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Abstract
Data mining methods are gaining more interest as potential tools in mapping and identification of complex disease loci. The methods

are well suited to large numbers of genetic marker loci produced by high-throughput laboratory analyses, but also might be useful for

clarifying the phenotype definitions prior to more traditional mapping analyses. Here, the current data mining-based methods for linkage

disequilibrium mapping and phenotype analyses are reviewed.
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Introduction

During recent years, there has been growing interest in using

data mining methods in gene mapping, motivated by the lack

of success of the more traditional approaches for complex

diseases, and also by the intriguing possibility of simultaneous

detection of multiple loci.1,2 Although a wide spectrum of

computational approaches is used for data mining, they tend to

share certain attractive characteristics for genetic association

analysis.

First, the methods are usually computationally efficient and

scale to high numbers of markers and individuals, such as those

expected in the near future in genome-wide association scans.

Obviously, this efficiency comes with a price: the models

considered tend to be simpler than those usually used in

statistical genetics.

Secondly, data mining methods are often aimed at explo-

ration or discovery — for example, by generating plausible

models (or hypotheses) for further analysis rather than

considering one given model in great detail. This aim

coincides with a general trend in data analysis to move from

hypothesis-driven- to hypothesis-generating research. The

results of such exploration must often be complemented with

more traditional statistical analysis.

Thirdly, data mining methods typically handle discrete data

and use symbolic structures, giving results and explanations

that may be easier to understand and utilise for users but are

less suitable for statistical analysis.

‘Data mining’ is often loosely defined as ‘non-trivial

extraction of implicit, previously unknown and potentially

useful information from data’. For this review of data mining

methods for linkage disequilibrium (LD) mapping, the authors

have chosen, at their own discretion, methods which reflect

the three above-mentioned characteristics.

The data mining approaches of this review can be roughly

categorised into three groups: (1) classification methods

that directly aim to find markers and other features that help

to predict the disease status; (2) clustering techniques for

finding subgroups of subjects, based on their genotypic and

phenotypic similarity, and analysis of their disease association;

and (3) methods based on the discovery of typical haplotypes

(or haplotype patterns) and analysis of their associations

with the disease (Table 1).

In addition to gene mapping, data mining approaches have

been applied to related areas, such as disease-susceptibility gene

identification using literature databases.3,4 This review focuses

on LD mapping approaches. For more complete coverage,

work from workshop proceedings and unpublished articles are

also included. Some of the methods are available as software,

for these a web page or e-mail address is provided.

Classification methods

Classification methods aim at finding rules or regularities that

predict the value of a target variable from the independent

variables. When applied to gene mapping, the goal is to find

markers or haplotypes (and potentially other variables) that

together are good predictors of the phenotype and then,

more as a side-effect, predict a disease-susceptibility gene to be

close to these markers. Regression analysis is a well-known
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prediction method for quantitative traits; this review focuses

on classification methods for categorical traits.

Recursive partitioning (RP) methods (also known as

decision/classification/regression trees) have been used for this

purpose — for example by Young and Ge5 and Cook et al.6RP

produces a tree which can be described as a series of carefully

crafted questions about the attributes of the test record, where

each question splits the data into two parts and the next

question is always conditional on the previous one(s). The

gene finding method is, consequently, conditional: once a split

is made based upon a single gene (or marker or haplotype),

then the subsequent analysis is conditional on the results of that

split — which is a very natural assumption for genetic effects.

Young and Ge5 present a successful application of RP, carried

out with HelixTreew (www.goldenhelix.com) on simulated

clinical trial data, where the aim is to find (out of 80 genetic

polymorphisms) those markers that have the highest impact on

the efficacy and safety of a blood pressure medication.

Symbolic discriminant analysis (SDA) was utilised in

integrated analysis of multiple data types (genetic markers,

genomic and proteomic data) in a review by Reif et al. in

2004.7 SDA is a supervised pattern-mining approach that

carries out variable selection and model selection simulta-

neously and automatically. SDA builds discriminate functions

from a list of mathematical operators (eg þ , 2 , x, /) and
explanatory variables that can distinguish between disease

classes in the data. In an integrative analysis of simulated

multiple-type data, the authors showed that, in particular,

when the aetiology of the disease is complex, the integrated

analysis can be highly advantageous. The SDA approach

implemented by Reif et al. can be obtained from

jason.h.moore@dartmouth.edu.

Association rules have been applied to genetic problems —

for example, by Rova et al.8 in a candidate gene analysis for

bronchopulmonary dysplasia in newborns, where a number of

non-genetic risk factors had also been measured and best

combinations of covariates and genetic markers were sought.

Association rules describe co-occurrences of sets of features

and can be computed very efficiently. In this case, the presence

of two different, but sometimes co-occurring, syndromes

were set as targets and the significance of association of con-

junctions of several genetic and non-genetic risk factors

to either syndrome was measured from the association rules.

Two separate polymorphisms were proposed to have a phe-

notypic effect via separate molecular mechanisms.8 Although

the implementation used by this group is not available, a

general purpose Apriori algorithm for finding association rules

is given by Agrawal et al.;9 freely available implementations are

numerous (eg http://www.kdnuggets.com/software/).

The DICE algorithm10 identifies a subset of genetic and

non-genetic covariates that are, either individually or in

combination, associated with a phenotype. The relationship

between the phenotype and the covariates is modelled using a

logistic, linear or Cox regression model. The algorithm

explores, by means of a forward procedure, a set of competing

models and selects the most parsimonious and informative

approximating model(s) that minimise(s) the information

criterion. Thus, the method combines the advantages of

regressive approaches in terms of modelling and interpretation

of effects with those of data exploration tools. It should be

well suited to detecting interactions between genetic and

non-genetic factors within the framework of association

studies. DICE has been successfully applied to a handful

of datasets10 (http://ecgene.net/genecanvas/modules/news/

article.php?storyid ¼ 7). DICE is available upon request from

laurence.tiret@chups.jussieu.fr.

Multifactor dimensionality reduction (MDR)11 is a

non-parametric approach to detecting and characterising

non-linear interactions among discrete genetic and environ-

mental attributes. Multilocus genotypes are pooled into high-

risk and low-risk groups, reducing the numbers of genotype

predictors. The reduced-dimension variable is used to classify

Table 1. Main classes of data mining approaches to gene mapping, characterised by three criteria: 1) Descriptive methods primarily aim

to recognise the ancestral, shared chromosomal segments identical by descent, whereas predictive methods directly associate with the dis-

ease status. 2) Some approaches try to partition the set of subjects into homgeneous groups, some emphasise local similarities in haplo-

types, and some are compromises between these extremes. 3) The suitability for describing and computing interactions varies between

approaches.

Approach Methods Characteristics

Classification RP,5,6 SDA,7 DICE,10 MDR,11

SVMs13, Association rules9
Predictive Haplotype and

subject-oriented

Models interactions

Haplotype clustering HapMiner,16 CLADHC,17

Spatial clustering18
Descriptive Haplotype and

subject-oriented

No interactions

Phenotype clustering MCA19 Predictive Subject-oriented No interactions

Haplotype

patterns

HPM20 and derivatives,21,22,26–28

TreeDT30

Descriptive Haplotype-oriented Can model few

interactions
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and predict disease status through cross-validation and

permutation testing. MDR has been shown to be capable of

revealing significant high-order interactions in real datasets12

(http://www.epistasis.org/mdr.html).

Support vector machine (SVM) is an algorithm that

attempts to find a linear separator (hyperplane) between

the data points of two classes in multidimensional space. SVMs

are well suited to dealing with interactions among features

and redundant features. Waddell et al.13 used SVM to predict

the age at diagnosis of multiple myeloma, based on 3,000

single nucleotide polymorphisms (SNPs) genotyped in 40

young age-at-onset and 40 old age-at-onset patients. Although

the authors do not refer to their method as being LD map-

ping, their search for best predictor SNPs for the trait is based

on the hypothesis that if there is a genetic factor to the trait,

then a SNP in the haplotype block (ie in strong LD) con-

taining that gene will be discovered. In fact, the trained SVM

produced a model with a reasonable accuracy (71 per cent by

cross-validation), but the model was not easily interpretable:

it consisted of 150 SNPs. A general-purpose SVM

algorithm, SVMlight, is publicly available at http://svmlight.

joachims.org.

Clustering

Clustering aims to locate relatively homogeneous subgroups in

the given data. In the context of LD mapping, clustering

of study subjects has been suggested as an approach for

finding subgroups of individuals who potentially share genetic

factors. Such clustering can be based on haplotypes of the

individuals, or on their phenotypes. After successful clustering,

it should be easier to locate the genetic factors within the

clusters, improving statistical power; however, power may be

reduced if the effective sample size decreases.

A crucial factor here seems to be that genetically motivated

similarity measures are used, based on haplotype sharing

between individuals. ‘Length measure’ — the length spanned

by the longest continuous interval of matching alleles — is one

typical option — and ‘count measure’ — the number of alleles

in common in a window — is another.14,15 With such

measures, the clustering method is directed to search for clus-

ters with shared genetic aetiology. The association of clusters to

the phenotype can then be measured — for example, using the

x2 statistic, and the disease gene can be predicted to be where
the best cluster shows similarity of haplotypes. An instance of

this approach is implemented in the HapMiner16 software

(http://vorlon.cwru.edu/~jxl175/HapMiner.html). Durrant

et al.17 use hierarchical clustering to produce approximations of

genealogical trees and map genes based on these trees. The

method has been coded in the CLADHC algorithm, available

as a linux executable, with accompanying documentation, on

request from amorris@well.ox.ac.uk. Molitor et al.18 perform

fine mapping by spatial clustering of haplotypes based on a

similarity metric that measures the length of the shared region

and by estimating the risk that each haplotype ‘cluster’ has

for the trait. The implementation of the method is available

from jmolitor@usc.edu.

A good example of a slightly different approach to LD

mapping, also based on measuring haplotype similarities but

not on clustering, is given by Tzeng et al.14 They investigated

the hypothesis that the average similarity between case

haplotypes tends to be higher than between control haplo-

types. Under this assumption, disease-susceptibility genes can

be localised directly by measuring the statistical significance of

haplotype similarity in the cases without explicit clustering

or goodness of fit tests, such as x2. The authors concluded that
similarity measures are actually more powerful than goodness

of fit tests when the mutation occurs on a common

haplotype, but that goodness of fit tests are superior for rare

haplotypes. Haplotype similarity and clustering were

proposed as exploratory haplotype analysis methods by

Toivonen et al.15

The other major variant of the clustering theme is to

cluster subjects by their phenotypes, rather than haplotypes.

Again, the aim is to find (phenotypic) subgroups that

potentially have more homogeneous genetic aetiologies, but

now utilising rich phenotypic datasets, where they exist.

Wilcox et al.19 clustered subjects from the Framingham Heart

Study for this purpose. Different phenotypic measurements

can have very different ranges and distributions, and these have

to be handled to avoid unintended bias. Wilcox and others

used multiple correspondence analysis (MCA), a non-para-

metric analogue of principal component analysis, to produce a

reduced number of dimensions in which clustering was then

performed. They subsequently used linkage analysis for

mapping; there do not appear to be any publications on

phenotype clustering for LD mapping, even though the

approach should be equally feasible there.

Discovery of frequent patterns

The most popular data mining method applied to gene

mapping has been the discovery of typical haplotypes (or

haplotype patterns) and analysis of their associations with the

disease. In simple terms the goal is firstly to discover sites and

haplotypes potentially identical by descent, and then to test

their disease associations.

Haplotype pattern mining (HPM) was the first such

method (http://www.cs.helsinki.fi/group/genetics/).20

The algorithm finds all haplotype fragments (patterns) of

arbitrary length — possibly up to some limit and possibly

with gaps — that show statistical association with the

disease. The set of associated fragments is used as a whole to

evaluate association across the chromosomal area studied.

The area that shows the most significantly elevated number

of patterns is the most likely for a disease-susceptibility locus.

Onkamo and ToivonenReviewSOFTWARE REVIEW

q HENRY STEWART PUBLICATIONS 1473 – 9542. HUMAN GENOMICS . VOL 2. NO 5. 336–340 MARCH 2006338



The significance of the finding is evaluated by permutation

tests, where both marker-wise nominal significances — as

well as a corrected significance for the best finding — are

computed.21,22

The HPM method is fast, especially with respect to the

number of markers, and it is sensitive to small genetic effects.

The results are rough, however, and more elaborate (and

computationally more expensive) statistical models are

expected to predict the disease mutation locale better than

HPM. In conclusion, HPM seems to work excellently as the

first-stage analysis tool of genome-wide association and has

been successfully applied in various circumstances — for

example, for asthma-related traits,23 glucocorticoid sensi-

tivity24 and familial glioma.25

Variants of HPM include a method for finding two

(interacting) loci at the same time26 and QHPM for analysis

of quantitative traits.27 F-HPM developed by Zhang et al.28 is

a further development of HPM, in which the strength of

association is tested in pedigrees using the quantitative

pedigree disequilibrium test.29

The tree disequilibrium test (TreeDT; http://www.cs.

helsinki.fi/group/genetics/)30 is a more elaborate attempt to

model the unknown coalescence, rather than just

haplotyping fragments potentially identical by descent.

TreeDT constructs, at each locus, trees that approximate the

genealogy of the haplotypes at that locus, much like the

method of Durrant et al.17 These trees can be obtained

efficiently using known algorithms for strings, making the

method computationally fast. After trees are built for all

locations, a disequilibrium test is performed on each of them

to test if there is a small set of subtrees with relatively high

proportions of disease-associated chromosomes, suggesting

shared genetic history for those and a likely disease-gene

location. Again, permutation tests are used to measure

significances. TreeDT is fast and has been shown to be

relatively accurate, especially when allelic heterogeneity is

present in a disease locus.

Conclusions

Notably, the methods presented here are mostly intended

for exploratory analysis and not so much for final stages of

identifying a causative variant in genotype data. The user’s

expertise and insight play a key role: they are needed in

choosing the methods and parameter values and are crucial in

interpreting the results. Also, there is no universally optimal

method for all purposes; it can be useful to try several different

approaches for the same problem.

As pointed out by Hoh and Ott,2 what is most needed

for future large-scale genetic and genomic data analysis are

‘methods for discovering sets of susceptibility genes and

environmental factors, as well as systematic verifications of

the gene–environment–disease network’. According to the

present review, there already exist a number of data mining

approaches to gene mapping or identification purposes

(Table 1); however, they are still rather scattered, consisting of

somewhat solitary attempts to use different machine-learning

or data mining approaches.

Classification methods are typically strong in modelling

interactions, unlike most other approaches in this review.

Several of the classification methods produce a set of

interacting loci that best predict the phenotype. However, a

straightforward application of classification methods to large

numbers of markers has a potential risk picking up randomly

associated markers.

Approaches based on haplotype sharing, such as most of the

reviewed clustering and pattern discovery methods, explicitly

aim to reduce this problem by considering loci that are more

likely to be identical by descent. Of course, combinations are

possible; for instance, all frequent haplotype patterns could

first be found and a classifier used to choose a subset of those

and to model the interactions of their loci.

In the more distant future, one might expect to gain

most from integrated large-scale analyses: data mining of

high-throughput SNP data for LD mapping combined with

phenotype subgroup analysis; expression analysis results —

information about co-regulated enzymes in normal and

trait-carrying individuals — integrated with the information

on known metabolic pathways; and linking of the new

experimental information to existing public data by mining

literature and biological databases.
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