
MINING RELAXED GRAPH PROPERTIES IN
INTERNET

Wilhelmiina Hämäläinen
Department of Computer Science, University of Joensuu,

P.O. Box 111, FIN-80101 Joensuu, Finland
whamalai@cs.joensuu.fi

Hannu Toivonen

Department of Computer Science, University of Helsinki
P.O. Box 26, FIN-00014 University of Helsinki, Finland

htoivone@cs.helsinki.fi

Vladimir Poroshin
Department of Computer Science, University of Joensuu,

P.O. Box 111, FIN-80101 Joensuu, Finland
vporo@cs.joensuu.fi

ABSTRACT

Many real world datasets are represented in the form of graphs. The classical graph properties found in the data, like
cliques or independent sets, can reveal new interesting information in the data. However, such properties can be either
too rare or too trivial in the given context. By relaxing the criteria of the classical properties, we can find more and to-
tally new patterns in the data. In this paper, we define relaxed graph properties and study their use in analyzing and
processing graph-based data. Especially, we consider the problem of finding self-referring groups in WWW, and give a
general algorithm for mining all such patterns from a collection of WWW pages. We suggest that such self-referring
groups can reveal web communities or other clustering in WWW and also facilitate in compression of graph-formed
data.

KEYWORDS

graph, data mining, WWW.

1. INTRODUCTION

In this paper, we introduce new concepts and methods for finding new information in graph-structured
data, like World Wide Web (WWW), citation indexes or concept maps. Our aim is to study systematically,
whether the relaxed versions of the classical graph properties (Table 2) like ”nearly cliques” or ”nearly inde-
pendent sets” could reveal new interesting information. As an example, we will loosen the definition of a
clique and consider the resulting ”self-referring groups” in the WWW context. The self-referring groups can
be interpreted as clusters in WWW. Such clusters give compact description of the WWW graph structure and
are especially useful for finding web communities. In addition, we will demonstrate how this new concept
can be used for compressing other graph-based data, like co-operational concept maps.

In the next sections, we will first introduce the idea of self-referring groups and give the formal defini-
tions. Then we will give the algorithm for finding all self-referring sets in a given graph and analyze its com-
plexity. We will introduce our first experiments for finding groupings (potential web-communities) among
WWW pages and applying our algorithm for compressing co-operational concept maps. Finally, we will
compare our new method to previous work and draw the final conclusions. The basic concepts and notations
used in this paper are listed in Table 1.

mailto:whamalai@cs.joensuu.fi
mailto:htoivone@cs.helsinki.fi
mailto:vporo@cs.joensuu.fi

Table 1. Basic concepts and notations for graphs.

G = (V, E) A graph which consists of a set of vertices V and a set of edges
E = {{u, v} | u, v ∈ V}. For a directed graph E consists of ordered pairs,
E = {{u, v} | u, v ∈ V} ⊆ V x V.

u 4 v A path (of length k) from vertex u to vertex v in a directed graph G, i.e. a sequence
(v0, …, vk) such that u = v0 and v = vk and (vi-1, vi) ∈ E for ∀i = 1, 2, …, k. In an un-
directed graph, ordered pairs (vi-1, vi) are replaced by unordered pairs {vi-1, vi}.

degree(v) The degree of a vertex v. In an undirected graph, the degree of v is the number of
edges incident on it. In a directed graph, the degree of a vertex v is degree(v) = out-
degree(v) + indegree(v).

outdegree(v) The outdegree of a vertex v i.e. the number of edges leaving it.
indegree(v) The indegree of a vertex v i.e. the number of edges entering it.
|G| = |V| The size of a graph G = (V, E) is the number of vertices in V.

Table 2. Classical graph properties. First four properties are defined for undirected graphs and the
last property for both directed and undirected graphs.

Complete graph G is complete, if all of its vertices are connected to each other: ∀u, v ∈ V {u, v} ∈ E.
Clique A subset of vertices V’ ⊆ V such that each pair in V’ is connected by an edge in E: ∀u,

v ∈ V’ {u, v} ∈ E. I.e. a clique defines a complete subgraph in G.
Independent set A subset of vertices V’ ⊆ V such that no pair in V’ is connected by an edge in E: ∀u, v

∈ V’ {u, v} ∉ E. Observe that V’ is an independent set in G iff V’ is a clique in the
complement graph)\)(,(EVVVG ×= .

Vertex cover A subset of vertices V’ ⊆ V such that all edges in E are ”covered” by vertices in V’. I.e.
for each {u, v} ∈ E either v ∈ V’ or u ∈ V’ or both. Observe that V’ is a vertex cover of
G iff V \ V’ is an independent set in G.

Strongly connected
component

A maximal subset of vertices V’ ⊆ V such that for each pair of vertices u, v ∈ V’ there
are paths u 4 v and v 4 u. I.e. vertices u and v are reachable from each other. A graph
is strongly connected if it has only one strongly connected component.

2. SELF-REFERRING GROUPS

The idea of self-referring groups is to find a group of pages, which mostly refer to each other. Let us de-
note this set of self-referring pages as S. If all pages in S refer to all other pages in S, then S is a clique and the
corresponding undirected graph is complete. However, we can loosen this criterion and require that each page
in S refers to at least minf part of other pages in S, in which minf is a user-defined threshold for S’s reference
frequency. This kind of self-reference is called here as strong self-reference. (See example in Figure 1.)
Formally, we define:
 Definition: Let S be a set of vertices, |S| > 1, and minf > 0 a user-defined frequency threshold. S is strongly
self-referring, if ∀p ∈ S,

fmin
S

pdegree
≥

−1||
)(. The reference frequency of S is

1||
} |)(min{)(

−
∈

=
S

SppdegreeSf .

Figure 1. Graph defined by link structure of web pages. The dark nodes construct a strongly self-referring set with

threshold minf = 2/3.

Observe that we are now considering the underlying undirected graph structure of the WWW, and accord-
ing to definition of graph the duplicate edges are removed. By considering the directed graph structure we
can find more information about self-referring groups and the relations between them. For example, we can
adopt the idea of HITS-algorithm [7], and search the best authorities (pages referred by good ”hubs”) and the
best hubs (pages referring to good authorities) in the group. It is quite plausible that the authorities reveal the
good sources of new information in the group, and the good hubs give good overviews of the topics consid-
ered in the group. Further, if we identify the WWW addresses, we can also determine the geographic distribu-
tion of a group (whether it is international or represent only some nationalities).

3. ALGORITHM FOR FINDING SELF-REFERRING GROUPS

3.1 Basic idea

In the search algorithm for self-referring pages we can restrict the search space to connected component
by the following observation: when the frequency threshold minf ≥ 0.5, then the resulting strongly self-
referring set has to be a connected component. In the practical applications this extra requirement is quite
sensible.

Lemma 1: Let S ⊆ V be a strongly self-referring set in G = (V, E) with frequency threshold minf ≥ 0.5.
Then S is connected component in G.

Proof: Antitheses: Let S be unconnected i.e. there is composition to m ≥ 2 parts S = S1 ∪ S2 ∪ … ∪ Sm
such that Si ∩ Sj = ∅ for all i ≠ j, i, j = 1, …, m. Let |S| = n. According to assumption, for all p ∈ S, degree(p)
≥ minf × (|S| – 1) = 0.5n – 0.5. I.e. each p ∈ S has at least 0.5n neighbors in S. Then for all Si, i = 1, …, m,
|Si| ≥ 0.5n + 1, and |S| ≥ m × (0.5n + 1) ≥ 2 × (0.5n + 1) = n + 2. Contradiction. □

The basic idea of the algorithm (Alg. 2) is following: 1. Search connected components from graph G by
depth-first search. This can be completed in time Θ(|V| + |E|) (See section Analysis.) Let the resulting vertex
set be V’ ⊆ V, and the corresponding undirected subgraph G’ = (V’, E’). 2. For each connected component
search self-referring groups from G’ by depth-first search (Alg. 2).

3.2 Depth-first search for self-referring sets

Searching the strongly self-referring or weakly independent sets is more complex than searching common
cliques or independent sets. For common cliques and independent sets we can use simple depth-first search,
because for each vertex set S, such that S is clique/independent set, also T ⊆ S is clique/independent set. This
means that we can prune a branch in search space, when we find a set which is not a clique/independent set.
But this does not hold for self-referring sets or weakly independent sets. Thus, we will prove another pruning
criterion for self-referring sets.

Lemma 2: Let f(S) be the reference frequency of vertex set T, |T| = n, and f(T) the reference frequency of
T’s superset S, T ⊆ S, |S| = n + k. Then

1
)(

1
1)(

−+
+

−+
−

≤
kn
kSf

kn
nTf .

Proof: Let us denote the nested subsets by Sn, Sn+1, …, Sn+k, S = Sn ⊆ Sn+1 ⊆ … ⊆ Sn+k = T, |Si| = i. Let

1
1)(
−

=
n

Sf n
. Then the maximum value of f(Sn+1) is

n
Sf

n
n

n
l

n

1)(11
+

−
=

+ . Let us suppose that on each step f(Si+1)

gets the maximum value,
i

Sf
i

i
i

1)(1
+

− . Then, by solving the recursion equation, we get that after k steps f gets

maximum value
1

)(
1

1)(
1

1)(
1

1)(
−+

+
−+

−=⇒
−+

−+
−+

−=+ kn
kSf

kn
nTf

kn
nSf

kn
nSf nkn

. □

The following lemma is a direct consequence of the definition of self-referring sets:
Lemma 3: Let v be a vertex and S a strongly self-referring set, v ∈ S. Then the maximum size of S is

() 1
f

d eg re e v
m inS| |≤ +

.

Theorem: Let v be a vertex and S a vertex set, v ∈ S, |S| = n, and f(S) be the reference frequency of set S. If

f

f

minn
minvdegree

Sf
)1(

)1()(
1)(

−
−

−<
, then none of S’s superset can be strongly self-referring.

Proof: Let us denote by n
min

vdegreek
f

−+= 1)(the number of items we can add to S= nS until maximum size

is met. Let the resulting maximal superset be knS + . In the best case, the frequency of knS + is

1
)(

1
1)(

−+
+

−+
−=

+ kn
kSf

kn
nSf

nkn
. The set is self-referring, if

fn
min

kn
kSf

kn
n ≥

−+
+

−+
−

1
)(

1
1 ⇔

f

f

f

ff

n 1)min-(n
minvdegree

1)min-(n
minnvdegreeminvdegree

Sf
)1)((

1
)1()()(

)(
−

−=
−−−

≥ . Thus, if
f

f

minn
min)v(degree

Sf
)1(

)1(
1)(

−
−

−< , then S

can never become strongly self-referring. □
Now we can give the depth-first search Algorithm 2 for searching all strongly self-referring supersets of

the current vertex set X, which is given as a parameter. In the main program, Alg. 2, the depth-first search is
called by a singular vertex set {v}, its degree d = degree(v), threshold minf, and an additional parameter last,
which is explained below. In each recursive call of Alg. 2, we first check, if the vertex set is self-referring,
and in the positive case we output it. Otherwise we check, whether it can be expanded to a self-referring set.
If the condition does not hold, we return from recursion. Otherwise we expand X with a new item, and call
the algorithm recursively. The recursion finishes, when the maximum size of the self-referring sets contain-
ing initial vertex v is met, or we recognize that no more self-referring sets can be found. After returning from
the recursion, we try another new item, until all of them are tried.

Observe that we have to fix some order for vertices to avoid testing the same vertex sets again. In the Al-
gorithm 2, we denote u > v, when v precedes u in the given order. Variable last tells the last vertex added to
the candidate group, and thus all vertices preceding it are already tested.

Alg. 1 SelfReferringSets(G, minf). An algorithm for searching all strongly self-referring sets in graph G = (V, E)
Input: G = (V, E), minf
Output: Y ⊆ V
1 begin compute all connected components in G = (V, E)
2 for each connected component V’ in G = (V, E) do
3 for all v ∈ V’ dfs({v}, degree(v), minf, v)
4 end

Alg. 2 dfs(X, d, minf, last). A depth-first search of the self-referent sets in subgraph G’ = (V’, E’)
Input: X ⊆ V, d, minf, last
Output: Y ⊆ V
1 begin
2 if f(X) ≥ minf then
3 output X
4 else if)

)1(
)1(

1)((
f

f

minX
mind

Xf
−
−

−<

5 then return
6 for all vertices u ∈ V’ (u > last and ∃v ∈ X (v, u) ∈ E) do
7 dfs(X ∪ {u}, d, minf, u)
8 end

3.3 Analysis

Let G = (V, E) be a directed graph. The strongly connected components can be found in time Θ(3|V| + 2|E|)
by a well-known algorithm, depth-first search once for the original graph G, once for its transpose graph GT,
and outputs the vertices of each which calls tree. [13]

Let us now consider the worst case complexity of finding all self-referring sets. If the size of the vertex
set is |V| = n, we have to try in the worst case 2n sets (|P(V)| = 2n). However, we know that the maximum size
for each self-referring set X, which is superset of a vertex v, is () 1

ref

degree v
min + . This gives an upper limit for the

depth of algorithm. In sparse graphs we achieve an enormous saving: e.g. if the graph size is 100, average
degree of vertices is 18, and minf = 0.9, the height of the search tree is only 18

0 9
1 21

.
+ = instead of 100. How-

ever, in the worst case when the graph is complete, we save nothing.

Table 3. Self-referring groups of size ≥ 2, when the initial graph consisted of 100 best search results by Google. The page
numbers are Google ranking numbers.

Page numbers Contents
22, 34, 86 MGTS-2003 and MGTS-2004 workshop pages and a homepage of a member of program committee
22, 34, 97 MGTS-2003 and MGTS-2004 workshop pages and a homepage of another member of program

Committee
22, 39, 56 MGTS-2003 workshop page and homepages of a member of committee in English and Japanese

Table 4. Self-referring groups of size ≥ 2, when the initial graph consisted of 100 best search results by AltaVista. The
page numbers are AltaVista ranking numbers.

Page numbers Contents
1 23 58 Articles about Graf-FX program
1 58 67 Articles about Graf-FX program

4. INITIAL EXPERIMENTS

4.1 Searching self-referring groups in Internet

In the first experiment, we searched self-referring groups in Internet. The initial graphs were constructed
from the best search results with keywords ”graph data mining”. For comparison we used two different
search engines: Google, which is based on PageRank algorithm, and AltaVista, which also uses connectivity
information, but is more content-oriented. In the extraction phase, only links to HTML pages via HTTP pro-
tocol were included into results. After extracting the links, the relative hyperlinks were transformed into ab-
solute addresses, cyclic links to page itself were filtered out, and many links to one destination were consid-
ered as one link. After that the 100 best ranked pages were selected to the input graph.

The graphs were quite loosely connected and we found only a couple of self-referring groups with fre-
quency threshold minf = 0.75. The self-referring groups of size ≥ 2 are listed in Tables 3 and 4. In the first
graph based on Google results we found three self-referring groups, all of them focusing around MGTS
workshops (International Workshop on Mining Graphs, Trees and Sequences) and homepages of program
committee members. In the second graph based on AltaVista results we found only two self-referring groups,
both of them about Graf-FX program for graph-based data mining, and locating on the same cite.

This small experiment supported our initial guess that the self-referring groups are centered around one
common theme. However, there are various reasons for self-reference: the occurrence of same people, institu-
tions, products or just the location (cite). It also demonstrated the importance of the initial graph. In our ex-
periment the initial graphs were too sparse to produce more and larger self-referring groups, and the construc-
tion of more tightly connected graphs should be further researched.

4.2 Combining concept-maps

In the second experiment, we tested our algorithm for compressing co-operational concept maps. The idea
was to combine several concept maps and compress the resulting graph by replacing the strongly self-
referring sets by new ”super-nodes”, which were given new labels. The original concept maps were drawn
by three university students on topic ”Tanzanian culture and education”. The concept maps were combined
simply by matching the nodes, which contained same words or stems, like ”technology”– ”technology expo-
sition” and ”social”– ”society”. All the ”loose” nodes which had at most In the second experiment, we tested
our algorithm for compressing one relation were dropped. The resulting graph consisted of 48 concept nodes.

After combination, we searched strongly self-referring sets among concepts in the underlying undirected
graph. We made several experiments with different threshold values minf. First we run the program with minf
= 1.0, i.e. we searched all cliques in the underlying undirected graph. We found 29 cliques, which were either
cliques in one of the original concept maps, or contained concept nodes with same words. This did not reveal
anything new, as was expected. The threshold valued minf = 0.9 and minf = 0.8 gave the same result. How-
ever, with threshold values minf = 0.7 we found new concept groups: {Contextualized knowledge, Formal
knowledge, Hidden knowledge, ICT, Indigenus knowledge systems}, {Education, Poor internet exposition,
Tanzanian culture, Technology, Technology explosion}, and {Education, Tanzanian culture, Technological
education, Technology, Technology exposition}. The first concept group could be concluded from one of the
concept maps alone, and the third one reveals the contribution to educational technology, which was common
for all students. However, the second one is a new discovery which reveals the core of all the concept maps.

With threshold value minf = 0.6 we found 49 self-referring groups, each of them composed of at least four
concepts. The largest groups were {Change in educational system, Diffusion into local social systems, Lap-
top/Desktop computers, Programming tutorial, Simputer, Technological education},{Change in educational
system, Education, HIV/AIDS education, Laptop/Desktop computers, Programming tutorial, Technological
education}, and {Education, Poor internet exposition, Tanzanian culture, Technological education, Technol-
ogy, Technology explosion}. The third one only expands the group found in the previous experiment, but the
first two concept groups are totally new. They contain mostly the same concepts: Change in educational sys-
tem, Laptop/Desktop computers, Programming tutorial, Technological education. All of these are inherited
from only one concept map, which was very tightly connected and thus dominated the combination.

This experiment gave rise to two remarks: Firstly, our initial combination technique (adding edges be-
tween nodes containing same words or stems) had too strong influence on the result. Secondly, one tightly
connected map can totally dominate the result, if the others are very loose. However, we found the results
quite encouraging: self-referring groups could be applied for a tool, which assists in constructing cooperative
concept maps by suggesting closely related concepts.

5. RELATED WORK

The existing data mining techniques for graph-based data can be coarsely divided into two approaches: min-
ing frequent substructures, and clustering and searching the graph according to connectivity information. Our
new method can be included into the second approach, although it differs from the existing methods.

In the classical graph-based data mining (e.g. [10, 2]) the datasets are represented as graphs, and the task
of finding frequently occurring substructures reduces to search of frequent subgraphs. The graph-based data
mining suits especially well for structured data, but in fact any relational database can be represented as
graph. The vertices of graph correspond entities and the edges between them correspond binary relationships.

The general problem of graph-based data mining is following: We are given a set of labelled graphs S, in
which each vertex and edge has a label associated to it, and some threshold σ ∈ (0, 1]. The task is to find all
subgraphs which occur at least σ|S| of the input graphs. Two subgraphs are considered identical, if they are
isomorphic (topologically identical) and have the same labels on the vertices and edges. Usually it is also
required that the graphs are connected, which reduces complexity and is uniform with the goal of finding
interesting relations. The problem is very complex because subgraph isomorphism is known to be NP-
complete [4].

Thus, our approach differs largely from the classic graph-based data mining task. While we search all in-
stances of some (relaxed) graph property in one huge graph, the typical graph-based data mining task sup-
poses a set of labeled graphs, in which they search frequently occurring subgraphs (i.e. each subgraph has
several instances in the collection). However, both methods can be used for simplifying graph-structured

data. Cook and Holder [2] suggest that we describe a frequently occurring substructure by some concept, and
replace its instances by this concept. Our approach can be used in the similar way as our second experiment
demonstrated.

The techniques based on connectivity information are nowadays popular in Internet context. In the clus-
tering-based approaches, the idea is to interpret the sub-graph as a cluster, and the measure of similarity by
length of the shortest path between two vertices (for more details see e.g. [5, 6, 12]). For example, the cluster-
ing techniques have been applied for analyzing and visualizing the Internet structure [3, 14], constructing
taxonomies [9], and extracting web communities [8]. However, the most important applications based on
connectivity analysis are the advanced search methods like HITS [7] and PageRank [11].

Figure 2. Comparing the results of the trawling algorithm and self-referring groups. By the trawling algorithm, G1

and any three vertices of G2 are interpreted as web communities, while our algorithm for self-referring groups produces
only G2 with frequency threshold minf = 0.75. According to the HITS algorithm, vertices 3, 4, 5, 6, 7, and 8 all have equal
authority values.

In HITS algorithm, we evaluate two weights for each page: authority value, which tells how relevant in-
formation the page contains, and hub value, which describes, how good references (links) the page contains.
According to main assumption, a page is a good authority if it is pointed by good hub pages, and a good hub,
if it points to good authorities. The goal is to find good authorities from the initial subgraph, by updating hub
and authority weights until the system converges.

In Page Rank algorithm, only one weight, the ”page rank” (PR) is calculated for the current page. The PR
value of a page is determined from the PR values of the predecessor pages (pages pointing to it). Thus,
loosely speaking, a good authority is also interpreted as a good hub. In addition, the processing order simu-
lates an idealized random surfer on Internet.

The trawling algorithm [8] for enumerating web communities can also be described by hubs and authori-
ties. In trawling, the idea is to find subgraphs containing bipartite cliques of i + j vertices. In such a clique
each of i vertices (hubs) points to all j vertices (authorities). A subgraph of size |i + j| containing at least one
bipartite clique of i + j vertices is called bipartite core and is considered as a potential web community. This
method differs from our approach in two ways: first, we do not require full cliques, but only relative clique
structure in the underlying undirected graph. Second, our approach does not restrict the web communities to
bipartite groups, but also ”democratic” groups are considered. In Figure 1 we demonstrate this difference.

Batagelj et al. [1] have generalized the idea of cores. A k-core in graph G = (V, E) is a maximal subgraph
G’ = (V’, E’), V’ ⊆ V, E’ ⊆ E such that for all v ∈ V’ deg(v) ≥ k. The degree function deg(v) can be simply the
degree of vertice v or some other measure based on indegrees and outdegrees or edge weights. By determin-
ing cores of different orders k we can construct hierarchies of subgraphs according to their connectivity. The
main difference to our approach is that the k-cores do not tell anything about relative tighness of the cluster-
ing, i.e. it is independent of the size of group S. E.g. let |S|=n and deg(v) defined as common degree of vertex
v. Then S is k-core ⇔ Sv ∈∀ degree(v) k≤ ⇔

1
)(

−
=

n
kSf . This shows that a k-core can be very strongly

self-referring (when k=n-1) or not self-referring at all (when k<<n-1), and it does not catch the idea of self-
reference.

6. CONCLUSIONS

In this paper we have introduced new interesting graph properties, which can be applied for analysis and
processing of graph-based data. Especially, we have introduced a notion of self-referring set, which corre-
sponds to relaxed version of a clique. We have given an algorithm for searching all self-referring sets from
the given graph, and analyzed its time complexity. In the initial experiments we have demonstrated, how the
self-referring sets can be used for finding web communities and compressing graph-structured data.

In the future, we are going to study systematically, whether the relaxed graph properties reveal new inter-
esting information and how they can be applied. In addition, we are going to analyze the self-referring sets
further by HITS algorithm. The algorithm itself offers many interesting research tasks. For example, we can
adapt it for mining self-referring groups in weighed graphs.

Mining the relaxed graph properties has also a general interest in knowledge discovery. The most impor-
tant research problem for their wider use is how to optimize the algorithm. It should also be studied, whether
the existing optimization algorithms of the NP-complete problems could be applied within tolerable error
range.

REFERENCES

[1] V. Batagelj and M. Zaversnik. Generalized cores. Technical Report 799, Department of Theoretical Computer
 Science, University of Ljubljana, 2002.

[2] D. Cook and L. B. Holder. Graph-based data mining. IEEE Intelligent Systems, 15(2):32–41, 2000.

[3] S. Dill, R. Kumar, K.S. Mccurley, S. Rajagopalan, D. Sivakumar, and A. Tomkins. Self-similarity in the web.
 ACM Trans. Inter. Tech., 2(3):205–223, 2002.

[4] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of N P-completeness.
 W. H. Freeman, 1979.

[5] I. Jonyer, D. Co ok, and L.B Holder. Graph-based hierarchical conceptual clustering. The Journal of Machine
 Learning Research archive, 2:19–43, March 2002.

[6] R. Kannan, S. Vempala, and A. Veta. On clusterings-good, bad and spectral. In Proceedings of the 41st
 Annual Symposium on Foundations of Computer Science, Nov 2000.

[7] J. Kleinberg. Authoritative sources in a hyperlinked environment. In Proceedings of the 9th ACM-SIAM
 Symposium on Discrete Algorithms, 1998. Extended version in Journal of the ACM 46(1999).

[8] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tompkins, and E. Upfal. The web as a graph. Proc. 19th
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 1–10. ACM Press, 2000.

[9] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. On semi-automated taxonomy construction. In
 Proceedings of the 4th Web Data Base Conference, 2000.

[10] M. Kuramochi and G. Karypis. An efficient algorithm for discovering frequent subgraphs. Technical Report
 02-026, Department of Computer Science, University of Minnesota, 2002.

[11] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing order to the web.
 Technical report, Stanford Digital Library Technologies Project, 1998.

[12] C.R. Palmer, P.B. Gibbons, and C. Faloutsos. ANF: a fast and scalable tool for data mining in massive graphs.

Proc. Eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 81–90. ACM
Press, 2002.

 [13] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146–160, 1972.

 [14] L. Tauro, C. Palmer, G. Siganos, and M. Faloutsos. A simple conceptual model for the internet topology. In Global
 Internet, 2001.

