episodes;
however, the patterns have a given minimum length, and the occurrences can be within a
given edit distance. Recent results on the pattern matching aspects of recognizing episodes
can be found in Das et al. (1997).

The recent work on sequence data in databases (see Seshadri et al., 1996) provides
interesting openings towards the use of database techniques in the processing of queries on
sequences. A problem similar to the computation of frequencies occurs also in the area of
active databases. There triggers can be specified as composite events, somewhat similar to
episodes. In Gehani et al. (1992) it is shown how finite automata can be constructed from
composite events to recognize when a trigger should be fired. This method is not practical
for episodes since the deterministic automata could be very large.
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In stochastics, event sequence data is often called a marked point process (Kalbfleisch
and Prentice, 1980). It should be noted that traditional methods for analyzing marked point
processes are ill-suited for the cases where the number of event types is large. However,
there is a promising combination of techniques: frequent episodes could be discovered first,
and then the phenomena they describe are analyzed in more detail with methods for marked
point processes.

7. Conclusions

We presented a framework for discovering frequent episodes in sequential data. The frame-
work consists of defining episodes as partially ordered sets of events, and looking at windows
on the sequence. We described an algorithm, WINEPI, for finding all episodes from a given
class of episodes that are frequent enough. The algorithm was based on the discovery
of episodes by only considering an episode when all its subepisodes are frequent, and on
an incremental checking of whether an episode occurs in a window. The implementation
shows that the method is efficient. We have applied the method in the analysis of the alarm
flow from telecommunication networks, and discovered episodes have been embedded in
alarm handling software.

We also presented an alternative approach, MINEPI, to the discovery of frequent episodes,
based on minimal occurrences of episodes. This approach supplies more power for repre-
senting connections between events, as it produces rules with two time bounds.

The rule formalisms of the two methods both have their advantages. While the rules of
MINEPI are often more informative, the frequencies and confidences of the rules of WINEPI

have nice interpretations as probabilities concerning randomly chosen windows. For a large
part the algorithms are similar, there are significant differences only in the computation of
the frequency or support. Roughly, a general tendency in the performance is that WINEPI can
be more efficient in the first phases of the discovery, mostly due to smaller space require-
ment. In the later iterations, MINEPI is likely to outperform WINEPI clearly. The methods
can be modified for cross-use, i.e., WINEPI for finding minimal occurrences and MINEPI

for counting windows, and for some large problems—whether the rule type of WINEPI or
MINEPI—a mixture of the two methods could give better performance than either alone.

The classes of patterns discovered can be easily modified in several directions. Different
windowing strategies could be used, e.g., considering only windows starting everywin′

time units for somewin′, or windows starting from every event. Other types of patterns
could also be searched for with similar methods, e.g., substrings with fixed length do not
care symbols; searching for episodes in several sequences is no problem. A more general
framework for episode discovery has been presented in Mannila and Toivonen (1996).
There episodes are defined as combinations of events satisfying certain user specified unary
of binary conditions.

Interesting extensions to the work presented here are facilities for rule querying and
compilation, i.e., methods by which the user could specify the episode class in a high-level
language and the definition would automatically be compiled into a specialization of the
algorithm that would take advantage of the restrictions on the episode class. Other open
problems include the combination of episode techniques with marked point processes and
intensity models.
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