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Adaptive Heartbeat Modeling for Beat-to-Beat
Heart Rate Measurement in Ballistocardiograms

Joonas Paalasmaa, Hannu Toivonen, and Markku Partinen

Abstract—We present a method for measuring beat-to-beat
heart rate from ballistocardiograms acquired with force sensors.
First, a model for the heartbeat shape is adaptively inferred
from the signal using hierarchical clustering. Then, beat-to-beat
intervals are detected by finding positions where the heartbeat
shape best fits the signal. The method was validated with
overnight recordings from 46 subjects in varying setups (sleep
clinic, home, single bed, double bed, two sensor types). The mean
beat-to-beat interval error was 13 ms and on average 54% of
the beat-to-beat intervals were detected. The method is part of
a home-use e-health system for unobtrusive sleep measurement.

Index Terms—heart rate measurement, ballistocardiography,
e-health

I. INTRODUCTION

LONG-TERM measurement of sleep can be used for
improving sleep quality and well-being. Bed-installed

force sensors are a good solution for long-term measurement,
because they cause no discomfort to sleep and function auto-
matically without any actions required from the user.

This paper presents a novel method for detecting beat-
to-beat heart rate from signals that are measured with such
bed-installed force sensors. The method is part of a sleep
measurement e-health system where the vibrations of the body
are measured with a flexible bed-installed piezoelectric film
sensor and sent for analysis to a web service or the user’s
smartphone (see Section II). In the system, beat-to-beat heart
rate measurement is utilized e.g. in estimating stress reactions,
sleep stages, and resting heart rate level.

The method we propose is based on ballistocardiography
(BCG). Each time the heart beats, the acceleration of blood
generates a mechanical impulse that can be measured with
a bed-installed force sensor. While BCG-based cardiology
research was popular already in the mid-20th century, other
methods such as electrocardiography (ECG) practically super-
seded BCG as a clinical diagnosis method by the early 1980s
[1]. Recent improvements in measurement technology [2], [3]
and applications such as sleep monitoring have made BCG
attractive again.

The relation between BCG and ECG is shown in Fig.
1. Each ECG heartbeat consists of a clear spike (the QRS
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Fig. 1. A 10-second excerpt of synchronized ballistocardiography (top) and
electrocardiography (bottom) signals.

complex), which is followed by an impulse in the BCG around
80 ms later [4]. The QRS complex precedes the impulse in
the BCG, because electrical activity causes the mechanical
contraction of the heart.

The task of detecting beat-to-beat intervals in a BCG signal
is much more difficult than detecting those from ECG, because
the impulses in BCG are less pronounced and more variable
(see below) than the salient shape of the QRS complex. The
variability of the BCG heartbeat shape has two aspects. First,
the heartbeat shape depends on the physiology of the measured
person and the details of the measurement configuration. For
example, the shape is different depending on whether the
person is lying prone or supine. Second, there is short-term
variability in the heartbeat shape that is caused by the mixing
of adjacent heartbeats [5] and by respiration [6].

Various methods have been proposed for the measurement
of heart rate from BCG signals. Methods that are able to
detect individual beat-to-beat intervals, instead of calculating
the average heart rate over a time period, are reviewed next.

Various algorithms are based on pre-processing the BCG
signal with digital filters such as wavelets, and detecting peaks
[7]–[9] or slightly more complex features [10]–[14] (typically
a “W” shape) from the signal. The problem with these methods
is that they make strong assumptions about the shapes of the
heartbeats in the signal. The properties of the BCG signal vary
so much in practice that no simple filtering rule can be devised
for accurate and reliable beat-to-beat interval detection.

Clustering methods have been proposed for directly detect-
ing heartbeat positions without strong prior assumptions about
heartbeat shape [15], [16]. The problem with these methods
is that they do not model the region between the detected
heartbeat positions. Therefore, it is difficult to infer if two
consecutive detected heartbeat positions form a genuine beat-
to-beat interval or if there is a heartbeat between them that was
missed by the clustering procedure. One promising method
uses k-means clustering to extract a template for the heartbeat
shape and detects heartbeats and beat-to-beat intervals with
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Fig. 2. Overview of the sleep measurement system. Vibrations of the body are
measured with a force sensor placed under the body in the bed. The signals
are analyzed at a web service or smartphone app and presented to the user.

the template [17].
Another class of methods does not try to detect beat-to-beat

intervals by first finding heartbeat positions, but estimates a
“fundamental frequency” of short signal segments and infers
beat-to-beat intervals that way [18]–[20]. The method by
Brüser et al. [20] has been validated with 33 test subjects
and can be considered to represent the state of the art.

In the rest of this paper, we present a novel method for de-
tecting beat-to-beat intervals from a BCG signal. The method
is based on describing the signal with a simple generative
model that takes the physiological variability of the heartbeat
shape into account. Using an adaptive model for a single
heartbeat, the method is designed to detect heartbeat intervals,
i.e., pairs of successive heartbeats. The algorithm is relatively
simple and has few heuristics or parameters.

The sleep measurement e-health system where the proposed
method is utilized is described in Section II, and the method in
Section III. We present a validation with overnight recordings
from 46 subjects in Section IV. We conclude with a discussion
in Section V.

II. SLEEP MEASUREMENT SYSTEM

The beat-to-beat interval detection method is part of a sleep
measurement system (see Fig. 2 for an overview). Vibrations
of the body are measured with a flexible piezoelectric film
sensor, which is installed under the bed sheets. The signal
is sent for analysis to a web service over the Internet [21]
or to a smartphone over Bluetooth. The signal is analyzed
in two stages. First, beat-to-beat intervals, respiratory rate
variability [22] and movements are extracted from the force
sensor signal. Then, based on this information, the quality of
sleep is analyzed. The resulting sleep information is shown to
the user with a web interface or smartphone app.

The proposed signal analysis method enables the measure-
ment of nocturnal resting heart rate and heart rate variability.

Detecting beat-to-beat 
intervals with the model

Re-estimating
the model with detected

beat-to-beat intervals

Initial estimation of
the heartbeat model

Fig. 3. Overview of the beat-to-beat interval detection process.

In the system, they are utilized e.g. in sleep staging and for
measurement of stress reactions during sleep (see e.g. [23]–
[28]). The details are omitted here.

III. BEAT-TO-BEAT INTERVAL DETECTION METHOD

A. Purpose and overview

The purpose of the method is to extract heart rate variability
information by finding time intervals between consecutive
heartbeat positions (beat-to-beat intervals). For this task, there
is no particular reference point in the BCG heartbeat shape
that the heartbeat positions need to match. Instead, the method
can choose, at run-time, a reference point in the heartbeat
shape that it will then use systematically to measure intervals
between heartbeats. The temporal location of such a reference
point, when identified in the BCG signal, is called a heartbeat
position.

A beat-to-beat interval starts at a heartbeat position and ends
at the next heartbeat position. This implies that the beat-to-
beat interval detection algorithm has to accomplish two tasks:
find heartbeat positions for the start and end of the interval,
and assure that the start and end positions are consecutive
heartbeats (i.e., that there are no missed heartbeats between
them).

All this is done in an adaptive manner without existing
information about heartbeat positions or heartbeat shapes. The
algorithm bootstraps itself as follows (Fig. 3). First, an initial
heartbeat shape model is constructed without information
about heartbeat positions using clustering. Then, the model
is used for detecting beat-to-beat intervals, and periodically
updated based on the detected beat-to-beat intervals.

Our implementation is configured to detect beat-to-beat
intervals in the range 0.4 . . . 2.0 seconds, corresponding to
heart rates from 30 to 150 beats per minute. This range is
sufficient for most sleep monitoring applications.

Before a measured signal is passed to the beat-to-beat
interval detection method, low-frequency activity is removed,
to suppress respiration activity. The removed low-frequency
activity is extracted by filtering the signal with a Gaussian
low-pass filter with 0.1-second standard deviation.

B. Generative model for a BCG signal

We model the BCG signal as a summation (essentially
concatenation) of heartbeat shape vectors [5], [6], [15]. In
other words, the signal consists of superimposed shapes of the
individual heartbeats (Fig. 4). Due to the oscillating nature of
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Fig. 4. A synthetic signal example. The individual heartbeat shape vectors
xi are shown in the upper plot (every other heartbeat is offset vertically for
clarity). The overall signal, formed by summing the individual heartbeats, is
shown in the bottom plot.

the BCG signal, consecutive heartbeat impulses are partially
overlapping [5]. The amount of overlap depends on the details
of measurement, and an oscillating platform such as a bed
makes the overlap longer.

A model for the measured BCG signal that describes the
overlap of heartbeats is defined next. Formally, at time j, the
modelled signal is expressed as

ŝj =

N∑
i=1

xi[j − ti] (1)

where xi is the shape of the ith heartbeat (a vector), ti is the
temporal position of that heartbeat and xi[k] denotes the kth
item of vector xi. We define xi[k] = 0 if k is smaller than 0
or larger than the size of vector xi. Note that the individual
shape vectors xi vary between heartbeats (see (2) below).

C. Respiratory variation of heartbeat shapes

It has been known since the first ballistocardiography studies
[29], [30, p. 191] that the amplitude of the heartbeat shape
varies by respiration. We model each individual heartbeat
shape vector xi as

xi = ziµ (2)

where vector µ is a heartbeat shape template (see below) and
zi is the amplitude (a scalar) of the ith heartbeat [6].

In our implementation of the algorithm, the length of
the heartbeat shape vector µ is fixed to 2 seconds. This is
sufficiently long for accommodating the shape of a single
heartbeat fluctuation, at least for the purposes of beat-to-beat
interval detection.

We have previously also given a model where heartbeat
shape variation is not limited to amplitude, but the shape varies
in the direction of a vector [6]. That model is not used here,
because the more complex model is difficult to combine with
the other parts of this beat-to-beat interval detection method.

D. Initial estimation of the heartbeat model

Detection of beat-to-beat intervals consists of two paral-
lel and mutually independent processes: a) estimating the
heartbeat shape template µ based on previously detected
beat-to-beat intervals and b) detecting beat-to-beat intervals

with µ (Fig. 3). Their circular dependency is resolved by
first detecting a few heartbeat positions using clustering and
estimating µ based on these positions.

A clustering method previously proposed by us [15] is
used for finding the initial heartbeat positions. The clustering
method is applied on a segment of the signal: within the
segment, we look for clusters of short windows (shorter than
the beat-to-beat interval) of the signal. A dense cluster of
similar windows is most likely to arise when the windows
are identically positioned with respect to different heartbeats
within the segment.

Windowing and clustering are performed as follows. First,
the segment is divided into overlapping 0.4-second windows
(minimum allowed beat-to-beat interval) so that each window
is centered at an extremum of the derivative of the signal. Fig.
5 illustrates this process with an exemplary 8-second signal
segment. The window center positions are shown as upward
lines in Fig. 5a and all the 0.4-second signal windows are
overlaid in Fig. 5b.

In our implementation, the clustering method is applied to a
15-second signal segment at a time, and the densest four-item
cluster is selected to initially represent the heartbeat shape.
This choice is based on experimentation and the idea that
about four heartbeats is enough for a rough estimation of the
heartbeat shape and 15 seconds typically contains at least four
heartbeats not disturbed by movement.

The signal windows are clustered using complete-link ag-
glomerative clustering [15]. Fig. 5c shows the densest (small-
est complete-link distance) four-item cluster of signal windows
(window positions as downward lines in Fig. 5a). In the
estimation of the heartbeat shape template µ, 2.5-second signal
windows (shape windows) centered at the four cluster signal
windows are first extracted (Fig. 5d). To estimate the length of
the heartbeat shape, a heart valve signal (HVS) is calculated
(Fig. 5e, computed as the average of squared and low-pass
filtered shape windows) [17]. The local minima of the HVS
around the center of the segment (vertical lines in Figures 5e-f)
determine the length of the heartbeat shape µ (Fig. 5f).

E. Detecting heartbeat position candidates

After the heartbeat shape vector µ has been estimated, beat-
to-beat intervals can be detected. The detection of a beat-
to-beat interval consists of finding two consecutive heartbeat
positions. The detection of these heartbeat positions is limited
to a set of candidate positions (not to be confused with the
window positions in the initial estimation of µ above). These
positions are found by computing a sliding cross-correlation
between the observed signal si and the middle 0.4-second
segment of the heartbeat shape mean vector µ [17]. Each local
maximum of the cross-correlation is selected as a candidate
position, because they match the heartbeat model best.
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Fig. 5. (a): A 8-second signal segment (shown for improved clarity, although
the method uses 15-second segments). The center positions of the signal
windows are shown as vertical upward lines, and of the densest cluster
as downward lines. (b): All 0.4-second signal windows overlaid. (c): The
signal windows of the densest cluster of four windows. (d): 2.5-second shape
windows that are used for extracting the heartbeat shape model. (e): The
computed heart valve signal (HVS). (f): The heartbeat shape is extracted by
taking the point-wise mean of the shape windows between the local minima
of the HVS. (g): The vector µ is formed by taking the computed heartbeat
shape and filling the rest of the vector with zeros.

F. Detecting beat-to-beat intervals

Beat-to-beat intervals are detected by finding pairs of con-
secutive heartbeat positions (denoted by ta and tb) that match
the signal well. A potential interval-start heartbeat position
ta is fixed to a candidate position and different candidate
positions are tried for the interval-end heartbeat position tb.
The algorithm proceeds as follows:

1) Initialize ta to the first candidate position.
2) Find candidates for tb in the interval [ta + 0.4 sec, ta +

2.0 sec]. The upper and lower limits define the minimum
and maximum beat-to-beat interval lengths, respectively.

3) If a tb candidate results in a small-enough residual (see
(4) below) and the amplitudes of the two heartbeats are
similar enough (see below), output beat-to-beat interval
(ta, tb) and set ta ← tb. Otherwise set ta to be the heart-
beat position candidate in the interval [ta, ta + 2.0 sec]
with the highest cross-correlation. That position is a
good guess for the beginning of a heartbeat interval, as
it corresponds to the best-matching heartbeat position in
the next 2-second interval. Return to step 2.

How well the positions match the signal is calculated by con-
structing a synthetic signal segment based on the positions and
the heartbeat model, and computing the difference between the
observed and synthetic signals. This computation is visualized
in Fig. 6 with two cases. The residual is much higher in the
case where the heartbeat interval does not match the signal
well.

First, heartbeat vectors xa and xb are constructed by fitting
the heartbeat vector model (2) to the signal at positions ta
and tb. The fitting is done by minimizing the mean-square
error between the model (2) and the observed signal sj , by
adjusting parameter z in (2). The mean-square error is given
for the heartbeat position ta by

average
(
(sj − za × µ [j − ta])2

)
(3)

where j goes from ta to the end of the heartbeat shape (ta +
2 sec in our implementation). The value of parameter za that
minimizes the mean-square error is calculated, which gives
the synthetic heartbeat vector xa = zaµ. The heartbeat vector
for tb (xb) is constructed in the same way. The reconstructed
two-beat region is then obtained as a superposition of xa and
xb.

Then, the modelling error εj is calculated based on (1), as

εj = sj − (xa[j − ta] + xb[j − tb]) (4)

over the region ta ≤ j ≤ ta + (tb − ta) × 2 (the two-beat
region).

The heartbeat interval (ta, tb) is accepted if the average
of the square residual ε2j over the region is below a fixed
threshold and the amplitude comparison criterion given below
is satisfied. We used 0.2×average

(
s2j
)

over the region as the
threshold.

The amplitudes of xa and xb are compared to each other
when evaluating an interval [15]. If the larger amplitude is
more than 2 times the other, the interval is discarded. A
large amplitude difference between consecutive heartbeats is
physiologically unlikely, so such cases would likely be false
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Fig. 6. Beat-to-beat interval evaluation in cases where the residual is low (a,
b, c in the upper panel) and high (a, b, c in the lower panel). (a): Candidate
heartbeat vectors xa (dotted line) and xb (dashed line). (b): The reconstruction
of the beat-to-beat interval (black) and the observed signal (gray). (c): The
computed residual (4).

detections. A higher threshold might be appropriate with some
other sensors, where large amplitude variation occurs naturally.

G. Adjusting the heartbeat model

The vector µ is re-estimated every 20 new beat-to-beat
interval detections, using the latest 100 detected beat-to-beat
interval start positions. Estimation is done with the the method
by Inan et al. [5], where ensemble averaging is performed so
that the interference of adjacent heartbeats is reduced. The
model is updated continuously like this, because the shape of
the heartbeat can drift slowly, for example due to changes in
average heart rate (for rapid changes in the heartbeat shape,
see below). In addition, using more heartbeat positions (up to
100) makes it possible to cancel the interference of adjacent
heartbeats on the heartbeat shape model.

H. Accounting for abrupt changes of the heartbeat shape

Updating µ as described above handles cases where the
heartbeat shape changes slowly. However, changes e.g. in
sleeping posture can alter the heartbeat shape so much that it
needs to be fully re-initialized. To account for such changes,
four independent “instances” of the beat-to-beat interval de-
tection method described in Sections III-A - III-G are run in
parallel.

Every 20 seconds, the instance with fewest heartbeat detec-
tions in the preceding 20-second period is re-initialized with
the clustering method. From every 20-second period, beat-to-
beat intervals are taken from the instance with most detections
in that period.

I. Post-processing

The beat-to-beat intervals produced by the above method are
post-processed by removing probably incorrect beat-to-beat
intervals from data. The median m of the previous 15 detected
beat-to-beat intervals is calculated for each new interval. If
the new beat-to-beat interval is in range m/1.6 . . .m × 1.6
it is accepted and rejected otherwise. These limits have been
chosen as a suitable trade-off between 1) detecting as many
beat-to-beat intervals as possible and 2) detecting as few
incorrect beat-to-beat intervals as possible.

IV. RESULTS

The performance of the method was tested empirically
with overnight recordings from 60 people: 40 patients were
measured at a local sleep clinic and 20 volunteers at their
homes1. At the clinic, the BCG signal was measured with a
piezoelectric sensor placed under one bedpost of a standard
consumer bed [6]. At homes, a flexible piezoelectric film sen-
sor was placed under the bed sheet, as is done with the e-health
application of Section II [21]. In total 46 overnight recordings
had a successfully acquired ECG reference and those were
used for the validation. A relatively high number of failed
measurements was caused by an experimental measurement
setup, where ECG-BCG synchronization could not always be
established.

The beat-to-beat heart rate detection algorithm of Section
III was applied in identical form to signals from both sensors,
using the same fixed parameter values. This is a deliberate
decision in our validation methodology. We are interested in
measuring how robust the method is with different settings
and users, not in how well it can be optimized for a particular
case since that is not feasible in the intended home use anyway.
Systematic experimental evaluation of parameter effects is left
for future work.

The running time of our Python implementation of the
algorithm on a modern laptop PC is about 0.5% of the
temporal signal length.

1Human subject data collection was approved by the Coordinating Ethics
Committee of the District Hospital of Helsinki and Uusimaa, Helsinki,
Finland.
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TABLE I
PERFORMANCE OF THE METHOD ACROSS THE TEST SUBJECTS

Age, BMI, sex (F/M), Mean beat- Coverage Precision Emean E95 EHR

sensor (bedpost A/film B), to-beat (%) (%) (ms) (ms) (bpm)

bed (single S/double D) interval (s)

39, 19.9, F, A, S 1.01 83.50 99.94 4.8 12.6 0.36
71, 20.8, F, A, S 1.11 94.00 99.84 5.1 10.9 0.29
58, 21.3, F, A, S 1.10 88.69 99.91 5.9 14.9 0.25
64, 27.1, M, A, S 1.26 83.70 99.86 7.2 19.0 0.30
33, 25.9, M, A, S 1.02 82.01 99.96 7.4 20.2 0.48
33, 25.7, M, A, S 1.13 90.49 99.89 7.4 17.5 0.39
43, 25.0, F, B, S 1.03 63.61 99.94 7.4 18.2 0.69
29, 21.5, M, A, S 1.08 88.42 99.72 8.1 20.3 0.59
72, 30.0, F, A, S 1.06 40.63 99.31 8.1 18.6 0.33
35, 19.9, M, A, S 1.23 70.44 99.49 8.2 19.5 0.75
29, 26.7, F, A, S 0.72 54.42 99.41 8.2 18.8 0.81
65, 40.6, M, B, D 0.97 20.76 99.74 8.4 18.9 1.83
50, 24.1, M, A, S 1.05 69.01 99.70 8.6 21.5 0.99
32, 20.4, M, B, D 0.90 43.27 99.54 8.7 19.3 0.61
51, 23.8, M, A, S 1.15 77.94 99.74 8.8 20.4 0.61
28, 20.2, M, B, D 1.00 31.60 99.92 9.0 21.2 0.75
39, 19.6, F, A, S 1.04 91.10 99.74 9.1 22.6 0.24
67, 28.9, F, A, S 1.05 50.87 99.28 9.6 25.6 0.89
31, 22.8, M, A, S 1.31 63.48 99.77 10.2 25.6 0.34
30, 34.7, M, A, S 0.99 67.28 99.84 10.5 25.2 0.94
56, 26.8, F, B, S 0.99 15.97 99.08 11.0 27.3 0.88
41, -, F, B, D 1.03 47.91 99.79 11.0 24.2 0.45
20, 21.3, F, A, S 1.10 80.66 99.18 11.6 22.2 1.12
52, 24.0, F, A, S 1.04 86.00 99.89 11.6 35.9 0.34
57, 29.8, F, B, D 0.92 8.19 98.52 11.7 23.1 0.97
42, 19.8, M, B, S 1.12 39.47 99.98 12.6 32.7 0.74
27, 26.9, M, B, S 1.08 53.72 99.39 12.8 26.1 1.13
61, 27.2, M, A, S 0.95 41.74 98.29 13.0 29.7 0.52
46, 20.1, F, A, S 1.07 52.36 98.87 13.1 27.4 0.55
45, 31.3, M, B, D 1.11 23.31 99.34 13.3 30.8 1.29
72, 26.0, F, A, S 1.03 48.46 98.84 13.8 30.9 0.72
55, -, M, A, S 0.91 46.65 98.79 14.0 35.8 0.92
58, 30.1, F, A, S 1.00 72.77 98.75 14.2 30.3 0.64
54, 30.8, M, A, S 1.07 73.95 99.32 14.9 33.0 0.39
57, 31.0, M, A, S 1.01 52.17 98.82 15.2 33.0 0.72
60, 27.5, M, A, S 1.00 50.23 97.89 15.4 36.5 0.68
55, 32.8, M, A, S 0.93 41.50 97.68 15.6 31.2 0.84
46, 18.4, F, A, S 0.89 52.97 97.92 15.8 36.9 0.79
38, 29.6, M, A, S 1.29 77.09 99.06 16.4 34.7 0.55
71, 29.4, M, A, S 0.97 21.89 96.60 18.6 44.2 1.31
38, 29.4, M, A, S 0.92 17.34 96.89 23.4 54.3 2.10
49, 32.3, M, A, S 1.13 33.19 97.09 24.0 47.1 1.06
52, 40.4, F, A, S 0.97 19.03 92.67 28.1 215.8 0.96
74, 32.2, M, A, S 1.14 23.95 94.84 30.1 117.5 2.53
51, 29.3, M, A, S 0.93 23.34 96.67 32.6 69.2 0.48
54, 30.1, M, A, S 1.03 28.22 94.91 33.9 101.2 0.79

Total averages 1.04 54.07 98.77 13.22 35.26 0.78

To measure the accuracy of the heart rate detection method,
for each beat-to-beat interval detected from the BCG signal, a
corresponding reference beat-to-beat interval was sought from
the reference ECG signal. The resulting differences between
BCG and ECG beat-to-beat intervals from the whole study are
visualized in Fig. 7. The ECG beat-to-beat detections were
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Fig. 7. Bland-Altman plot of the difference between the detected BCG beat-
to-beat intervals and the ECG reference. Out of the 770676 detected beat-to-
beat intervals, 30000 have been randomly selected to make the plot easier to
read. The upper dashed horizontal line denotes the average Emean statistic
across all subjects (the other line is its negation).

manually annotated, to make sure that BCG-ECG differences
are not caused by ECG artifacts.

The performance of the method is evaluated with the
following statistics, computed separately for each test subject
(Table I). Coverage is the ratio between the number of detected
BCG intervals and the number of detected ECG intervals.
Beat-to-beat detections are classified into correct and incorrect
detections using a 30 millisecond limit. The ratio precision =
correct/(correct + incorrect) is then calculated to give a
rough estimate of how large share of the detected beat-to-beat
intervals are correct. Based on the absolute differences be-
tween ECG and BCG beat-to-beat intervals, the mean (Emean)
and 95th percentile (E95) of the difference are computed. The
mean absolute error of average heart rate measurement (EHR)
is also calculated, where averaging is performed in 30-second
windows for both BCG and ECG.

The performance of the method varies by test subject.
The subjects have different degrees of cardiac problems and
sleeping disorders (mainly movement disorders and respiratory
problems). This causes the signal quality to vary greatly: the
signals are very clear in some cases and full of movement
artifacts and other distortion in other cases.

There is large variability e.g. in the coverage parameter.
In the best case, 94.0% of the heartbeats have been detected,
whereas in the worst case, only 8.19% have been detected
(average: 54.1%). A cause for these coverage differences is
visualized in Fig. 8, where typical signal excerpts from high-
coverage and low-coverage measurements are shown. The
clarity of heartbeat shapes is very different across the excerpts,
with discernible heartbeats resulting in better coverage.

We studied how properties of the subject and the measure-
ment setup affect the performance of the method. There is a
positive correlation between BMI and Emean and a negative
correlation between BMI and coverage (Table II). Those
correlations are statistically significant (likely not caused by
chance) according to permutation tests.

The effect of the categorical parameters (sex, single
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TABLE II
CORRELATION OF SUBJECT AGE AND BMI WITH METHOD PERFORMANCE

Correlation with
Emean

(permutation test
p-value)

Correlation with
coverage

(permutation test
p-value)

Age 0.22 (0.139) -0.28 (0.057)
BMI 0.48 (0.001)** -0.51 (<0.001)**

**Significant (permutation testing p-value < 0.05)

TABLE III
STATISTICAL RELATIONSHIP BETWEEN

SEX, BED TYPE, AND SENSOR TYPE VS. METHOD PERFORMANCE

Subgroup Subgroup
Emean

average

Emean

t-test
p-value

Subgroup
coverage
average

Coverage
t-test

p-value

Sex female 11.1 0.10 58.4 0.34male 14.6 51.3

Bed single 13.7 0.28 57.8 0.006*
double 10.4 29.2

Sensor bedpost 14.0 0.18 59.4 0.004*
film 10.6 34.8

*Significant (t-test p-value < 0.05)

bed/double bed, bedpost sensor/film sensor) on the perfor-
mance of the method was tested with two-sample t-test (Table
III). The average of Emean and coverage was computed for
each subgroup (e.g. females) and t-test was used to determine
whether the difference in subgroup averages (e.g. females vs.
males) is statistically significant. The only significant effects
are: the effect of bed type and sensor type on coverage. The
effects of sex, bed, and sensor on Emean are insignificant.

V. DISCUSSION AND CONCLUSIONS

We have presented a new method for detecting beat-to-
beat heart rate from ballistocardiograms. It adaptively infers
a model for the heartbeat shape from the signal, and then
detects beat-to-beat intervals from signal positions matching
the heartbeat shape. In our validation study over a range of
setups, the method measured beat-to-beat intervals with around
13 ms precision (Table I, column Emean). The average error
in resting heart rate is less than 1 BPM with most subjects,
which enables sufficiently precise average HR measurement
for many applications. The e-health system described in Sec-
tion II utilizes both detailed heart rate variability (HRV) and
resting heart rate measurement. If coverage is sufficient, stress
reactions of the user are estimated based on HRV, whereas only
the resting heart rate number and curve are given if coverage
is low.

There is notable inter-subject variability in performance:
in the best cases, over 90% of the heartbeats have been
detected with good precision, which should be enough for
HRV analyses, whereas in the worst cases, the number of
detected heartbeats is sufficient for estimating only the overall
trend of resting heart rate. We found out that the measurement
setup affects the coverage of the method in a statistically
significant way, with film sensor and double bed producing,
on average, less coverage (Tables II and III). However, the
film sensor and double bed also have better average accuracy
(smaller average Emean). As a worst-case example, the cause

High-coverage signal

Low-coverage signal

0 2 4 6 8 10 12 14 16 18

Time (seconds)

Fig. 8. Excerpts from signals acquired with the film sensor, with differing
levels of coverage. The upper signal has 63.61% coverage and the lower signal
8.19% coverage. The heartbeat shapes are much cleared in the upper signal.
Respiration is the low-frequency phenomenon with around 4-second length.

for the lowest coverage value 8.19% is not fully known. For
some reason, heartbeats shapes in that signal are much less
clear than in other cases (Fig. 8). As that measurement has
been done at the subject’s home, one possible cause is that
sensor placement has been suboptimal.

The method contains some parameters, such as modelling
residual threshold (Equation (4)), amplitude difference thresh-
old as well as the parameters of the post-processing step.
How those parameters should be set depends on the needs of
the application and qualities of the signal. Some applications
require as many detections as possible, whereas in other cases
precision is more important. In this paper we used a set of fixed
parameter values, aiming for sufficient accuracy and coverage
for sleep monitoring over a range of measurement setups. For
other applications, the parameters may need to be optimized
differently.

The precision of our method is similar to the beat-to-beat
heart rate methods by Brüser et al. [17], [20]. Exact compar-
ison is difficult, because the subject and measurement setup
have a large effect on the performance of the method. Our
work shows that BCG heart rate measurement is feasible with
varying measurement setups and physiological conditions. The
presented method is in use in an e-health sleep measurement
system (Section II) and it is important that the measurement
works with as many people as possible, and in independent
home use.

Future work on the subject should study in more detail
how the inter-subject variability in the method’s performance
is related to different measurement setups (bed type, sensor
position, sensor installation, ...) and physiological differences
between people (BMI, age, diseases, ...). Moreover, the simple
post-processing step of removing probably incorrect beat-to-
beat intervals should be replaced with a more physiologically
justified model. The utility of the method for HRV analysis
should be studied by measuring how well BCG and ECG
measurements agree on computed HRV parameters.
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detection from an electronic weighing scale,” Physiol. Meas., vol. 29,
no. 8, pp. 979–988, 2008.

[10] W. Xu, W. Sandham, A. Fisher, and M. Conway, “Detection of the
seismocardiogram W complex based on multiscale edges,” in Proc. 18th
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., vol. 3, 1996, pp. 1023–1024.

[11] A. Akhbardeh, B. Kaminska, and K. Tavakolian, “BSeg++: A modified
blind segmentation method for ballistocardiogram cycle extraction,” in
Proc. 29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2007, pp. 1896–
1899.

[12] P. Smrcka, M. Jirina, K. Hana, and Z. Trefny, “New robust methods
for pseudo-period detection in seismocardiographic signal,” in Proc. 4th
IASTED Int. Conf. Biomed. Eng., 2006, pp. 259–263.

[13] D. Mack, J. Patrie, P. Suratt, R. Felder, and M. Alwan, “Development
and preliminary validation of heart rate and breathing rate detection
using a passive, ballistocardiography-based sleep monitoring system,”
IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 1, pp. 111–120, 2009.

[14] D. Friedrich, X. L. Aubert, H. Führ, and A. Brauers, “Heart rate
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