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Abstract—A fluent ability to associate tasks, concepts, ideas,
knowledge and experiences in a relevant way is often considered
an important factor of creativity, especially in problem solving.
We are interested in providing computational support for dis-
covering such creative associations.

In this paper we design minimally supervised methods that can
perform well in the remote associates test (RAT), a well-known
psychometric measure of creativity. We show that with a large
corpus of text and some relatively simple principles, this can be
achieved. We then develop methods for a more general word
association model that could be used in lexical creativity support
systems, and which also could be a small step towards lexical
creativity in computers.

I. INTRODUCTION

A fluent ability to associate tasks, concepts, ideas, knowl-

edge and experiences in a relevant way is often considered an

important factor of creativity, especially in problem solving.

We are interested in providing computational support for

discovering such creative associations. As a first step in this

direction, we aim to design minimally supervised methods that

perform well in the remote associates test (RAT) [1], a well-

known psychometric measure of creativity.

The remote associates test is based on finding associations

between words. In a RAT question, the subject is presented

three cue words, e.g., ‘coin’, ‘quick’, and ‘spoon’. Her task is

then to find a single answer word that is related to all of the

cue words. (Try to think of one! The answer word is given at

the end of this paper.)

Accordingly our focus in this paper is on lexical creativity.

While this may be considered a limited area of associative

creativity, it has great potential in those tools for creativity

support or problem solving that are based on verbal informa-

tion, and also in creative language use such as computational

poetry [2].

Our aim is to device methods that not only score well

on RATs, but also require a minimum amount of explicit

knowledge as input. We rely on corpus-based methods that

learn word associations from large masses of text with sta-

tistical methods. Independence of knowledge bases, lexicons,

or grammars also makes the methods easier to be applied to

different languages.

In this paper, we first present a simple corpus-based method

that has a relatively good performance (approximately 70%)

on a standard RAT. RAT questions are well suited for corpus-

based computational methods, and 2-gram models are largely

sufficient to model and discover associations in them.

Next, inspired by the RAT setting, we propose a more

general framework where more liberal, semantic associations

between words can be discovered and used to support cre-

ativity, instead of the tightly bound, even idiomatic words of

the RAT. To this end, we use word co-occurrence networks.

Co-occurrence statistics of words are again computed from

a document corpus, but in this case the words do not need

to occur next to each other. The co-occurrence network can

then be used as a simple model for creative inference, or as a

component of a creativity support tool.

In the next section, we give a brief overview of the remote

associates test of creativity. The contributions of this paper are

then in the subsequent sections:

• We give a novel method that scores well on RAT

questions of creativity using only frequencies of word

collocations as its data (Section III).

• We generalize the RAT setting to more abstract rela-

tions between words and describe word co-occurrence

networks for this purpose (Section IV)

• We propose a method for finding creative associations

from word co-occurrence networks and give experimental

results (Section V).

We review related work in Section VI, and conclude the paper

in Section VII.

II. BACKGROUND: REMOTE ASSOCIATES TEST OF

CREATIVITY

Creativity is usually defined as the ability to find associative

solutions that are novel and of high quality. S. A. Mednick [1]

defines creativity as “the forming of associative elements into

new combinations, which either meet specified requirements

or are in some way useful”. On the basis of this definition,

Mednick developed the remote associates test of creativity.

The RAT measures the ability to discover relationships

between concepts that are only remotely associated. It is

frequently used by psychologists to measure creativity albeit

there is some criticism concerning its validity in measuring

creative skills. Each RAT question presents a set of three

mutually distant words to the subject, and the subject is then

asked to find a word (creatively) connecting all these words

together [1]. For instance, given the cue words ‘lick’, ‘mine’,

and ‘shaker’ the answer word is ‘salt’: ’lick salt’, ’salt mine’,

and ’salt shaker’ connect salt with each of the three words.

The test is constructed so that the word associations in the
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test should be familiar to people brought up in the respective

culture (e.g. USA).

Most of the RAT answer words are quite uncommon. Thus,

the test subject should propose answer words which are used

less frequently in everyday speech to perform well on the

test [1], [3]. This supports the idea that creative solutions

usually are relevant and novel. The RAT performance has been

established to correlate with traditional measures of IQ [4],

and there is some evidence that it predicts originality during

brainstorming [5]. Additionally, several studies have linked

RAT results to more specific creativity-related phenomena,

such as intuition and incubation [6], [7], [8]. Thus, the RAT

provides arguably a well established method to assess the

associative creativity in a psychological context.

III. A COMPUTATIONAL SOLUTION TO RAT

We will now give a computational method for solving RAT

tests with high accuracy, using only frequencies of word pairs

in a large corpus. We will walk through the ideas using a

number of experiments, so we start by describing the data we

have used.

A. Background

a) RAT tests: We combined RAT tests from two

sources [9], [10] and obtained a total of 212 questions. Follow-

ing good practices of data analysis, this set of tests was then

divided into two disjoint sets: a training set of 140 questions

and a test set of 72 questions. Method development is carried

out using the training set, while the validation set is used to test

the performance on the final methods. This procedure avoids

overly optimistic results that would be obtained by tuning and

testing the methods on the same instances.

b) Corpus: Instead of a full corpus of text, we directly

use Google 2-grams [11], a large, publicly available collection

of 2-grams (see below).

We next formalize some of the concepts and introduce

notation used in the rest of the paper.

c) Notation: n-grams, i.e., frequencies of different se-

quences of n words, are used widely in language modelling.

For solving RATs, we use 2-grams. A 2-gram is a sequence

of two words or, more formally, a vector n = (n1, n2) of

two words n1 and n2. The (absolute) frequency of a 2-gram

n = (n1, n2), denoted by nc, is the number of times the

sequence (n1, n2) of words occurred in a given corpus CG.

We denote by N the set of all 2-grams and by Nc the total of

their occurrences. Let N ′
c(t) denote the sum of frequencies of

the 2-grams that contain word t, i.e.,

N ′
c(t) =

∑

n∈N :t∈n

nc.

In a similar way,

N ′
c(t1, t2) =

∑

n∈N :t1,t2∈n

nc = (t1, t2)c + (t2, t1)c

denotes the total of frequencies of 2-grams that contain both

t1 and t2.

Fig. 1. The log-likelihood distribution of the different types of word pairs

Formally, a RAT is a quadruple r = (c1, c2, c3, a), where

ci is the ith cue word and a is the answer word.

B. Methods

a) Frequencies of RAT word pairs: The way RAT tests

are constructed implies that 2-grams (ci, a) or (a, ci) consist-

ing of a cue word and the answer word should have relatively

high frequencies, and that 2-grams (ci, cj) consisting of two

cue words should have relatively low frequencies.

Since the individual words in a RAT may have different

frequencies, 2-grams also have different expected frequencies.

So, rather than directly comparing the frequencies of 2-

grams, we estimate how much the observed frequencies differ

from the ones expected assuming statistical independence. We

measure this deviation by the log-likelihood ratio (LLR) [12].

For this calculation, we estimate the individual frequencies of

words by the number of times they occur in 2-grams.

Figure 1 shows the LLR distributions for cue word pairs

(’Type cue’) and for cue word, answer word pairs (’Type

answer’). The cue word, answer word pairs clearly tend to

be more closely related than the cue word pairs, but there is

also a lot of overlap between the distributions. The difference

between the distributions is statistically significant (Wilcoxon

rank sum test p-value < 2 · 1016).

b) Scoring function: To solve a RAT test we need to

find an answer word that is related to all of the cue words.

We propose to treat each RAT question r as a probabilistic

problem, where we want to find the most likely answer

word a, i.e., one that maximizes the conditional probability

P (a|c1, c2, c3).
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We have

P (a|c1, c2, c3) =
P (a, c1, c2, c3)

P (c1, c2, c3)

∝ P (a, c1, c2, c3) (1)

= P (c1, c2, c3|a)P (a). (2)

Assuming that the cue words c1, c2, c3 are mutually indepen-

dent, as they essentially are by construction of RATs, we have

P (c1, c2, c3|a)P (a) = P (a)
3∏

i=1

P (ci|a). (3)

(In machine learning, this is known as the Naı̈ve Bayes model.

It often has a good practical predictive performance even if the

independence assumption does not hold [13].)

We estimate the conditional probabilities from the relative

frequencies of the words in the 2-grams,

P (a) =
N ′

c(a) + 1

Nc + 1
, P (c, a) =

N ′
c(c, a) + 1

Nc + 1
, (4)

giving

P (c|a) = P (c, a)

P (a)
=

N ′
c(c, a) + 1

N ′
c(a) + 1

. (5)

c) Answer word search: Given a RAT test, finding the

best scoring answer word a among millions of words is not

straightforward. We do this in two steps. In the first step, we

extract words that occur at least once with each cue word.

Let this set of candidate words be Γ. In the second step, we

compute the conditional probabilities of the candidate words

and choose the best one, i.e.,

argmax
a∈Γ

P (a)
3∏

i=1

P (ci|a) =

= argmax
a∈Γ

P (a)

3∏

i=1

(N ′
c(ci, a) + 1)

(N ′
c(a) + 1)

. (6)

C. Experiments

We experimented with the RAT solver using the training

and test sets with 140 and 72 RATs, respectively.

Already in the first experiment, the method was able to give

correct answers to 56% of the RATs in the training set and

the accuracy for the test set RATs was 54%. By looking at

the results we observed that many false solutions were very

frequent words of English (also known as stopwords).

After simple stopword removal (we used the NLTK [14]

stopword list) from the candidate set, the accuracy of the

system for both sets increased to 66%. Now, many of the

seemingly incorrect results were actually solved essentially

correctly, but instead of the singular in the correct answer,

the plural form of the answer word was proposed by the

system. Such minor issues could be easily solved, but since our

main interest is more in the principles that may help develop

computational creativity, we did not delve into details.

An upper bound for the accuracy of the 2-gram-based

technique for the training set is 96% and for the test set

it is 99%. This is how often the candidate set included the

correct answer word. Many of the remaining failed cases are

due to compound words. For instance, for the RAT question

with cue words puss, tart and spoiled the answer word sour
is not detected because in everyday text ’sourpuss’ is written

together. Again, techniques to take this into account could be

developed, but would not probably help finding truly creative

associations.

Our results indicate that the method described above solves

RAT questions more accurately than an average human.

According to Bowden and Jung-Beeman [15], mean human

accuracy for their 144 RAT questions is approximately 0.5,

whereas the accuracy of our simple method is 0.66.

Overall the results indicate that the computational method

based on 2-grams has already captured some principles of

creativity, as measured by RATs.

IV. GENERALIZED APPROACH TO SUPPORT CREATIVITY

The 2-gram model model used above is severely restricted

and essentially only considers idiomatic phrases, such as

compound words of exactly two elements. Obviously, many —

if not most — relevant and informative associations between

terms are manifested by less stringent proximity.

We next propose a more powerful, generalized approach to

support creativity based on relations which are semantic in

nature [16]. We are motivated by the observation that RATs

are relatively easy for computers and that more general notions

of relatedness of words or concepts could be used. Since RATs

already correlate with creativity, a more general version could

likely be used to support more challenging tasks of creativity.

In this section we describe a simple method for creating a

network of semantically associated words. We experimentally

test and illustrate how connections in this network tend to

make sense. We also show how to apply the RAT solving

principles to these networks in order to support some sorts of

creative inference.

A. Word Co-Occurrence Network Construction

We briefly describe how a word co-occurrence network can

be generated using existing text analysis methods. We assume

a corpus of unstructured documents, and we treat documents as

bags of sentences and sentences as bags of words. Formally,

the document corpus CW is a set of documents di ∈ CW ,

where each document di is a (multi)set of sentences di =
{si1, . . . , sin}, and each sentence is a set of words sij ⊂ TW ,

where TW is the set of all words.

We analyse word co-occurrences at the granularity of sen-

tences, since words which are in one sentence have a strong

relation to each other [17]. Valid alternative approaches could

be based on a sliding window of words or a paragraph, for

instance.

Formally, the word co-occurrence network G = (V,E,W )
is a weighted, undirected graph with nodes V , edges E ⊂
V × V , and edge weights W : V × V → R+. For notational

convenience, we assume W (e1, e2) = 0 if there is no edge

between e1 and e2.
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Before constructing the graph we preprocess the documents.

First, we extract nouns and named entities from the docu-

ments and discard everything else. In addition to simplicity,

this choice is motivated by nouns and named entities being

conceptually more basic than concepts referred to by verbs or

prepositions [18]. Obviously, some information is lost here.

We then lower-case and lemmatize all the words. The named

entities are concatenated with an underscore.

We use the log-likelihood ratio (LLR) to measure the

strength of an association between two terms [12]. In the word

co-occurrence network, lemmatized nouns and named entities

are then nodes, and they are connected with an edge whenever

the LLR is high enough (see below). The connections are also

weighted by the LLRs.

B. Word Co-Occurrence Network of Wikipedia

In order to discover more general connections between

words we chose to extract word co-occurrences from a text

corpus. Google n-gram data sets are not used here since they

only contain information about words which appear very close

to each other.

In these experiments we construct the co-occurrence net-

work from the English Wikipedia as of September 2011,

consisting of 2,078,604 encyclopedic articles from all areas

of life. For preprocessing the data we use Natural Language

Processing Toolkit (NLTK) [14].

Without any pruning of edges, the co-occurrence network

constructed from Wikipedia would consist of 1,900,846 nodes

and 89,076,150 edges. Figure 2 shows the distribution of LLR

values, i.e., the weight distribution of all possible edges before

any pruning. As is to be expected, a majority of weights are

small but there is a long tail to large weights.

Selecting a threshold value for LLR is a complicated task.

Our reasoning was, that the minimum log-likelihood ratio

value should be at least as high as it is for two terms which co-

occur only twice and together. In our case the value t = 70.44
was used as the threshold value for the co-occurrence network.

This removes approximately 95% of the edges from the

network (cf. Figure 2). As a result, the network consists of

595,029 different terms and 4,644,456 edges.

C. Co-occurrence Network vs. WordNet Semantic Relations

To experimentally investigate what kind or semantic re-

lations are discovered by the LLR-based method, we next

experiment with WordNet [17]. It is a curated lexical database

of English, with a large amount of manually assigned semantic

relations of different types between words. WordNet is an

accurate and powerful resource but limited in its scope.

There are approximately 120,000 nouns in WordNet, when

including example sentences and glossaries (see below). The

co-occurrence network thus has around 470,000 nodes which

do not appear in WordNet at all.

Our goal has not been to reproduce WordNet. Rather, we

aim for a coverage much wider than WordNet (our 595k

terms vs. WordNet’s 120k terms), and also for language-

independence so that the methods are applicable also in
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Fig. 2. Weight (LLR) distribution of the co-occurrence network before
pruning.

languages for which WordNet or similar resource do not exist.

The sole purpose of these experiments is to shed light on the

types of relationships discovered by LLR.

Given two words w1 and w2, we consider their following

possible relations in WordNet:

• w1 is a hypernym of w2, or vice versa (e.g. ‘vehicle’ is

a hypernym of ‘car’).

• w1 is a holonym of w2, or vice versa (e.g., ‘car’ is a

holonym of ‘wheel’).

• w1 is a holonymic sister of w2, i.e., they share a holonym

(e.g., ‘wheel’ and ‘door’ both are parts of a car).

• w1 and w2 are synonyms (e.g., ‘car’ and ‘automobile’).

• w1 and w2 are coordinate terms, i.e., they share a

hypernym (e.g., ‘car’ and ‘ship’ both are vehicles)

• w1 appears in the definition of w2, or vice versa (e.g.,

‘motor’ appears in the WordNet definition of car: “a

motor vehicle with four wheels; usually propelled by an

internal combustion engine”).

• w1 appears in the example sentences of w2, or vice versa

(e.g., ‘work’ appears in the WordNet example use of the

word car: “he needs a car to get to work”).

More distant WordNet similarities could also be considered by

transitively applying the above relations (for an overview see,

e.g., [19]).

Because of the limited scope of WordNet, for our exper-

iments concerning WordNet relations we randomly picked

5,000,000 pairs of words that do occur in WordNet. We

excluded those words in our co-occurrence network that do

not appear in WordNet, since obviously WordNet is not able

to say anything about their relations.
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Relation Type in WordNet Number of Examples
Hypernym Relations 117
Holonym Relations 49
Holonymic Sister Relations 6
Synonym Relations 33
Coordinate Relation 2,729
Definition Relation 948
Example Relation 70
No Relation 4,996,048
Total Sample 5,000,000

TABLE I
DISTRIBUTION OF DIFFERENT WORDNET SEMANTIC RELATION TYPES IN

A RANDOM DATASET.
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Fig. 3. Edge weight (LLR) distributions of edges which either are or are
not related in WordNet.

The distribution of WordNet association types in the random

sample of 5,000,000 pairs is shown in Table I. The number

of words which are related in WordNet form a very small

fraction of the dataset. Also, most term pairs in this random

sample have low LLRs, essentially following the distribution

of Figure 2.

Correlation between WordNet and LLRs is illustrated in

Figure 3, where the edge weight distributions are drawn

separately for those pairs that are related in WordNet and those

that are not. Visually, the difference is clear: approximately

already from edge weight 15 on, related word pairs have a

higher density than unrelated pairs.

Since so few pairs are related in WordNet, we also look at

the data using ROC (Receiver Operating Characteristic) curve

which is suited for unbalanced class distributions. The curve

can be seen in Figure 4 (zoomed in to the lower left corner).

The true positive rates grow in the beginning very fast (note
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Fig. 4. Zoom-in to the lower left corner of the ROC plot.

the difference in x and y scales in the figure), but then they

level off to a straight line towards point (1, 1). This indicates

that the top ranking term pairs are typically WordNet related,

as suggested also by Figure 3, but after that there is no visible

difference.

These experiments show that the relations discovered by

LLR tend to make sense semantically. The sheer numbers addi-

tionally show that the co-occurrence method has a much higher

coverage than WordNet (but obviously WordNet has strengths,

such as semantic categories of relationships and manually

curated contents). We believe that word co-occurrence based

models on which we can build creativity support methods

could be much more interesting than the 2-gram models for

solving RATs.

V. CREATIVE ASSOCIATION DISCOVERY

We now proposed initial methods for finding more general

creative associations. First we will propose a generalized

version of the method proposed for RATs in Section III. Note,

however, that now the goal is not to solve RATs, they are just

used to ensure that the responses of the proposed algorithm

are sound.

In the final subsection we will actually propose a method

for generating generalized RATs, and we will show that

the generation method is quite stable. We will also provide

examples of the creative inference to the reader.

A. Generalization of RAT-Related Methods

a) Candidate word selection: The generalization of the

candidate method from the previously presented method is

quite straightforward. In the method which used 2-grams as the
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model of co-occurrences the words which co-occur with every

cue word were used as candidate answer words. Choosing

the candidate set can be done in a similar way for the co-

occurrence network by choosing the joint neighbourhood of

all the cue words.

More formally, let us consider a set T = {t1, . . . , tn} of

words which we treat as cue words. We will define the joint

neighbourhood as the intersection of all the neighbours of the

cue words:

N (T ) = {u | {ti, u} ∈ E for all ti ∈ T}. (7)

b) Scoring: For ranking the candidates, consider first a

single candidate word a ∈ N (T ). We propose using a score

which depends on two aspects of the candidate word a. First,

a good answer word a should be strongly related to all of

the cue words ti. Second, a good answer word is specific to

the cue words, i.e., does not associate strongly with too many

other words. The second criterion also relates to the fact that

high-frequency candidates are not considered as creative [3].

We define the scoring function as

score(a, T ) = α(a, T ) · β(a), (8)

where α(a, T ) is the association weight-induced component

of the score and β(a) is the candidate frequency-induced

component of the score.

Some reasonable scores which could be calculated as the α
component are the following:

1) The minimum weight (MINW) between the answer word

and the cue words, i.e., “the weakest link”:

α(a, T ) = min
ti∈T

(W (a, ti)).

2) The average edge weight (AVGW) between the cue

words and the answer word

α(a, T ) =
1

|T |
∑

ti∈T

W (a, ti).

3) As the edge weights are ratios, it is also reasonable to

consider the harmonic mean (HARM)

α(a, T ) =
|T |

∑

ti∈T

1

max(W (a, ti), 1)

.

Analogously there are different ways to penalize the answer

word frequency. In this paper we consider the two most

obvious approaches related to the degree of the candidate

node a. The first approach penalizes a score by dividing it

by the candidate node degree (DEG), i.e.,

β(a) =
1

deg(a)
.

A logarithmic smoothing of the degree penalty (DEGL) com-

ponent might give more stable results:

β(a) =
1

log(deg(a))
.

B. Generalized RAT Creation

In standard RAT questions the goal is to provide an answer

word given the cue words. While this measures creative abili-

ties, often the opposite task has more practical value: we have a

concept (the answer word, e.g., the topic of a problem we want

to solve), and we want to have it associated creatively with

other concepts. For instance, let’s assume we are interested in

the word ‘riding’ and, to support our creativity, would like to

see it associated with different things. The method that we will

give below recommends these words: ‘election’, ‘horseback’

and ‘accident’.

In this task, given an answer word, our goal is to select

words that are strongly related to the answer word and at the

same time are not related to each other. We propose this simple

algorithm for selecting such words given the answer word a:

First, choose the node with the strongest connection to a and

add it to the (so far empty) cue word set R. Then, consider

other nodes in a decreasing order of their association with the

answer word a. Add a node to the cue word set R if and only

if it is not connected to any member of R. Iterate until the

desired number of cue words has been chosen or all neighbours

of the answer word have been considered.

C. Experiments

Our first experimental goal is to test how well different

scoring functions work on RAT questions. We will conduct

these experiments on the training set. Once we have chosen

the best method we will validate it using the separate test set.

Recall that the documents were preprocessed to support

discovery of non-trivial associations between concepts. This

preprocessing, i.e. including only named entities and nouns in

the network, actually hinders solving the RATs. Therefore, we

compare different scoring functions using those RAT questions

where the candidate answer set (the joint neighbourhood of the

cue words) contains the correct answer word. 21% of the test

cases fell in this category. The relatively low score is explained

by preprocessing aspect which we described earlier (i.e. many

common entities are treated as one, e.g. ‘political’, ‘party’ is

treated as ‘political party’ in the co-occurrence network).

Results are shown in Table II (for acronyms used in the

table, see the previous subsection). For α(a, T ), the association

weight-dependent component of the score, the harmonic mean

(HARM) systematically produced best results. For β(a), the

candidate frequency-dependent component, the best results

were obtained when dividing the score by the number of

associations, i.e., the degree of node a in the co-occurrence

graph (DEG). Overall, their combination also gave the best

result.

To test the stability of the score, we then conducted the

same experiment on the test data. The test set size shrinks to

only 10 questions after taking the joint neighbourhood, so the

statistical power is not high. However, the obtained accuracy

of 0.8 indicates that there was no serious overfitting to the

training set. In the next experiments we will thus use the

combination of the harmonic mean and degree penalty.
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TABLE II
COMPARISON OF THE ACCURACY OF DIFFERENT COMBINATIONS OF

SCORING METHODS FOR CANDIDATE WORDS.

α(a, T )
β(a) MINW AVGW HARM

Constant 0.72 0.72 0.76
DEG 0.86 0.86 0.90

DEGL 0.76 0.76 0.83

TABLE III
A SAMPLE OF ARTIFICIALLY GENERATED GENERALIZED RAT QUESTIONS.

Seed Word Cue Word 1 Cue Word 2 Cue Word 3
imperialism colonialism lenin american
missile warhead defense flight
packaging product paper artwork
slope steep ski western
medley relay yankovic beatles
far north greater moon
kpmg firm young report
concert band hall benefit

We next analyse the generalized RAT creation process, as an

approximation of a creative discovery task. To test the sanity

of this method we conducted the following experiment. We

chose 1000 random words which each had at least 3 mutually

unconnected neighbours in the co-occurrence graph. For each

such random word we selected 3 cue words by using the RAT

creation process described above. We then solved the RAT

question given the 3 cue words, and compared if the answer

thus obtained was identical to the original seed word. In 97%

of the cases the results were same for both methods, indicating

consistency of the methodologies.

Finally, a sample of such artificially created generalized

RAT questions is shown in Table III. Subjectively judging,

they seem to match quite well classical criteria of creativity,

such as the Torrance Tests of Creative Thinking [20]. The

RAT creation method could be considered to exhibit fluency
by producing a number of relevant cue words (and more could

be easily generated), flexibility by discovering cue words that

provide complementary contexts or meanings for the seed

word, as well as originality by providing relatively rare words.

Additionally, elaboration could potentially be achieved by

using the co-occurrence network to describe the contexts for

the various associations.

VI. RELATED WORK

A. Measuring Associations Between Terms

The idea of the distributional hypothesis is that words

which co-occur in similar contexts tend to have similar mean-

ings [21]. This was nicely put by Firth in 1957: “You shall

know a word by the company it keeps” [22]. Followed by these

ideas, the semantic similarity between words is calculated by

their co-occurrence in documents.

Even if relatively few methods have been proposed for

automatic construction of networks of terms, literature on co-

occurrence or collocation statistics is abundant. Such measures

can be used in an obvious way to build a network of terms.

We only review some representative methods here.

Log-likelihood ratio is a non-parametric statistical test for

co-occurrence analysis. Using log-likelihood ratio for word

co-occurrence analysis was proposed by Dunning [12] who

showed, in particular, that log-likelihood ratio does not over-

estimate the importance of very frequent words like some other

measures.
Latent Semantic Analysis [23] aims to find a set of concepts

(instead of terms) in a corpus using singular value decompo-

sition. The semantic similarity (relatedness) of two words can

then be estimated by comparing them in the concept space.

Latent semantic analysis has then evolved to Probabilistic
Latent Semantic Analysis [24] and later to Latent Dirichlet
Allocation [25]. Probably any of these methods could be used

to derive co-occurrence networks.

B. Creative Association Discovery
Several papers have been published on supporting creativity

by discovering links between concepts. In creative biological

problem solving, for instance, Mozetic et al. [26] propose a

method for finding unexpected links between concepts from

different contexts. Examples of methods more directly based

on link prediction in heterogeneous networks are given by

Eronen and Toivonen [27].

VII. DISCUSSION

Making the ‘right’ choices is often much easier than making

choices which are less rational, but do still make sense. This is

what this paper is all about – given constraints, our goal is to

propose something as a result which satisfies these constraints,

but at the same time is thought-provoking. In creative support

systems, one of the purposes is to encourage the user to think

more broadly. One way for doing this is by giving answers,

which are related to the question, but the relation itself is subtle

enough, to induce creative thoughts.
In the paper we briefly described RATs and their underlying

mechanisms. We showed that by using 2-grams and a simple

probabilistic model it is possible to solve these tests with a

good accuracy.
We also described a methodology for creating a network of

more general associations than the 2-gram language model

could provide. As a ground for the creative inference, we

showed that the connections in this network tend to make

sense and we can assume that if two words are connected

by an edge, they are also semantically related.
Our main contribution is translating the principles which we

established in the probabilistic framework for solving RATs

to the generalized model with co-occurrence networks. An

empirical result was that the associations generated from the

network seem to exhibit creativity.
In the future our goal is to validate the methods more

objectively, e.g., by some user testing. We plan to test and

compare different language models (e.g., LSI, LDA) and

provide more in depth analysis for the creative association

discovery. Finally, we are planning to use these methods in

tasks which relate to lexical creativity (e.g., automatic poetry

generation) and in possible lexical creativity support systems

(e.g., slogan wizard).
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Answer to the RAT Question in the Introduction
The intended answer word related to ’coin’, ’quick’, and

’spoon’ is ’silver’.

Acknowledgements: This work has been supported by the

Algorithmic Data Analysis (Algodan) Centre of Excellence

of the Academy of Finland.

REFERENCES

[1] S. Mednick, “The associative basis of the creative process.” Psycholog-
ical review, vol. 69, no. 3, p. 220, 1962.

[2] J. M. Toivanen, H. Toivonen, A. Valitutti, and O. Gross, “Corpus-based
generation of content and form in poetry,” in International Conference
on Computational Creativity, Dublin, Ireland, 2012, pp. 175–179.

[3] N. Gupta, Y. Jang, S. Mednick, and D. Huber, “The road not taken
creative solutions require avoidance of high-frequency responses,” Psy-
chological Science, 2012.

[4] M. T. Mednick and F. M. Andrews, “Creative thinking and level of
intelligence,” Journal of Creative Behavior, vol. 1, pp. 428–431, 1967.

[5] G. Forbach and R. Evans, “The remote associates test as a predictor of
productivity in brainstorming groups,” Applied Psychological Measure-
ment, vol. 5, no. 3, pp. 333–339, 1981.

[6] K. S. Bowers, G. Regehr, C. Balthazard, and K. Parker, “Intuition in the
context of discovery,” Cognitive Psychology, vol. 22, pp. 72–110, 1990.

[7] S. Topolinski and F. Strack, “Where theres a willtheres no intuition:
The unintentional basis of semantic coherence judgments,” Journal of
Memory and Language, vol. 58, pp. 1032–1048, 2008.

[8] E. Vul and H. Pashler, “Incubation benefits only after people have been
misdirected,” Memory & Cognition, vol. 35, pp. 701–710, 2007.

[9] K. Bowers, G. Regehr, C. Balthazard, and K. Parker, “Intuition in the
context of discovery,” Cognitive psychology, vol. 22, no. 1, pp. 72–110,
1990.

[10] S. Mednick and M. Mednick, Examiner’s Manual, Remote Associates
Test: College and Adult Forms 1 and 2. Houghton Mifflin, 1967.

[11] J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, T. G. B.
Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant,
S. Pinker, M. A. Nowak, and E. L. Aiden, “Quantitative analysis of
culture using millions of digitized books,” Science, vol. 331, no. 6014,
pp. 176–182, 2011.

[12] T. Dunning, “Accurate methods for the statistics of surprise and coinci-
dence,” Computational linguistics, vol. 19, no. 1, pp. 61–74, 1993.

[13] P. Domingos and M. Pazzani, “On the optimality of the simple bayesian
classifier under zero-one loss,” Machine learning, vol. 29, no. 2, pp.
103–130, 1997.

[14] S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python. O’Reilly Media, 2009.

[15] E. Bowden and M. Jung-Beeman, “Normative data for 144 compound
remote associate problems,” Behavior Research Methods, vol. 35, no. 4,
pp. 634–639, 2003.

[16] D. Dailey, “An analysis and evaluation of the internal validity of
the remote associates test: What does it measure?” Educational and
Psychological Measurement, vol. 38, no. 4, pp. 1031–1040, 1978.

[17] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[18] D. Gentner, “Why Nouns Are Learned Before Verbs: Linguistic Rel-
ativity Vs. Natural Partitioning,” in Language Development, vol.2:
Language, cognition and culture, S. Kuczaj, Ed. Hillsdale, NJ: Erlbaum,
1982, pp. 301–334.

[19] A. Budanitsky and G. Hirst, “Semantic distance in wordnet: An exper-
imental, application-oriented evaluation of five measures,” in Workshop
on WordNet and Other Lexical Resources, vol. 2, 2001.

[20] E. Torrance, Torrance Tests of Creative Thinking: Norms-technical
Manual. Research Edition. Verbal Tests, Forms A and B. Figural Tests,
Forms A and B. Personnel Press, 1966.

[21] Z. Harris, “Distributional structure,” Word, vol. 10, no. 23, pp. 146–162,
1954.

[22] J. R. Firth, “A synopsis of linguistic theory 1930-55.” vol. 1952-59, pp.
1–32, 1957.

[23] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society for Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[24] T. Hofmann, “Probabilistic latent semantic indexing,” in Proceedings of
the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. New York, NY, USA: ACM,
1999, pp. 50–57.

[25] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[26] I. Mozetic, N. Lavrac, V. Podpecan, P. K. Novak, H. Motaln, M. Petek,
K. Gruden, H. Toivonen, and K. Kulovesi, “Bisociative knowledge dis-
covery for microarray data analysis,” in The 1st International Conference
on Computational Creativity (ICCC-X), Lisbon, Portugal, 2010, pp. 190–
199.

[27] L. Eronen and H. Toivonen, “Biomine: Predicting links between bio-
logical entities using network models of heterogeneous database,” BMC
Bioinformatics, vol. 13, no. 119, 2012.

42


