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Abstract. A Bayesian approach is used to develop a method for fitting a metapopulation
model (the incidence function model) to data on habitat patch occupancy, providing esti-
mates of the five model parameters. Parameter estimation is carried out using a Markov
chain Monte Carlo sampler, and data augmentation is used to include the effect of missing
data in the analysis. The Bayesian approach allows us to take into account uncertainty
about the parameter estimates when making predictions with the model.

We demonstrate the methods of parameter estimation and prediction with simulated
data. We first simulated metapopulation dynamics in real habitat patch networks with given
parameter values and sampled the simulated data. Parameters were estimated both from
full data sets, and from data sets with data for many years treated as missing. These estimates
were then used to predict the distribution of time to extinction in modified networks, where
patch areas had been reduced so that the real parameter values led to metapopulation
extinction within ;30 yr. We were successfully able to fit the model and found that, in
some cases, the predictions can be sensitive to one of the parameters.

Key words: Bayesian inference; data augmentation; habitat patch occupancy; Markov chain
Monte Carlo (MCMC); metapopulation model; population viability analyses (PVA).

INTRODUCTION

Much of the research into metapopulation dynamics
is aimed at elucidating the factors influencing long-
term metapopulation persistence (Hanski 1999). This
research has involved the study of empirical systems,
and relating their dynamics to mathematical models.
Most models have assumed that the patches are either
occupied or empty, with colonizations and extinctions
being stochastic and determined by a variety of factors,
such as the area of the habitat patch (which is used as
a surrogate for the population size). Fitting the models
to empirical data is an important part of determining
which factors are important in the real world.

Logistic regression (e.g., Sjögren-Gulve and Ray
1996, Ericson et al. 1999) has been used to analyze
metapopulation data by estimating the probability of a
patch becoming occupied or extinct at time t as a func-
tion of the patch occupancy pattern at a previous time,
and other covariates such as patch area and isolation.
With complete data, and regression being performed
on the previous year’s data, this approach is similar to
that taken below (although the shapes of the functions
are different).

Hanski (1994) constructed the incidence function
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model (IFM, see Methods: Incidence function model)
and derived expressions for the probability that a par-
ticular patch will be occupied, assuming quasi-station-
arity. This approach has been criticized for not taking
into account correlations between patch occupancies;
it maximizes a pseudo-likelihood, not the true likeli-
hood (ter Braak et al. 1998).

More recently, Moilanen (1999) developed an esti-
mation method based on a Monte Carlo approach.
Moilanen took missing years into account by simulat-
ing them, and using the transition from the last sim-
ulated year to the next (observed) year to estimate the
model parameters. This approach is somewhat ad hoc,
particularly as it introduces turnover limitation, which
constrains the estimation by fixing the maximum num-
ber of changes in patch occupancy of the metapopu-
lation. This constraint is not estimated from the data,
but has to be chosen from other information. The meth-
od has also yet to be extended to provide confidence
limits, or to the situation when some, but not all, patch-
es are observed in a year.

In this paper we develop an approach to metapop-
ulation model fitting that overcomes the shortcomings
of the previous approaches. We adopt a Bayesian ap-
proach, which allows us to take into account uncer-
tainty about the processes being modeled. We illustrate
our approach with simulated data, using several real
habitat patch networks, and demonstrate how the ap-
proach can be used to make predictions about meta-
population response to changes in the structure of the
fragmented landscape.
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METHODS

Incidence function model

We will recast the incidence function model in a
slightly different way from Hanski (1994). A meta-
population consists of a set, I, of patches. The state of
the metapopulation at time t is denoted by the vector
X(t) 5 (Xi(t), i ∈ I ), where Xj(t) 5 0 if patch j is
unoccupied and Xj(t) 5 1 if j is occupied. The sequence
{X(t), t 5 0, 1, 2, . . .} is a Markov chain on a finite
(if large) state space with 2zIz states. The probabilities
of transition from X(t 2 1) to X(t) are summarized in
the transition matrix, P. This is a square matrix of size
2zI z 3 2zI z, and becomes too large to handle directly if
there are more than about 30 patches.

We assume that the state of each patch at time t is
independent of the states of the other patches at time
t, given the state of the entire metapopulation at time
t 2 1. The elements of P can then be calculated as the
product of the probabilities for the state of each indi-
vidual patch.

The probability of an unoccupied patch being col-
onized at time t is dependent on the rate of migration
into the patch, which is measured as the connectivity
of the patch, Si(t):

2ad bijS (t) 5 X (t 2 1)e A (1)Oi j j
∀j±i

where dij is the distance between patches i and j, a is
a dispersal scale parameter, Aj is the area of patch j,
and b is a parameter scaling emigration to area. To
convert Si(t) to the probability of colonization, Ci(t), a
link function is used:

2S (t)iC (t) 5 (2)i 2 2S (t) 1 yi

where y is a parameter.
If patch i is occupied at time t, the population will

go extinct with probability Ei(t):
xA0E (t) 5 min 1, (1 2 C (t)) (3)i i1 1 2 2Ai

where A0 is the minimum patch area for viable popu-
lations (i.e., Ei(t) 5 (1 2 Ci(t)) for Ai , A0), x is a
parameter and the 1 2 Ci(t) term takes into account
the rescue effect (Hanski 1999). The model has five
parameters, which can all be estimated from patch oc-
cupancy data.

Bayesian estimation

Here we take a Bayesian approach to estimation
(e.g., Gelman et al. 1995). A Bayesian analysis of data
can be seen as a process of using data to change our
knowledge about the values of parameters of a model.
This is done by applying Bayes’ formula:

pr(uzdata) } pr(u)pr(datazu) (4)

where pr(uzdata) is the posterior density of the param-

eters (u), given the data. The expression is made up of
the prior density (pr(u)), a description of where the
parameters are thought to lie before the data are ana-
lyzed, and the likelihood (pr(datazu)), which is the con-
tribution to our knowledge given by the data.

One strength of the Bayesian approach is that it deals
with uncertainty explicitly. Of particular relevance in
this paper is the way missing data and prediction are
handled. Nuisance variables (whether they are nuisance
parameters, or missing data) can be accounted for by
integrating them out:

pr(u z data) 5 pr(u , u z data) du1 E 1 2 2

5 pr(u z u , data)pr(u z data) du (5)E 1 2 2 2

where u2 is a nuisance parameter. This can be inter-
preted as taking a weighted average of the conditional
density for u1 (pr(u1zu2, data)), weighted by the prob-
ability density for the value of u2 (pr(u2zdata)). A similar
trick is used for making predictions based on a fitted
model. The parameters of the model can be viewed in
a similar way to nuisance parameters, and they can also
be integrated out:

Pr(prediction z data)

5 Pr(prediction z u, data)Pr(u z data) du. (6)E
This has a similar interpretation to Eq. 5.

Model fitting

Typical metapopulation data consist of a set of ob-
servations of patch occupancies, X(0), X(t1), X(t2), . . . ,
X(tm), made at m times 0 , t1 , t2 , . . . , tm. The
corresponding likelihood of these observations is the
product of the likelihoods for the transitions between
the states, and the likelihood of reaching the first state,
i.e.,

(t ) (t 2t )1 m m21m(X(0))P (X(0), X(t )) . . . P (X(m 2 1), (X(m))1

(7)

where m is the (initial) distribution of X(0) and P(t) (x,
x9) is the (x, x9)-element of the tth power of P. In this
paper statistical inference will be done conditionally
on the initial state X(0), which amounts to ignoring the
corresponding contribution m(X(0)). Fitting this model
to data requires a numerical approach. Here we use
Markov chain Monte Carlo (MCMC) (Gilks et al.
1996b), which draws a large number of points from the
posterior distribution.

Of particular importance here is how missing data
are handled. If the data are not from consecutive years,
then we need to compute elements of the matrices Pt

with t . 1. This is unrealistic in practice (because of
the size of P, as noted above), so instead we do the
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computations approximately, by applying data aug-
mentation methods. In essence, this means repeatedly
filling in the missing data, and using this augmented
data set to estimate the parameters. The trick is to fill
in the missing data from the correct distribution. For
Bayesian inference, we are aiming to obtain a distri-
bution that is a numerical approximation of Eq. 5.

For an illustration, consider the case in which X(0)
and X(2) are observed, but the value of X(1) is missing.
The conditional distribution of the unknown X(1) given
the entire data will depend only on the neighboring
values in time, that is, X(0) and X(2):

Pr(X(1) z X(0), X(2))

} Pr(X(0), X(1))Pr(X(1), X(2)). (8)

Straightforward simulation of the vector X(1) is im-
possible in practice because the occupancy of each patch
Xj(1), j ∈ I, cannot be drawn independently of the other
patch states. Instead, a version of the Metropolis-Has-
tings (M-H) algorithm can be used to give a sequence
X(1) (1), X(2) (1), . . . , X(n) (1) of n simulated occupancy
patterns, whose limiting distribution will coincide with
that given by Eq. 8. If more than one year’s data are
missing, then the procedure is easily extended. For ex-
ample, if years 1 and 2 are missing, then we augment
the data by simulating initial values X(0) (1) and X(0) (2),
then use the M-H algorithm to produce a new value X(1)

(1) given X(0) and X(0) (2), and then a new value X(1)

(2) given X(1) (1) and X(3). Again, this can be iterated
for n steps, and the limiting distributions will be correct.
The extension of this procedure to the situation in which
data are missing for more than two consecutive years is
obvious. If only some of the data from a year are in-
complete, then we only use data augmentation for the
data that are missing.

From the estimates of the missing data, we can compute
numerical approximations of the likelihood function, and
use these likelihoods for the estimation of the parameters
of the model. This scheme can be used to obtain maxi-
mum likelihood (ML) estimates via a stochastic EM al-
gorithm (Diebolt and Ip 1996). As we are taking a Bayes-
ian approach, we combine the estimation of the missing
data with that of the parameters directly, to produce a set
of n vectors of the parameters, whose limiting distribution
is their posterior distribution (Eq. 4).

Implementation

Since the IFM specifies the likelihood for the ob-
servations, all we need to do to set up a Bayesian model
is to specify the joint prior distribution of the model
parameters. We defined the priors for all five param-
eters to be independent exponential distributions, with
means equal to 100. Although these are not uninfor-
mative, they are vague, i.e., they are almost flat around
the parameter space where the (known) parameter val-
ues lie.

The model was fitted to the data with a MCMC al-

gorithm, using the Bassist, version 0.8.4 (Toivonen et
al. 1998). Parameters were updated using single com-
ponent M-H, proposing from a normal distribution cen-
tered at the current value, with a variance that had been
tailored to give reasonable mixing (from 1025 for A0 to
1022 for a and y). Augmented data were updated using
a Gibbs sampler (Gilks et al. 1996a).

For the MCMC computation, we ran five chains si-
multaneously. For each chain, a burn-in of 5000 iter-
ations was used, after which the next 8000 iterations
were thinned by taking every fourth iteration, to give
a total of 2000 samples. These runs gave a five-di-
mensional cloud of 10 000 points representing the pos-
terior distribution. Convergence was assessed by eye.
We also took 10 000 samples from the prior distribu-
tion, to be used as a reference.

Simulated data

The fitting of the model was investigated by fitting
it to a metapopulation simulated in the network of hab-
itat patches of the silver-spotted skipper butterfly (Hes-
peria comma) described in Hanski and Thomas (1994).
We used two sets of parameters (Table 1). Set 1 is close
to values that had been estimated previously (Hanski
1994), and set 2 was chosen to allow the simulated
metapopulation to persist, but with dynamics different
to those determined by set 1. Both sets of parameters
gave long-term persistence in the patch network. The
metapopulation was simulated from an initial random
configuration for 100 years, after which the following
50 years of data were sampled. Some statistics about
the data sets are shown in Table 2. In both cases there
was a reasonable amount of population turnover be-
tween years, though the turnover was greater with the
first set of parameters. The parameters of the model
were then estimated using the first 10 years, the first
20 years, and the full 50 years of the data, as well as
just the first and 10th years present, and all of the
intervening years being treated as missing.

In order to illustrate the application of a Bayesian anal-
ysis to prediction, we used the posterior distributions to
make predictions about the dynamics of the metapopu-
lation in an altered patch network. We did this by sim-
ulating the dynamics in the same network from which the
parameters were estimated but with the areas of all of the
patches having been reduced by the same factor (Loss in
Table 2, perhaps representing a deterioration in habitat
quality) so that with the real parameters the average time
to extinction was ;30 generations. The simulations were
started at the observed final year’s occupancy pattern, and
run for up to 150 years, with the time to extinction being
recorded. We made 10 000 simulations using the real pa-
rameter values, and one simulation for each parameter set
from the posterior distribution.

We compared our method with the one proposed by
Moilanen (1999) by fitting the model to several 10-yr-
long simulated time series. As well as the data sets
generated above, we used data sets generated by sim-
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TABLE 1. Means and standard deviations (s) of posterior distributions estimated from data
sets simulated in a Hesperia comma patch network.

Data used Statistic x a y b A0

Set 1
Real parameters
Years 2–9 removed

All 10 years

20 years

50 years

mean
s
mean
s
mean
s
mean
s

0.98
3.95
3.38
1.04
0.24
1.08
0.20
0.92
0.10

1
1.00
0.37
1.11
0.17
0.95
0.11
0.93
0.069

2
3.02
3.89
2.03
0.55
2.20
0.42
2.23
0.25

0.5
0.92
0.75
0.44
0.18
0.42
0.13
0.44
0.077

0.22
11.9
10.0

0.17
0.047
0.21
0.05
0.21
0.027

Set 2
Real parameters
Years 2–9 removed

All 10 years

All 20 years

All 50 years

mean
s
mean
s
mean
s
mean
s

0.98
2.48
3.14
1.11
0.20
0.95
0.090
0.98
0.064

1
0.67
0.41
0.98
0.38
0.88
0.21
0.88
0.13

8.61
14.95
12.90
14.05

9.08
9.12
2.89

10.0
1.84

0.5
0.96
0.75
0.92
0.47
0.48
0.25
0.51
0.17

0.011
13.66
19.22

0.017
0.007
0.014
0.003
0.014
0.002

TABLE 2. Summary statistics for two simulated 10-yr-long
metapopulations data sets; averages are per year.

Statistic Set 1 Set 2

Loss parameter 3.5 30

Average proportion of occupied
Patches
Area

0.87
0.93

0.79
0.92

Average number of
Colonizations
Extinctions

4.7
5.2

2.0
2.3

Changes between first and last year
Colonizations
Extinctions

6
11

4
7

Note: The loss parameter is the amount by which the patch
areas were divided when the areas were reduced to demon-
strate the predicted dynamics from posterior estimates of the
parameters.

ulating metapopulations in four networks (Table 3),
three networks of butterflies (networks B, C, and D),
and one of the American pika (network E). Parameters
were chosen in the same fashion as for network A and
are also given in Table 3.

We estimated x, y, and A0 (keeping b and a at their
true values) using our method and the TMC method of
Moilanen (1999). The TMC method was used as the
assumptions of the model are identical to ours. The
true values for x, y, and A0 were used as initial values
in the TMC estimation. Estimation was carried out at
least twice, and continued until convergence appeared
to have been achieved, and the value with the largest
likelihood taken. The estimated and real parameters
were then used to simulate the metapopulation in a
reduced network as above, with the point estimate from
the TMC method being used 10 000 times.

RESULTS

The means and variances of the estimated posterior
distributions for the estimations for the data sets created
in network A are given in Table 1. With only the first
and last years’ data, the posterior means of several
parameters (particularly A0) are located some way from
the real values. However, the standard deviations are
large, so this is a result of the lack of precision, rather
than a bias in the estimation. As more data are added,
the variances decrease and the posterior means are lo-
cated closer to the real values.

The predictions for the reduced networks are shown
in Fig. 1, where the proportion of simulations that had
not gone extinct by time t is plotted against t. The
posterior predictions for set 2 are close to the predic-
tions obtained with the real parameter values, whereas
the predictions for set 1 are very different. As more

information is added, the curves only slowly move
from the prior prediction toward the prediction based
on the real parameter values.

We investigated whether the data set itself was
somehow abnormal by repeating the process of sim-
ulation of 10 years of data, estimation, and prediction
in a reduced network a further 20 times (a single
chain of 5000 values was used for the MCMC esti-
mation, with burn-in and thinning as above). The
survival curves are plotted in Fig. 1, and it is clear
that the poor estimates for set 1 are not atypical.
Larger values of b generally lead to shorter times to
extinction (Fig. 2), because larger values of b lead
to smaller connectivities, and hence the overall
amount of migration is less. The parameter set cho-
sen is close enough to an area in the parameter space
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TABLE 3. Parameter values used to simulate 10 data sets in patch networks of five different
species.

Species Source
Data
set x a y b A0

Hesperia comma

Scoliantides orion

Melitaea cinxia

Melitaea diamina

Ochotona princeps

Hanski and Thomas (1994)

Hanski (1994)

Hanski (1994)

Wahlberg et al. (1996)

Smith and Gilpin (1997)

A1
A2
B1
B2
C1
C2
D1
D2
E1
E2

0.98
0.98
0.96
0.96
0.95
0.95
0.9
0.9
1.7
0.5

1
1
1
1.3
1
1
1
0.5
2
2

2
8.61
4.5
4.5
3.0
0.86
3.3
3.3
2.5
2.5

0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5

0.22
0.011
0.01
0.01
0.2
0.2
0.01
0.01
0.01
0.0025

FIG. 1. Predictive survival curves (i.e., the proportion of simulations in which the metapopulation had not gone extinct) simulated
from posterior distributions estimated from data simulated with two sets of parameters in a Hesperia comma patch network. (A,
B) predictions from estimations made using different amounts of data; (C, D) predictions from replicate 10-yr simulations.

where the dynamics of the reduced network are sen-
sitive to changes in b, so different parts of the pos-
terior distributions cover the regions giving different
outcomes of the simulations.

The predictive survival curves from our method and
the TMC method are shown in Fig. 3. As above, as
more data are added into the Bayesian predictions, the
estimations tend to converge to the real value, and the
slope of the survival curve becomes steeper, even when

there is little change in the average time to extinction,
reflecting a greater certainty in the predictions. The
TMC method also tends to do better with all the data,
but because the predictions are based on point esti-
mates, the slope is determined solely by the mean time
to extinction, and there is no indication of uncertainty.
With missing data the TMC method often provides pa-
rameter estimates and predictions that are inaccurate
(e.g., C1, C2, and D1). This may be because the dif-
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FIG. 2. Scatter plots of posterior samples for the set-1 data set, all 10 years of data used in the estimation. Contours give
the 50% and 95% posterior density regions. Grey points are the posterior samples for which the corresponding simulation
went extinct within 150 generations. The black cross shows the location of the true parameter values.

ference in the likelihood between the true ML estimate
and the reported estimate is so small that it is obscured
by the stochastic noise in the simulations of the missing
data that are being used to estimate the parameters.

DISCUSSION

By taking a Bayesian approach, we have been able
to directly quantify our uncertainty in the parameters of

a metapopulation model and the predictions arising from
the parameter estimates. One property of the Bayesian
approach is that no additional confidence statement
about the predictive survival curves is necessary; they
represent the predicted probabilities of survival, given
the observed data and the model. A greater knowledge
about the parameters leads to a curve with a steeper
slope, whereas a curve based on a point estimate would
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FIG. 3. Predictive survival curves for ten 10-yr long data sets simulated using patch networks and parameter sets listed
in Table 3, comparing the estimation methods detailed here and in Moilanen (1999).

have the same slope regardless of the amount of infor-
mation, but the uncertainty in the predictions would be
seen in the width of the confidence limits.

The reason for having uncertainty in the parameter
estimates is that different realizations of the real meta-
population process will give slightly different estimates
of the posterior distribution. As suggested by Ludwig
(1996), and shown here, the uncertainty in the esti-
mated parameters can be magnified to give very dif-

ferent predictions. Although the b parameter can have
a large influence on the predictions in our examples,
it is possible that this is an artifact of the combination
of model, parameters, and mechanism we used to re-
duce the network size rather than a biological phenom-
enon. Unfortunately, with real data we do not have the
benefit of knowing the real underlying process, so mod-
el uncertainty should also be assessed.

With our emphasis on prediction, it is clear that our
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approach can be used for population viability analyses
(PVA) of metapopulations. Although a Bayesian ap-
proach has been advocated for PVAs (e.g., Ludwig 1996,
Virtala et al. 1998), we are not aware of any real appli-
cations in a conservation context. We would hope that
this will change as ecologists become aware of the ad-
vantages of a Bayesian approach in allowing us to tackle
uncertainty in a rigorous fashion, and of the use of nu-
merically intensive tools for model fitting (e.g., MCMC).
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V. Solé, editors. Modeling spatiotemporal dynamics in
ecology. Springer-Verlag, Berlin, Germany.

Toivonen, H., H. Mannila, M. Salmenkivi, and K.-P. Laakso.
1998. Bassist—a tool for MCMC simulation of statistical
model. Pages 590–595 in Proceedings of the Eurosim ’98
Simulation Congress, (Helsinki, Finland, April 1998). Fed-
eration of European Simulation Societies, University of
Vienna, Vienna, Austria.

Virtala, M., S. Kuikka, and E. Arjas. 1998. Stochastic virtual
population analysis. ICES Journal of Marine Science 55:
892–904.

Wahlberg, N., A. Moilanen, and I. Hanski. 1996. Predicting
the occurrence of endangered species in fragmented land-
scapes. Science 273:1536–1538.


