
1536-1268/05/$20.00 © 2005 IEEE ■ Published by the IEEE CS and IEEE ComSoc PERVASIVEcomputing 51

T H E S M A R T P H O N E

A
s a computing platform, mobile
phones are both pervasive and per-
sonal. They’re almost always on and
tend to have an intimate relation-
ship with their owners, who store

private information on them and often personal-
ize their appearance or ring
tones, for example. This per-
sonal nature suggests that mobile
phones are well suited for con-
text-aware computing. On one
hand, mobile phones follow the
user and have clues about the
current situation. On the other,

their various usage contexts will likely benefit
from context awareness.

Smart phones are a particularly tempting plat-
form for building context-aware applications
because they’re programmable and often use well-
known operating systems. There’s a gap, however,
between the operating systems’ functionality and
the features that application developers need. A
smart phone knows, for example, how to connect
to a Bluetooth device—such as a Bluetooth-
enabled Global Positioning System receiver—but
applications need the actual GPS coordinates.

To fill this gap, we’ve designed and developed
ContextPhone, a software platform consisting of
four interconnected modules provided as a set of
open source C++ libraries and source code com-
ponents. ContextPhone runs on off-the-shelf mo-
bile phones using Symbian OS (www.symbian.

com) and the Nokia Series 60 Smartphone plat-
form (www.series60.com). To develop Context-
Phone, we followed a human-centered research
strategy1 that included field studies of applica-
tion use. As a result, our platform offers several
useful capabilities and functions that existing plat-
forms don’t.

Design goals and philosophy
The current ContextPhone version is the result

of several development iterations and repeated
evaluations of real-world use. Our development
experiences led to several design goals.

The first is to provide context as a resource. The
platform represents the user’s machine-sensed con-
text in a way that humans can understand and
communicates it to the user’s environment when
appropriate. The context thus becomes a resource
for social interaction, not just input to machine
adaptation. Humans can thus construct new
meanings from the contextual information.2

The second is to incorporate existing applica-
tions. Most previous work, including our own,
has implemented custom-built hardware systems
or isolated applications. To accommodate the
deeply intertwined nature of human mobility prac-
tices, ContextPhone interfaces and integrates with
existing Smartphone applications, particularly
messaging and calling functions.

The third is to offer fast interaction and unob-
trusiveness. In mobility, cognitive-interaction
resources are seriously fragmented and interrup-

ContextPhone was developed using an iterative, human-centered design
strategy. It thus helps developers more easily create applications that
integrate into both existing technologies and users’ everyday lives.

Mika Raento, Antti Oulasvirta,
Renaud Petit, and Hannu Toivonen
University of Helsinki and
Helsinki Institute for Information
Technology

ContextPhone:
A Prototyping Platform
for Context-Aware
Mobile Applications

tions are ubiquitous.3 The platform must
therefore enable fast interaction when
needed and otherwise run in the back-
ground without intruding on other
applications’ use.

The fourth is to ensure robustness.
The platform should automatically
recover from lost power or connectivity
and from internal logic and system com-
ponent failures without user correction.
All significant data should be automati-
cally saved to nonvolatile memory. These
features build trust and prevent negative
social consequences.

The fifth is to let users control seams.
Battery life, technical-platform hetero-
geneity, and network connectivity gaps
create seams in interaction.4 Empow-
ering users to compensate for and con-

trol these seams is desirable in many
applications.

The sixth is to emphasize timeliness.
Response latency is crucial for applica-
tions that support turn-taking-based
communications. Social events are often
significant only at a particular moment.
Several applications and terminals might
require quick access to socially signifi-
cant context information.

The final goal is to enable rapid devel-
opment. Developers should be able to
easily add new context data sources, sen-
sors, and sinks, and build new applica-
tions without rebuilding the entire sys-
tem. At best, data types and components
should be runtime extensible; at least,
developers should have a unified struc-
ture for adding new types and compo-

nents at compile time. These features
support rapid, iterative development that
involves users in every stage of design.

These goals are generally applicable in
helping developers create applications
that are useful to people in everyday life,
as opposed to building stand-alone tools
for limited settings.5

The ContextPhone platform
Figure 1 shows ContextPhone’s four

modules:

• Sensors acquire context data from dif-
ferent sources, such as location (Cell
ID and GPS) or phone use.

• Communications connect to external
services via standard Internet proto-
cols using General Packet Radio Ser-

52 PERVASIVEcomputing www.computer.org/pervasive

T H E S M A R T P H O N E

GSM

Bluetooth

System servicesSensors

Communications

GPRS

ContextContacts

Customizable
applications

ContextMediaContextLogger

Cam
era

Battery

ContextPhone
platform
modules

Status
display

Sound recorder

Automatic
startup

Error logging
and recovery

Battery
levelMedia

Cellular
location

Optical
markers

Active
application

User
activity

Nearby
devices GPS

Presence Media
notifications

Labeled
location

Semantic
location

Background
file upload

Netw
ork locationing

HTTP

Device inquiry

Serial

Jabber

Base station handover m
echanism

Person-to-person com
m

unication

MMS CallsSMS

GPRS General Packet Radio Service
MMS Multimedia Messaging Service
SMS Short Message Service

Smartphone

Applications
Phone resources

Figure 1. The ContextPhone platform. Four interconnected modules—sensors, system services, communications, and customizable
applications—facilitate communication with the outside world.

vice (GPRS), Bluetooth transfers, Short
Message Service (SMS), and Multime-
dia Messaging Service (MMS). The
communication channels can, for ex-
ample, share presence information
(using Jabber, as we describe later) or
obtain sensor data (using GPS over
Bluetooth).

• Customizable applications—such as
ContextLogger, ContextContacts, and
ContextMedia—can seamlessly aug-
ment or replace built-in applications
such as the Contacts and Recent Calls
lists.

• System services automatically launches
background services, error logging and
recovery, and the Status display.

Sensors
ContextPhone can be used to sense,

process, store, and transfer context data.
The sensed or inferred context can then
trigger actions within the phone or be
communicated to the outside world.
Although current Smartphones contain
few physical sensors, their ability to
monitor phone internal state and usage,
observe the cellular network, and use
wireless connections enables a rich con-
textual environment.

Our software supports four sensor
types:

• location, including Global System for
Mobile Communications (GSM) cell
identifier, cell-based semantic loca-
tion,6 naming of cells via network
location services, and GPS via a Blue-
tooth GPS receiver;

• user interaction, including active
application, idle/active status, phone
alarm profile, charger status, and
media capture;

• communication behavior, including
calls and call attempts, call recording,
sent and received SMS, and SMS con-
tent; and

• physical environment, including sur-
rounding Bluetooth devices, Bluetooth

networking availability, and optical
marker recognition (using the built-in
camera).

Some of these sensors seem almost triv-
ial, but we’ve found uses for them in spe-
cific applications. For example, whether
the phone is idle or active indicates the
user’s availability in our ContextCon-

tacts application. Also, while using off-
the-shelf hardware limits the number of
physical sensors, developers can add sup-
port for external hardware for specific
applications.

Communications
A phone’s most important use isn’t to

run applications but to communicate with
the outside world. ContextPhone sup-
ports both local (infrared and Bluetooth)
and wide-area (GSM and GPRS) com-
munications. Our communications pack-
age also offers protocol implementations
and service abstractions on top of these.

To gather data (ContextLogger) and
share media (ContextMedia), we need a
way to upload files. Typically, to support
our unobtrusiveness goal, ContextPhone
automatically uploads files in the back-
ground through an HTTP POST request.
However, a manually triggered local
transfer is also possible. Because Con-
textPhone can send and receive SMS and
MMS, developers can incorporate any
mobile service that can be used through
text messages, such as network location
services. To distribute presence infor-
mation and notifications, we use the Jab-
ber extensible messaging and presence
protocol (see www.jabber.org).

Customizable applications
Series 60’s built-in applications have

at best limited customizability. Develop-
ers can use our customizable versions of
its built-in call-making applications
(Contacts and Recent Calls) to add new
features to person-to-person communi-
cation. Our applications work exactly
the same way as the more familiar built-

in ones, but developers can extend them.
They might, for example, use our Con-
textContacts application to add presence
information.

The customizable applications also
support extensive user-interaction log-
ging. This lets developers and researchers
study usage patterns (including usabil-
ity) in users’ everyday lives without
requiring human observers. Figure 2
shows a sample from ContextLogger.

System services
Unobtrusive applications require min-

imal user interaction and run without dis-
turbing ongoing activities. Although
background services should start and run
automatically, Series 60 doesn’t offer
automatic startup. ContextPhone ser-
vices add this feature. If a crash occurs, a
watchdog process automatically restarts
services and applications.

Robustness is a crucial feature of per-
vasive Smartphone applications. All
ContextPhone components support dis-
connected execution, queuing opera-
tions—such as queuing file uploads
when network connectivity is inter-
rupted—and storing the latest network
information locally. Most components
have a retry and recovery strategy for

APRIL–JUNE 2005 PERVASIVEcomputing 53

Because ContextPhone can send and receive

SMS and MMS, developers can incorporate

any mobile service that can be used through

text messages.

other transient errors, such as memory
exhaustion.

The system is useful in various cir-
cumstances. However, because it’s con-
tinuously updated and runs on several
OS versions, unexpected errors do occur.
In such cases, components can propa-
gate errors up to a level where they can
be logged. Because some Symbian errors
(called panics) are not trappable, we’ve
added a persistent stack trace mecha-

nism that can inspect a crashed pro-
gram’s state from the outside. In prac-
tice, we can therefore pinpoint the source
and preceding call sequence of all errors.
ContextPhone sends the logged errors to
a server through the background file
upload.

Architecture
Our architectural decisions were

guided by our design goals, especially the

need for a robust and extensible system
that supports unobtrusiveness and rapid
development. As the “Related Work:
Platforms for Context-Aware Systems”
sidebar describes, to rapidly produce
actual applications we’ve built on the
experiences of other context-aware plat-
forms. We’ve also followed the Extreme
Programming maxim: “Build the sim-
plest thing that could possibly work.”
Our intention is that both the software’s
functionality and the architecture evolve
over time.

Our first goal was for the software to
log contextual information; the archi-
tecture thus focuses on context-event
provision and storage. The components
use a publish-subscribe model within a
single process. This logical architecture
mirrors the Context Toolkit’s context
widgets,7 although only within a single
system. Developers can easily extend the
event sources and event sinks to provide
simple context-triggered events.

Context-aware systems must also deal
with data type extensibility. Our goal
was to be able to easily add new con-
textual variables (both sensor based and
inferred) to the system. ContextPhone
has many built-in data types—such as
GSM Cell ID, phone profile, and Blue-
tooth device—with defined serialization
formats that the system can use to store
and transfer the data. Developers can
add new data types fairly easily, but only
at compile time.

Applications and
research tools

Research groups have used the Con-
textPhone software for many different
applications. According to many of

54 PERVASIVEcomputing www.computer.org/pervasive

T H E S M A R T P H O N E

Figure 2. An example ContextLogger
log. The application logs details of the
communication’s nature, timing, and
participants, along with an approximation
of the current location (the current cell)
and hints about the people present (the
nearby Bluetooth devices). In addition
to this data, ContextLogger can record
the call.

Scenario: Sending a short message to a contact to request a call back.

10h51m48s Open Contact application
10h51m51s Select the contact (Mika)
10h51m52s Open the message composer and write the message
10h52m48s Send the message
10h53m00s Reception of delivery report
11h30m27s Incoming call (Mika)
11h30m33s Answering the call (recording starts)
11h33m59s End of call

// Interaction log
20040623T105148 To foreground
20040623T105148 Showing contacts
20040623T105151 Items: [Antti 0 0 0]//Mika, loc: Exactum (1:00) 22 11 17//

Renaud 0 0 0
20040623T105151 Items: Antti 0 0 0//[Mika, loc: Exactum (1:00) 22 11 17]//

Renaud 0 0 0
20040623T105152 Sending SMS to: Mika, loc: Exactum (1:00) 22 11 17
20040623T105152 To background

// Context log
20040623T103507 profile:0 General (0 7 Off)
20040623T103629 area, cell, nw: 19000, 1952, RADIOLINJA
20040623T104620 devices: 0060579a6f70 [Janne] 0002eea07729 [Antti]
20040623T105148 UserActivity: active
20040623T105148 ActiveApp: [101fbad0] contextbook
20040623T105152 ActiveApp: [100058c5] mce
20040623T105248 SMS : sent msg #1053236 to Mika:”Please call me asap!”
20040623T105352 ActiveApp: [100056cf] ScreenSaver
20040623T105552 UserActivity: idle
20040623T113027 app event: STATUS: call
20040623T113027 app event: STATUS: call status 3
20040623T113027 ActiveApp: [100058b3] Phone
20040623T113033 UserActivity: active
20040623T113033 app event: STATUS: call status 4
20040623T113033 app event: STATUS: recording call
20040623T113359 app event: STATUS: recorded

// Communication log
20040623T105248 EVENT ID: 2268 CONTACT: -1 DESCRIPTION: Short message

DIRECTION: Outgoing DURATION: 0 NUMBER: +123456789
STATUS: Sent REMOTE: Mika

20040623T105300 EVENT ID: 2269 CONTACT: -1 DESCRIPTION: Short message
DIRECTION: Incoming DURATION: 0 NUMBER: +123456789
STATUS: Delivered REMOTE: Mika

20040623T113033 EVENT ID: 2270 CONTACT: -1 DESCRIPTION: Voice call
DIRECTION: Incoming DURATION: 207 NUMBER: +123456789
STATUS: REMOTE: Mika

these researchers, using our software
has saved them months of work and,
in some cases, enabled research that
would have otherwise been infeasible
owing to budget constraints. For exam-
ple, the MIT Media Lab’s Reality Min-
ing group (http://reality.media.mit.edu)
was able to give users a version of Con-
textLogger after only a few days of
modification and testing.

Although adding sensors or changing
the user interface requires some knowl-
edge of Symbian programming, develop-
ers have built many applications simply
by getting context information and send-
ing feedback through ContextPhone’s
communication channels. Because these
channels use standard Internet protocols,
applications can be implemented quickly
using off-the-shelf components such as
Jabber clients or Web server scripting. Fol-
lowing are the three most important Con-
textPhone-based applications to date,
which are all included with the basic Con-
textPhone package.

ContextLogger:
Studying mobility patterns

ContextLogger records mobility data.
Our goal with it is to give researchers a
robust, reliable tool that requires mini-
mum control and maintenance and lets
them acquire rich data unobtrusively.

ContextLogger receives notifications
of context changes from the sensors and
customizable applications, writes this
data in a local file, and periodically
uploads the files to the researchers’
server via the background file upload.
Because ContextLogger requires no user
interaction and isn’t typically visible to

users, it’s unobtrusive. Figure 2 shows a
sample of logged data.

We used the first version of Context-
Logger to gather the data needed to build
our adaptive location model for cellular
data.6 During this study, we realized
the importance of unobtrusiveness: we
started with manual uploads of the logs
every few days, but this was unaccept-
ably laborious. Also, we had to manu-
ally restart the software periodically. To
remove these obstacles we added auto-
matic data upload and automatic logger
restart.

Unobtrusiveness isn’t only important
to users—it also lets researchers decrease
the observation effect on their subjects.
We’re using ContextLogger to discover
correlations between context data and a
user’s availability. Also, the Technical
Research Centre of Finland (VTT) is
using ContextLogger to collect data on
Bluetooth device proximity for model-
ing the recurring patterns of a work
group’s person-to-person interactions.
The project’s goal is to learn and cluster
group-collaboration patterns based on
when people physically meet. In addi-
tion, the MIT Media Lab’s Reality Min-
ing project is collecting communication
and proximity data from students to
model social-network dynamics. The
ability to measure social relationships’
evolution and strength can “revolution-
ize the field of social network analysis,”

according to David Lazer,8 a social sci-
entist at Harvard University.

ContextContacts:
Automatic context sharing

ContextContacts lets users automati-
cally represent and exchange context
information. Rather than build agents
that decide whether the callee is inter-
ruptible (and block calls accordingly),
our working hypothesis is that offering
the callee cues about the caller’s context
might be more constructive. These cues
should facilitate decisions about whether
to call, and if so, which communication
channel to use, thus supporting social
awareness in the group. Figure 3 shows
our context representation.

Given mobile users’ fragmented atten-
tion,3 the time it takes to make a phone
call must remain extremely short. This
rules out using a separate application to
display the context. By using the cus-
tomizable applications, ContextContacts
integrates presence with normal calling
and messaging. It provides the same
response time as the built-in Contacts
application by storing the callee’s current
context locally, using the Jabber chan-
nel’s push-based presence notification.

ContextContacts has three compo-
nents:

• the presence publisher, which gathers
relevant sensory data from the sensors

APRIL–JUNE 2005 PERVASIVEcomputing 55

Figure 3. The ContextContacts context
representation. (a) ContextContacts
replaces the Smartphone Contacts list
with one that includes information on
current and past location, phone use
activity (indicated by hand color), people
present, and phone alarm profile. (b) By
clicking on the contact in the list, the user
sees more details and an explanation of
the system’s shorthand and icons.

(a) (b)

and sends this to other users via the
Jabber channel;

• the presence listener, which receives
sensory data from others through the
Jabber channel and integrates it into
the applications’ user interface; and

• application customizations (the Con-
textContacts and Call Log).

Researchers can combine Context-
Contacts with ContextLogger to study
the effects of the presence service. It’s
important that users know whether the
service is delivering accurate context
information—and thus become aware
of the technology’s seams. Representing
inaccurate or old information as new or
accurate information would undermine
users’ trust in the system. Our working
solution is to store the context data’s

time stamp and slowly gray out items if
new data hasn’t been received.

In our first field study, the Con-
textContacts application had two short-
comings. First, it showed the context in
the Contacts list but not in the Recent
Calls list, which meant that the caller
didn’t always have the information avail-
able. Second, the people near the callee
provide a strong contextual cue about
the situation, but our service didn’t
account for this. To address these issues,
we added a replacement Recent Calls list
to the customizable applications and
implemented the Bluetooth environment
sensor. Because many people have Blue-
tooth-enabled phones, this sensor is a
good indirect indicator of social context.

We’re running field studies to investi-
gate how ContextContacts affects in-

group awareness and calling practices.
We’re especially interested in how users
can manage privacy with such applica-
tions. The ability to tailor the sensors,
interactional patterns, and context rep-
resentation are crucial to experimenting
with privacy management. The system
services’ Status display keeps users aware
of whether they’re revealing personal
information without having to navigate
to a specific application.

ContextMedia:
Sharing mobile media

Smartphones let users not only cap-
ture media but also annotate and share
it. The idea of locative media,9 which is
media attached to a physical location, is
evolving into the more generic idea of
situated media, which is media that

56 PERVASIVEcomputing www.computer.org/pervasive

T H E S M A R T P H O N E

O ver the past few years, researchers have built many platforms

for pervasive and context-aware systems that support rich

contextual features. Several of these systems are openly available.

However, no such systems are available for devices that are inexpen-

sive, available off-the-shelf, and widely accepted by users in their

everyday life—such as smart phones, the first real-world pervasive

platform.

Foundational work
Mark Weiser’s vision for ubiquitous—or pervasive—computing

was first truly embodied in the Xerox PARC’s ParcTab project.

ParcTabs were mobile computing devices with limited context

awareness, focusing mainly on location. The system’s applications

were built in a client-server fashion, but the context information

was made available via a blackboard.1 The blackboard pattern de-

fines a data noticeboard that all components can access: they can

write new data on the board, and read and act upon any data

they’re interested in. The blackboard unifies sensor-based context

data and higher-level inferred context, and provides a loosely cou-

pled, extensible component interface. ParcTabs ran on proprietary

hardware and weren’t generally available outside Xerox.

One of context awareness’s defining works was Anind Dey,

Daniel Salber, and Gregory Abowd’s seminal paper on the Context

Toolkit,2 which was the first coherent statement about a context-

aware systems architecture. Their software follows Weiser’s vision of

distributing intelligence in the environment. The Context Toolkit is

a set of software components that developers can use to build dis-

tributed context-aware applications using a widget pattern. The

widget pattern is a variation of publish-subscribe: context data

sources and sinks are connected to each other in a point-to-point

manner. The Context Toolkit is available as source code (http://

contexttoolkit.sourceforge.net), and developers have used it in

many real-world contextual systems (such as Georgia Tech’s Aware

Home, www.cc.gatech.edu/fce/ahri). The toolkit enables a larger

variety of applications than a Smartphone-based system, but it

requires a special lab-like environment and specific hardware.

Recent advancements
Ian MacColl and his colleagues describe the Equip (Equator Uni-

versal Platform) system, built by the Equator Interdisciplinary Re-

search Collaboration.3 Equip is based on CORBA (Common Object

Request Broker Architecture) and built using the blackboard pat-

tern. Equip supports many different sensors, it can be used from

C++ and Java, and researchers have field-tested it in numerous

Equator IRC projects. The system is available as open source

(www.crg.cs.nott.ac.uk/~jym/ect/ect.php) and is probably the

most advanced, generally available context-aware platform in

existence. Although Equip’s resource requirements and CORBA

communication make it unsuitable for current smart phones, it

does run on portable general-purpose computers, such as the

Hewlett-Packard iPAQ.

Panu Korpipää and Jani Mäntyjärvi4 have described an architec-

ture for context-aware systems running on Series 60 Smartphones

built by Nokia and the Technical Research Centre of Finland (VTT).

Related Work: Platforms for Context-Aware Systems

includes a description of the situation it
was taken in (see http://tinyurl.com/
4g2uz). ContextPhone can approximate
this idea by providing additional con-
textual clues.

ContextMedia uses multiple sensors
to annotate media, the media sensor to
notice capture, and the background file
upload to share the annotated media.
Users can use the Jabber message chan-
nel to notify other users of sharing in
real time, which also lets researchers and
artists test different sharing patterns. To
ensure that no data is lost even if the
upload isn’t immediately successful,
ContextMedia stores the user input and
uploader state in the phone’s nonvolatile
memory during the process. The media
publisher uses the phone’s standard,
built-in features to capture media, after

which an upload prompt automatically
appears.

Integrating ContextMedia into exist-
ing practices reduces the learning time
required for users to interact with the
system. Also, phone manufacturers have
extensively tested the built-in capture
applications and carefully designed their
user interfaces. By reusing available
applications, we can add novel features
in a robust manner. In comparison, a
Java application such as the MUPE
(Multi-User Publishing Environment)
client must implement its own capture
process.

ContextMedia is the result of our col-
laboration with the Aware project
(http://aware.uiah.fi) at the University of
Art and Design Helsinki’s Media Lab.
The Aware group is using ContextMedia

to explore collective publication and
syndication of mobile media. Figure 4
shows several photos with automatic
and manual annotation.

The University of California at Berke-
ley’s Garage Cinema Research Group
(http://garage.sims.berkeley.edu) is study-
ing automatic annotation and sharing
of mobile media. The group originally
used client-server software developed
with a commercial company, but server
interaction over a low-bandwidth, high-
latency GPRS connection took too long.
Starting the browser and fetching a sim-
ple Web page typically required about
30 seconds, whereas uploading media
using ContextMedia requires as little as
three seconds. The group is conducting
a ContextMedia field study with 60
users.

APRIL–JUNE 2005 PERVASIVEcomputing 57

Researchers have used the blackboard-based architecture to

prototype content adaptation and study sensor-based context

inference, and it even allows end-user-defined adaptation rules.

Researchers have also field-tested many of the prototyped applica-

tions. The platform has a rich set of sensors but has fewer commu-

nication channels than our ContextPhone platform. Nokia owns

the system, which can’t be extended, improved, or used by out-

side researchers.

Nokia’s Multi-User Publishing Environment (www.mupe.net) is

an open-source client-server system for building context-aware

applications. MUPE has a thin Java MIDP (Mobile Information

Device Profile) client that presents the user interface. The server

drives the user interaction, providing storage and processing

resources. MUPE’s thin client is both a strength and a weakness.

Applications can be prototyped more rapidly than with our thick

client, which requires a recompilation and installation after changes.

However, a Java client has limited access to the phone features,

and response times can grow because actions often require at

least one network round-trip. The MUPE platform is ideal for

building stand-alone applications for collaborative work and

play, such as locative games. In contrast, our platform enables

much tighter integration to existing applications, doesn’t require

constant network availability, and has much better response times

for many interaction patterns. None of the applications we de-

scribe in this article could have been built with MUPE. Also,

MUPE provides no sensors out-of-the-box, whereas we provide

an extensive set.

Development approaches
These different approaches to building context-aware systems

can be characterized along three axes: widget versus blackboard,

thin-client versus native application, and smart phone versus spe-

cialized hardware versus general-purpose computers. To support

our goals of timeliness, robustness, high integration to platform

features, and simple implementation, as well as our aim to make

the system a part of users’ everyday lives, we chose to build a na-

tive application running on a smart phone and using a widget

architecture. Our approach’s limitations are fewer sensors and less

processing power than with special hardware, longer develop-

ment cycles than with thin clients, and perhaps a lack of flexibility

compared to the more mature platforms.

REFERENCES

1. B.N. Schilit, A System Architecture for Context-Aware Mobile Computing,
PhD thesis, Graduate School of Arts and Sciences, Columbia Univ., 1995.

2. A. Dey, D. Salber, and G. Abowd, “A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-Aware Applications,”
Human Computer Interaction, vol. 16, nos. 2–4, 2001, pp. 97–166.

3. I. MacColl et al., “Shared Visiting in Equator City,” Proc. 4th Int’l Conf.
Collaborative Virtual Environments, ACM Press, 2002, pp. 88–94.

4. P. Korpipää and J. Mäntyjärvi, “An Ontology for Mobile Device Sensor-
Based Context Awareness,” Modeling and Using Context: Proc. 4th Int’l
and Interdisciplinary Conf. (Context 2003), LNCS 2680, Springer-Verlag,
2003, pp. 451–458.

B
y focusing on human-centered
design and evaluating applica-
tions and more general mobil-
ity studies,3 we’ve prioritized

several key design goals for Context-
Phone, including emphasizing context,
unobtrusiveness, truthfulness, seamful-
ness,5 timeliness, and fast interaction.
Both our user-focused development
process and the resulting design princi-
ples should be applicable to future con-
text-aware systems.

Our choice of the context widget archi-
tecture7 has proven sufficient, although
not necessarily optimal. We’re rewriting
the communication as a blackboard,
which will fully separate the concerns of
what data is used and who provides it.

Generic support for context-data persis-
tence will let applications more quickly
recover their world state after a crash.

We’ve spent much of our efforts resolv-
ing issues arising from the poor avail-
ability of interface documentation and the
heterogeneity of related technologies. The
resulting components are part of our con-
crete contribution to other researchers
and practitioners in the area. Context-
Phone isn’t a sealed stand-alone solution.
Its components can be connected via
proxies to distributed, context-aware
platforms such as MUPE and Equip
(Equator Universal Platform), or wrap-
ped for higher-level environments such as
Java and Python on the Smartphone.
Developers unfamiliar with Symbian can

therefore also benefit from our work.
Because we believe that openness is

necessary for the success of pervasive
context-aware technologies, we’ve made
ContextPhone freely available and pub-
lished it under an open source license for
anyone to use (see the “Obtaining Con-
textPhone” sidebar). The entire Smart-
phone ecosystem would benefit from
opening up the platform’s possibilities—
not necessarily by open-sourcing, but by
providing better documentation and lim-
iting access only with respect to the
phone’s security-critical features.

ACKNOWLEDGMENTS
The Academy of Finland funded the ContextPhone
project under the PROACT research program. We thank
John Evans and Andrew Paterson for working with
us in integrating ContextPhone with the Aware plat-
form, Beat Gfeller and Michael Rohs at ETH Zürich
for the code we used for optical marker recognition,
and Anthony Joseph for providing valuable feedback
for this article.

REFERENCES
1. A. Oulasvirta, “Finding Meaningful Uses

for Context-Aware Technologies: The
Humanistic Research Strategy,” Proc. Conf.
Human Factors in Computing Systems,
ACM Press, 2004, pp. 247–254.

2. G.D. Abowd and E.D. Mynatt, “Charting
Past, Present, and Future Research in Ubiq-
uitous Computing,” ACM Trans. Com-
puter-Human Interaction, vol. 7, no. 1,
2000, pp. 29–58.

3. P. Dourish, “What We Talk about When We
Talk about Context,” Personal and Ubiq-
uitous Computing, vol. 8, no. 1, 2004, pp.
19–30.

4. A. Oulasvirta et al., “Interaction in Four-
Second Bursts: The Fragmented Nature of

58 PERVASIVEcomputing www.computer.org/pervasive

T H E S M A R T P H O N E

Packet [8784]

Location
GSM United Kingdom 246-48872 Loch
Lomond

Proximity
Eliza [person]
Annette phone [person]
Mobiel vincent [object]
Liisan 6600 [person]
@ [person]
TkNokia3650 [person]
Nokia 6310i [person]
Konrad 3650 [person]
kp ludwig john mobil [person]

Keywords
MobileHCI

sent by Mika
Wed 15 Sep 2004 16:51 GMT

Packet [8473]

Location
GSM Finland 9000-188 Kaisaniemi, Helsinki

Proximity
agryfp [person]
John [person]
Rengo-2 [person]

Keywords
Diary

It still smells of summer

sent by Mika
Thu 19 Aug 2004 16:19 GMT

Packet [8501]

Location
GSM Finland 9006-4521 UIAH

Keywords
Diary

Small things. Having the time to sit down for a
coffee and a fresh newspaper in the morning,
outside, before work and unwind

sent by Mika
Fri 20 Aug 2004 06:07 GMT

Figure 4. Mobile Weblogging—or
Moblogging—with ContextPhone and
Aware. Photos, text, and other media
are annotated with context and easily
uploaded and gathered. The automatic
annotation includes features such as
location and nearby Bluetooth devices.

C ontextPhone is freely available under the GNU General Public License. It can be

redistributed or modified, provided that modified versions are available under the

same terms.

The software works on Nokia Series 60 Smartphones (versions 1 and 2), running Sym-

bian OS 6.0 and 7.0s (examples include the Nokia 7650, 3650, 6600, and 7610). Bina-

ries, source code (currently approximately 50 KLOC), installation notes, and a building

guide are available at www.cs.helsinki.fi/group/context/.

Obtaining ContextPhone

Attention in Mobile HCI,” to be published
in Proc. 2005 Conf. Human Factors in
Computing Systems (CHI 2005), ACM
Press, 2005.

5. M. Chalmers and A. Galani, “Seamful
Interweaving: Heterogeneity in the Theory
and Design of Interactive Systems,” Proc.
Conf. Designing Interactive Systems (DIS
2004), ACM Press, 2004, pp. 243–252.

6. K. Laasonen, M. Raento, and H. Toivonen,
“Adaptive On-Device Location Recogni-
tion,” Proc. 2nd Int’l Conf. Pervasive Com-
puting (Pervasive 2004), LNCS 3001,
Springer-Verlag, 2004, pp. 287–304.

7. A. Dey, D. Salber, and G. Abowd, “A Con-
ceptual Framework and a Toolkit for Sup-
porting the Rapid Prototyping of Context-
Aware Applications,” Human Computer
Interaction, vol. 16, nos. 2–4, 2001, pp.
97–166.

8. C. Biever, “Cellphones Turn into Smart Per-
sonal Assistants,” New Scientist, no. 2475,
27 Nov. 2004; www.newscientist.com/
article.ns?id=mg18424753.100.

9. Ben Russell, redux, number 3 in headmap
series, Ben Russell, London, 2003; available
at www.headmap.org.

For more information on this or any other comput-
ing topic, please visit our Digital Library at www.
computer.org/publications/dlib.

APRIL–JUNE 2005 PERVASIVEcomputing 59

the AUTHORS

Mika Raento is a researcher in the University of Helsinki’s Department of Computer
Science. He received his MSc in computer science from the University of Jyväskylä
and is working on his doctoral dissertation on privacy management in ubiquitous com-
puting, focusing on social-awareness applications. He’s a member of the IEEE Computer
Society and ACM. Contact him at the Dept. of Computer Science, PO Box 68, FI-00014
Univ. of Helsinki, Finland; mika.raento@cs.helsinki.fi.

Antti Oulasvirta is an human-computer interaction researcher for the Helsinki Institute for
Information Technology’s Context Recognition project. He’s completing his doctoral disser-
tation in cognitive science at the University of Helsinki on how interruptions are cognitively
managed in mobile interaction. His other research interests include interaction design
and development of field experimentation methodology for mobile and ubicomp in-
terfaces. He’s a student member of ACM SIGCHI, the European Association of Cognitive
Ergonomics, and the European Society for Cognitive Psychology. Contact him at the
Advanced Research Unit, Helsinki Inst. for Information Technology, PO Box 9800,
FI-02015 HUT, Finland; antti.oulasvirta@hiit.fi.

Renaud Petit is a researcher in the Helsinki Institute for Information Technology’s
Basic Research Unit. His main research interest is information retrieval within context-
aware systems. He holds an MSc in computer science from Institut National des Sci-
ences Appliquées de Lyon, France. Contact him at the Basic Research Unit, Helsinki
Inst. for Information Technology, P.O. Box 68, FI-00014, Univ. of Helsinki, Finland;
renaud.petit@cs.helsinki.fi.

Hannu Toivonen is a professor of computer science at the University of Helsinki. His
research interests include knowledge discovery, data mining, and analysis of scien-
tific data with applications in genetics, bioinformatics, ecology, and mobile commu-
nications. He received his PhD in computer science from the University of Helsinki.
Contact him at the Dept. of Computer Science, PO Box 68, FI-00014 Univ. of Helsinki,
Finland; hannu.toivonen@cs.helsinki.fi.

Get access
to individual IEEE Computer Society documents online.

More than 100,000 articles and conference papers available!

$9US per article for members

$19US for nonmembers

www.computer.org/publications/dlib

