
Data mining, Hypergraph Transversals, and Machine Learning*
Extended abstract

Dimitrios Gunopulos
IBM Ahnaden RC K55/Bl

650 Han+ Rd.

San Jose CA 95120

USA

gmopuloQalmaden.ibm.com

Heikki Mannila
University of Helsinki

Department of Computer Science

P-0. Box 26, FIN-00014 Helsinki

Finland

Heikki.MannilaQx.helsii.fi

Abstract

Several data mining problems can be formulated as problems
of finding maximally specific sentences that are interesting
in a database. We first show that this problem has a close
relationship with the hypergraph transversal problem. We
then analyze two algorithms that have been previously used
in data mining, proving upper bounds on their complexity.
The first algorithm is useful when the maximally specific
interesting sentences are “small”. We show that this al-
gorithm can also be used to efficiently solve a special case
of the hypergraph transversal problem, improving on previ-
ous results. The second algorithm utilizes a subroutine for
hypergraph transversals, and is applicable in more general
situations, with complexity close to a lower bound for the
problem. We also relate these problems to the model of ex-
act learning in computational learning theory, and use the
correspondence to derive some corollaries.

1 Introduction

Data mining, or knowledge discovery in databases, aims at
finding useful information from large masses of data; see [9]
for a useful summary. The field of data mining has recently
expanded considerably: both applications and methods have
been developed at a fast pace. However, the theory of the

‘Part of this research was done while the first two authors were
visiting the university of Helsinki.

tRe.search supported by ONR grant N0001495-1-0550, and AR0
grant DAAL03-92-G-0115.

Permission to make digital/hard copies ofall or part ofthis material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title ofthe publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee
PODS ‘97 Tucson Arizona USA
Copyright 1997 ACM O-89791-910-6/97/05 . ..I350

Roni Khardont
A&en Computation Laboratory

Harvard University

Cambridge, MA 02138

USA

roni@das.harvard.edu

Hannu Toivonen
University of Helsinki

Department of Computer Science

P-0. Box 26, FIN-00014 Helsii

Finland

Hamm.ToivonenEks.hel&ki.fi

area is still at its infancy: there is virtually no information
about the complexity of data mining problems, and there
even is no generally accepted formal framework for the area.

In this paper we attack the problem of obtaining useful
general results about the complexity of data mining prob-
lems. We consider problems that can be formulated as
finding maximal elements in a lattice of sentences or pat-
terns. Examples of such problems include finding frequent
sets (the essential stage in finding association rules) [1], find-
ing episodes from sequences [21], and finding keys or inclu-
sion dependencies from relation instances [17]. It has been
previously observed [19] that the problem of enumerating
maximal elements is intimately connected to the hypergraph
transversal problem [s]. We utilize this fact in analyzing two
algorithms that have been used in practical applications of
data mining.

Several variations of the levelwise algorithm have been
successfully applied to problems of data mining [2, 19, 20,
211. This algorithm computes the maximal elements by
wslking up in the lattice of interesting sentences, one level at
a time. We show that under some conditions this algorithm
is indeed optimal thus explaining its empirical success and
shedding some light on when and why it is useful. Further-
more, we show that this algorithm can be used to efficiently
solve a special case of the hypergraph transversal problem,
improving on previous theoretical results.

We also analyze the algorithm Dualize and Advance.
This algorithm was motivated by the relation to hypergraph
transversals, and was recently used in an empirical study of
data mining problems [ll]. We show that the algorithm has
sub-exponential complexity, coming close to a lower bound
for the problem, and that improving this bound hinges
on the complexity of the hypergraph transversal problem
(which is an open problem).

We also show a correspondence between the data mining
problem and the model of exact learning in computational
learning theory. While it seems intuitive that the problems

209

are similar, the formal relation was not clear. In particular,
in the problem of mining association rules, weak predictors
A + B are found so that A and B are frequent in the
database. In contrast, in machine learning the task is to
find a single (and normally strong) predictor based on all
attributes.

The data mining task considered in this paper directly
corresponds to the subtask of finding frequent sets in the
problem of mining association rules. We show that there is
a direct correspondence between this abstracted data mining
problem studied here and the problem of learning monotone
functions with membership queries [3]. Thus we show that
the learning problem is embedded in the problem of min-
ing association rules. We use this relation to derive corol-
laries (mainly) for learning theory. Interestingly, an algo-
rithm similar to the dualize and advance algorithm (though
slightly more complicated) has been previously suggested in
learning theory in an analysis of worst case complexity of
learning [5], and can be used to yield a similar result.

To summarize, we analyze and clarify the properties of
two data mining algorithms that have already proved useful
in several applications. This is also used to show that a new
subproblem of hypergraph transversals is solvable. Further-
more, we expose a relation to the problem of learning that
proves useful in driving some corollaries of these results.

The rest of the paper is organized as follows. In Section 2
we present a simple framework for data mining that can be
used to describe a variety of problems, and in Section 3 we
look at the complexity of this task. Section 4 discusses the
levelwise algorithm, and Section 5 discusses the dualize and
advance algorithm. In Section 6 we study the connection to
learning monotone functions.

2 A Framework for Data Mining

The model of knowledge discovery that we consider is the
following. We are given a database r, a language C for ex-
pressing properties or defining subgroups of the data, and
an interestingness predicate q for evaluating whether a sen-
tence ‘p E C defines an interesting subclass of r. The task is
to find the theory of r with respect to C and q, i.e., the set
Th(C, r, 9.) = {Q E C I q(r, to) is true).

Note that we are not specifying any satisfaction relation
for the sentences of L in r: thii task is taken care of by the
interestingness predicate q. For some applications, q(r,cp)
could mean that ‘p is true or almost true in r, or that ‘p
defines (in some way) an interesting subgroup of r. The
approach has been used in various forms for example in [l,
2, 6, 7, 13, 14, 17, 211.

Obviously, if L is infinite and q(r, (o) is satisfied for
infinitely many sentences, (an explicit representation of)
Th(L, r, q) cannot be computed. For the above formulation
to make sense, the language L has to be defined carefully.

As already considered by Mitchell [23], we use a special-
ization/generalization relation between sentences. (See, e.g.,
[15] for an overview of approaches to related problems.) A
speciali@ion relation is a partial order 3 on the sentences
in L. We say that ‘p is more general than 8, if ‘p 3 8; we
also say that 19 is more specific than ‘p. The relation 5 is
a monotone specialization relation with respect to q if the
quality predicate q is monotone with respect to 3, i.e., for
all r and cp we have the following: if q(r, ~0) and ‘p’ 3 cp,
then q(r, p’). In other words, if a sentence ‘p is interesting
according to the quality predicate q, then also all less spe-
cial (i.e., more general) sentences ‘p’ 5 cp are interesting. We
write u + r if u 3 r and not r 3 4.

210

Typically, the relation 5 is (a restriction of) the scman-
tic implication relation: if CT 5 7, then r b U, i.e., for
all databases r, if r f= r, then r b b. Note that if the
interestingness predicate q is defined in terms of statistical
significance or something similar, then the semantic implica-
tion relation is not a monotone specialization relation with
respect to q: a more specific statement can be interesting,
even when a general statement is not.

Given a specialization relation 5, the set Th(L, r, q) can
be represented by enumerating only its maximal elements,
i.e., the set

MTh(L, r, q) = (4 E WL,r, q) I
for no B E Th(L, r, q) q5 4 0)

Here again, one should be careful when working with infl-
nite lattices. We assume throughout the paper that the max-
imal elements exist and are well defined, and similarly for
the minimal elements outside the theory Th(L, r, q). This
definitely holds in finite lattices, and can be useful in more
general cases as well.

In this paper we consider the following problem,

Problem 1 (MaxTh) Given L, r, and q, what is the com-
plezity of computing MTh(L,r, q).

It is easy to show [19] that finding frequent sets, episodes,
keys, or inclusion dependencies are instances of the problem
MaxTh. Especially for the problem of finding keys (or, more
generally, functional dependencies) from relation instances
the current framework has lots of connections to previous
work. We describe here the problem of computing frequent
sets, and use this example throughout the paper. Descrip-
tions of the other mappings can be found in [19].

Association Rules and Frequent Sets: Given a O/l relation
r with attributes R, an association rule is an expression
X + A, where X C R and A E R. The intuitive meaning of
such a rule is that if a row has 1 in all attributes of X then it
tends also to have 1 in column A. Typically, in data mining,
association rules are searched so that the set of rows having
1 in the attributes in X U A is large enough; if we were to
draw random rows from r, it is required that such rows will
be drawn with frequency at least u, for some fixed u. The
actual frequency is called the support of the rule. The ratio
of rows including 1 in X U A to those including 1 in the set
X is called the confidence of the rule.

Given the above description, a major sub-task that
is usually solved first is that of computing frequent sots.
Namely, given a O/l relation r, compute all subsets 2 such
that the frequency of rows having 1 in all attributes of 2 is
larger than 0. Clearly, this is an instance of the problem dis-
cussed above; L is the set of subsets of R, and q corresponds
to having frequency higher than b. The set Tlt(L, r, q) cor-
responds to the set of frequent sets, and similarly we can
talk on maximal frequent sets.

Once the frequent sets are found the problem of com-
puting association rules from them is straightforward, For
each frequent set 2, and for each A E 2 one can test tho
confidence of the rule 2 \ A =S A.

3 Complexity of Finding all Interesting Sentences

To study the complexity of the generation problem we in-
troduce some notation and basic results that appeared pre-
viously in [19].

Consider a set S of sentences from t such that S is closed
downwards under the relation 5, i.e., if 0 E S and ‘p 3
6, then ‘p E S. The border &I(S) of S consists of those
sentences o such that all generalizations of c are in S and
none of the specializations of u is in S. Those sentences c in
Bd(S) that are in S are called the positive border’ Bd+(S),
and those sentences u in M(S) that are not in S are the
negative border Bd-(S). In other words,

Bd(S) = Bd+(S) u Bd-(S), .

where

B@(S) = {u E S 1 for all 7 s.t. u < y, we have 7 $Z S}

and

Bd-(S)={aEt\S] forally<u, wehaveycs}.

The positive border of the theory is the set of its maximal
elements, i.e., MTh(L, r, q) = Bdt (Th(t, r, q)). Note that
Bd(S) can be small even for large S.

Above we assumed that the set S is cIosed downwards.
We generalize the notation for sets S that are not closed
downwards by simply defining that Bd(S) = Bd(S’) where
S’ is the downward closure of S. The generalization is sim-
ilar for negative and positive borders.

Some straightforward lower bounds for the problem of
finding all frequent sets are given in [2,20]. Now we consider
the problem of Iower bounds in a more realistic model of
computation.

The main effort in finding interesting sets is in the step
where the interestingness of subgroups are evaluated against
the database. Thus we consider the following model of com-
putation. jsume the only way of getting information from
the databhe is by asking questions of the form

Is-interesting Is the sentence cp interesting, i.e., does
q(r, up) hold?

Theorem 2 [19] Any algorithm for computing Th(C, r, q)
that accesses the data using only Is-interesting queries must
use at least IBd(Th(t, r, q))l queries.

This result, simple as it seems, gives as a corollary a re-
sult about finding functional dependencies that in the more
specific setting is not easy to find; cf. [17, 191. Siiarly,
the corresponding verification problem requires at least this
number of queries.

Problem 8 (Verification) Given L, r, q, and a set S c
.C. kify that S = MTh(.C,r, q).

Corollary 4 [19] Given Is, r, q, and a set S E C, deter-
mining whether S = MTh(C, r, q) requires in the worst case
at least IBd(S)I evaluations of the predicate q, and it can be
solved using exactly this number of evaluations of q.

We now show that the verification problem is closely re-
lated to computing hypergraph transversals. A collection 7r!
of subsets of R is a (simple) hypergraph, if no element of 7-L
isemptyandifX,YEHandXcYimplyX=Y. The
elements of 3t are called the edges of the hypergraph, and
the elements of R are the vertices of the hypergraph. Given
a simple hypergraph l-l on R, a transversal T of ‘h! is a sub-
set of R intersecting all the edges of 3c, that is, T n E # 0
for all E E ‘FL

‘Le., the positive border corresponds to the set 5” of [23].

211

Transversals are also called hitting sets. Here we con-
sider minimal transversals: a transversal T of ‘H is minimal
if no T’ C T is a transversal. The collection of minimal
transversals of Z is denoted by Tr(H). It is a hypergraph
on R.

Problem 5 (HTR) Given a hypergraph ‘FL, construct
Tr(H) .

For more information on hypergraphs see [4]. The
computational problem of computing transversals appears
in various branches of computer science; a comprehensive
study of this problem is given by [8]. The HTR problem
also appears in several forms in databases. In particular,
the problem of translating between a set of functional depen-
dencies and their corresponding Armstrong relation [16, 171
is at least as hard as this problem and equivalent to it in
special cases [S]. Further discussion of these issues is given
by [12, 181.

Notice that in general the output for this problem may
be exponentially larger than its input, and thus the ques-
tion is whether it can be solved in time polynomial in both
its input size and output size. We say that an algorithm
is output T() time algorithm for the problem if it runs in
time T(I,O) where I is the input size, and 0 is the cor-
responding output size. A more strict condition, that we
will use here, requires that the output transversals be enu-
merated, and that the time to compute the i’th transversal
will be measured against the input size and i. That is, an
algorithm solves the problem in incremental T(I, i) time if
the i’th transversal is computed in time T(1, i). For further
discussion and other variations see [8].

The exact complexity of the HTR problem is yet un-
known. A sub-exponential solution for the problem has been
recently discovered [lo], and several special cases can be
solved in polynomial time [8, 221. We improve on one of
these results here.

Now we return to the verification problem. Given S C_
13, we have to determine whether S = MTh(L, r, q) holds
using as few evaluations of the interestingness predicate as
possible.

Definition 6 (Representing as Sets) Let L be the Zan-
guage, 3 a specialization relation, and R a set; denote by
P(R) the pomerset of R. A function f : C + P(R) is a
representation of .C (and 5) as sets, if f is one-to-one and
surjectiue, f and its inverse are computable, and for all 0
and ‘p we have 0 5 ‘p if and only if f(0) C f(p).

Thus, representing as sets requires that the structure im-
posed on .C by 5 is isomorphic to a subset lattice. In partic-
ular, the lattice must be finite, and its size must be a power
of 2. Note that frequent sets, functional dependencies with a
fixed right-hand sides, and inclusion dependencies are easily
representable as sets; the same holds for monotone Boolean
functions. However, the language of [21] used for discovering
episodes in sequences does not satisfy this condition.

Given S, we can compute B@(S) without looking at
the data r at all: simply find the most special sentences
in S. The negative border Bd-(S) is also determined by
S, but finding the most general sentences in .C \ S can be
diflicult. We now show how minimal transversals can be
used in the task. Assume that (.f, R) represents C as sets,
and consider the hypergraph 7-L(S) on R containing as edges
the complements of sets f(cp) for cp E Bd+(S): H(S) =
{R \ f(cp) I ‘p E Sd+(S)}. Then Tr(Z(S)) is a hypergraph
on R, and hence we can apply f-l to it: f-‘(Tr(‘H(S))) =
{f-l(H) 1 H E Tr(%!(S))}. We have the following.

ABCD

Figure 1: The interesting sentences and negative border in
the problem of computing frequent sets.

Theorem 7 [19] f-l(Z’r(H(S))) = &Z-(S).

Example 8 Consider the problem of computing frequent
sets, where R = {A,B,C,D), and let S = {ABC,BD},
where we use a shorthand notation for sets, e.g., we repre-
sent {A, B, C} by ABC. Then the downward closure of S
is equal to {ABC,AB, AC, BC, BD,A, B, C, D}, and S in-
cludes the maximal elements. The negative border (that can
be found by drawing the corresponding lattice, see Figure I)
is Bd-(S) = {AD, CD}.

For this problem we already have .C represented as sets
and thus use the identity mapping f(X) = X, thus ‘H(S) =
{D,AC}. It is easy to see that Tr({D,AC}) = {AD, CD},
and thus f-l indeed yields the correct answer.

The requirement for representing as sets is quite strong.
It is however necessary. In particular the mapping f must
be surjective, that is, cover all of P(R). Otherwise, after
computing the transversal, a set may not have an inverse
mapping to be applied in the last transformation in the the-
orem. This is indeed the case in the episodes of [21].

As we have seen, for languages representable as sets the
notions of negative border and the minimal transversals give
the same results. In the next sections we make use of this
result to study the complexity of the data mining problem,
computing hypergraph transversals, and also exact learning
of monotone functions.

4 The Levelwise Algorithm

Several variants of the levelwise algorithm have been used
before [2, 20,211. The algorithm solves the problem MaxTh
by simply finding all interesting statements, i.e., the whole
theory Th(L,r,q) going bottom up. The method is as fol-
lows:

Algorithm 9 The levelwise algorithm for finding all inter-
eating statements.
Input: A database r, a language C with specialization rela-
tion 5, and a quality predicate q.
Output: The set Th(t, r, q).
Method:

212

; 4 :T {‘p E C [th ere is no ‘p’ in .C such that ‘p’ + cp);

3: u&k Ci # 0 do
4.
5.

6. i:=i+l;
have pi E (Jjci Lj} \ Ujsi Cj;

7. od;
8. output uj<i Lj;

The algorithm works iteratively, alternating between
candidate generation and evaluation phases. First, in the
generation phase of an iteration i, a collection Ci of new can-
didate sentences is generated, using the information avail-
able from more general sentences. Then the quality predi-
cate is computed for these candidate sentences. The collcc-
tion Li will consist of the interesting sentences in Ci. In the
next iteration i + 1, candidate sentences in C&l arc gcncr-
ated using the information about the interesting sentences in
U Lj. Note that using the notion of border, Step 6 of the al-
gorithm GUI be written as C&l := Bd-(Ujci Lj)\U,.s; Cj.

The algorithm aims at minimizing fhe amount of
database processing, i.e., the number of evaluations of q
(Step 4). Note that the computation to determine the can-
didate collection does not involve the database (Step 5). For
example, in computations of frequent sets Step 5 used only
a negligible amount of time [2].

Clearly, by definition, the algorithm finds the maximal
interesting sentences. Moreover, we show that under certain
conditions the algorithm does not take too much time. The
following theorem is immediate.

Theorem 10 The levelwise algorithm computes the set of

interesting sentences correctly, and it evaluates the predi-
cate q

ITW, r, 4 U Bd’(Th(G r, q))I

times.

Example 11 Consider, again, the problem of computing
frequent sets where R = {A, B,C, D} and MaxTh =
{ABC, BD}, i.e., the situation of Figure I. The levelwise
algorithm works its way up from the bottom. It starts by
evaluating the singletons A, B, C, and D; all of these are
frequent. In the second iteration C; contains pairs of at-

tributes such that both attributes are frequent, in this casa
all attribute pairs. Of them, AB, AC, BC, and BD are jre-
quent. C3 then contains such sets of size three whose all
subsets are frequent, i.e., the set ABC, which is actually
frequent. Notice that the negative border corresponds exactly
to the sets that have been found not interesting along the
way, that is the sets AD and CD.

In order to further analyze the complexity we use the fol-
lowing notation. Denote by rank(d), the rank of a sentence
4, defined as follows. If for no 0 E .C we have 0 4 4 then
rank(4) = 0. Otherwise, rank(4) = 1 + max(rank(0) 1
0 < 4). Denote by de(k) the maximal size of the downward
closure of any sentence 4 of rank 5 k. Also, by width(C, 5)
denote the maximal number of immediate successors on C
and 5. That is,

Theorem 12 Let k be the maximal rank over all interesting
sentences in the problem (L, r, q). The leuelwise algorithm

computes the set of interesting sentences correctly, and the
number of queries it makes is bounded by

de(k) width(C, 3)]MTh(L,r, q)l.

Proof. The number of sentences below any maximal ele-
ment is bounded by de(k), and thus the number of elements
not rejected from Ci at all stages together is bounded by
dc(k)]MTh(L,r, q)l. Each of these sentences might create at
most width(L, 3) new sentences for consideration in Ci+r
that may be rejected (i.e. they are in Bd-(Th(L,r, q))).

q

This result holds for any (C, r, q). For problems repre-
sentable as sets one can derive more explicit bounds. In
particular, in the problem of frequent sets the rank corre-
sponds to the size of the set, the width is the number of
attributes, and de(k) = Zk. A standard assumption in prac-
tical applications is that the size of frequent sets is bounded.
In these cases the levelwise algorithm is indeed efficient:

Corollary 13 Let k be the size of the largest frequent set,
and n the number of attributes. The levelwise algorithm
computes the set of frequent sets correctly, and the number
of queries it makes is bounded by Zkn]MTh(C,r, q)l-

As a further corollary of the above we get that if the
size of frequent sets is not too large then the size of
BW’W, r, 4)) is not prohibitive and thus the problem
is feasible.

Corollary 14 Let k be the size of the largest frequent set,
and n the number of attributes.
I-i;’ po;ny k the size of sets in Bd-(Th(L,r, q)) is bounded

(ii) For’ k = O(logn), the size of Bd-(Z’h(t,r, q)) is

bounded by O(n’@)]MTh(L,r, q)l).

We thus get an application for hypergraph transversals:

Corollary 15 For k = O(log n), the problem of computing
hypergraph transversals, where the edges of the input graph
are all of size at least n - k, is solvable in input polynomial
time by the levelwise algorithm.
Proof. If the edge size is at least n - k, then the maximal
sets that are not transversals are of size at most k. Set
non-transversals to be “interesting” and use the algorithm.
We get that the negative border is the required transversal
hypergraph. q

This improves on previous result by [S] (Theorem 5.4)
that show that this is possible for constant k (and uses a
brute force enumeration algorithm using property (i) above).
Notice that the levelwise algorithm does not use the struc-
ture original hypergraph directly. All it does is to test
whether certain subsets are transversals of it or not.

5 The Dualize and Advance Algorithm

In this section we present and analyze an algorithm for com-
puting all maximal interesting sentences that uses the con-
nection between transversals and the computation of max-
imal elements. A variant of this Dualize and Advance al-
gorithm has recently been used by [II], but no complexity
analysis was provided there. This algorithm is far more
applicable than the levelwise method, as this does not in-
vestigate all interesting statements, but rather jumps more

or less directly to maximal ones. Thus it can be used even
in the cases where not all interesting sentences are small.
While the algorithm can be phrased for any (L, 5), our anal-
ysis only holds for problems representable as sets, and we
thus describe it in the restricted setting. To further sim-
plify notation, we describe the algorithm in terms of finding
interesting subsets of attributes (as is the case in comput-
ing frequent sets). The general case follows by using the
representation as sets.

Algorithm 16 The Dualize and Advance algorithm for
finding all interesting statements.
Input: A database r, a language .C with specialization rela-
tion 3, and a quality predicate q.
Output: The set MTh(L, r, q).
Method:

1. Cl := 0;
2 i := 1;
3. E := {complements of sets in Ci};
4. Use a subroutine to enumerate the minimal

transversals of z;
5. For each transversal X enumerated:
6 if X is interesting then

declare X a counterexample and quit loop;
7. otherwise continue enumeration;
8. If all transversals were non-interesting, output Ci

and exit;
9. Find a maximal superset Y of X that is interesting

(using a greedy procedure that adds one attribute
at a time);

IO. Q-1 = Ci U {Y};
Il. i = i + 1;
Id. Go To 3;

The algorithm works iteratively, finding a new maximal
interesting set in each iteration. The procedure for finding
new maximal interesting sets utilizes the idea of transver-
sals. Once a number of interesting sentences has been found,
the negative border of these sentences is computed using a
transversal computation. Each of the elements of this nega-
tive border is checked to see whether it is interesting. If the
set of interesting sentences found so far is complete, then
all these sets are not interesting. If the set is not complete
then at least one of the elements of the computed negative
border is interesting. This interesting set can be extended
to a new maximal interesting set by a series of queries, in a
greedy manner.

Example 17 Consider again the problem of computing fre-
quent sets described in Figure 1.

The dualize and advance algorithm starts with Cl = 0,
and z = {ABCD}. The transversals are Tr(z) =
{A, B, C, D}. Assume that in Step 6 the transversal A is
tested first. Then A is found interesting and the algorithm
continues in Step 9 to find a maximal element Y. This
can be done by adding one attribute at a time, and test-
ing whether q holds, and yields Y = ABC. in the next
iteration Cz = {ABC}, z = {D}, and Tr(z) = {D}.
In Step 6 D is found to be interesting, and in Step 9 the
algorithm finds that Y = BD is maximal interesting. We
therefore have Cs = {ABC,BD}, z = {D,AC}, and
Tr(z) = {AD,AC}. All th e elements of the transversal
are not interesting and therefore the algorithm stops. The
set C’s is exactly MTh and Tr(z) is Bd-(MTh).

In order to establish correctness we start with a simple
lemma:

Lemma 18 For any iteration i of the algorithm, if C; #
MTh(L, r, q) then at least one of the elements of Tr(D;) is
interesting.
Proof. First note that the elements of C; are verified by
the algorithm to be maximal interesting. We therefore have
Ci E MTh(L, r, q). Now if there is a set c E MTh(.C, r, q) \
Ci, then (since 5 is monotone) there is a minim al interesting
set not in Ci, that is there is an interesting set in Bd-(Ci).
(Just walk down in the lattice to find such a set).

As we saw earlier sets of attributes are already repre-
sented as sets and the identity mapping j(X) = X is used.
We thus get from Theorem 7 that Tr(Di) = &f-(S) and
one of these elements is interesting. El

The question is how many sets X should be enumerated
before finding such a counterexample on the negative border.
The following example shows that there are cases where the
size of MZ%(L,r,q) and its negative border are small, but
in an intermediate step the size of the negative border of Ci
may be large.

Example 19 [16] Consider the case zuhere MTh =
MTh(C, r, q) includes all sets of size n - 2, and Bd’(MTh)
thus includes all sets of size n- 1. Further consider the case
where Ci is such that E = {{X2i-l,X2i} 1 1 I i 5 n/2}.
Then the size of Tr(z) is 2”f2 while Bd-(MTh) is small.

Nevertheless, as the following lemma shows, the number
of sets that have to be enumerated is not too large.

Lemma 20 For any iteration i of the algorithm, if Ci #
MTh(t,r,q) then the number of sets enumerated be-
fore a counterexample set X is found is bounded by

~r~~$~“6”;40~~~ Iid-
. = Bd-(MTh(L, r, q)). We show

that each set X enumerated either exactly matches an ele-
ment of Bd- exactly, or is interesting. In other words the
set X cannot be both not interesting, and a strict superset of
an element in BE. It follows that at most IBd-1 elements
need to be enumerated.

To prove the claim notice that every set that is deemed
interesting by the Ci is indeed interesting. If X is both
not interesting, and a strict superset of an element 2 in
Bd-, then 2, which is not interesting, is claimed interesting
by Ci (since X E Bd-(Ci)
contradiction.

is minimal, and 2 c X); a
a

We need the following notation. Let C s .C, by rank(C)
we denote the maximal rank over all sentences in C.

rank(C) = ~z. rank(e)

Theorem 21 If there is an incremental T(I,i) time algo-
rithm for computing hypergraph transversals then MTh =
MTh(.C, r, q) can be computed in time polynomial in IMThl
and T(IMThI, IBd-(MTh)l), while using at most IMThl .
(j&l-(MTh)l + rank(MTh)width(C, 5)) queries.
Proof. The bound follows by using the dualize and Ad-
vance algorithm. By Lemma 18, each iteration finds a new
maximal set, and therefore the algorithm is correct, and the
number of iterations is IMThI. By Lemma 20, in each itera-
tion the algorithm runs a transversals subroutine enumerat-
ing at most IBd-(MTh)l sets, and asking the same number
of queries before finding a counter example. The extension
of the counter example X into a maximal set Y requires
at most rank(MTh) stages each with at most width(t, 3)
queries. 0

Thus we see that the connection to hypergraph transver-
sals holds not only for the verification problem but also for
the generation problem. We note that for the case of func-
tional dependencies with fixed right hand side, and for keys,
even simpler algorithms can be used [16,12]. In this case ono
can access the database and directly compute Bd’(MTh)
(according to the appropriate representation as sets, this
corresponds to the so called agree sets of the relation). Then
a single run of an HTR subroutine suffices. The current rc-
suit holds even if the access to the database is restricted to
UIs-interesting” queries.

Recently, Fredman and Khachiyan [lo] presented an in-
cremental algorithm for the HTR problem with time com-
plexity T(I, i) = (I+i) o(‘Oz(rsi)). We can therefore conclude
the following:

Corollary 22 For any problem representable as sets,
MTW, r, q> can be computed in time t(IMThl +
IBd-(MTh)l), where t(n) = n”t’ocn), while using at moat
IMThl . (IBd-(MTh)l + rank(MTh)width(L, 5)) queries,

6 Relation to Learning Theory

We now show that the problems discussed above arc very
closely related to problems in learning theory. The simple
scenario discussed in learning theory is as follows: a Boolean
function f : {O,l}" -+ {O,l} is fixed by some adversary
(modeling a concept in the world). A learner is given access
to some oracle giving it partial information on the function
f. The task of the learner is to find a representation for a
Boolean function that is identical (or approximates) f. In
particular we will consider the model of exact learning with
membership queries [3].

A membership query oracle MQ(f) allows the learner to
ask for the value of f on a certain point. That is, given
2: E {O,lln, MQ(f) t re urns the value f(z). The learning
algorithm is given access to MQ(f), and the algorithm is
required to produce an expression that computes f exactly,

Definition 23 An algorithm is an exact learning algorithm
with time complexity T(), query compIesity Q(), and rep-
resentation class H, for a class of functions 3, if for all
f E 3, when given access to MQ(f), the algorithm runs in
time TO, asks MQ() on at most Q() points and then outputs
a representation h E 7t for a Boolean function such that h
is equivalent to f.

In the above definition we omitted the parameters of the
functions T() and Q(). N ormally the algorithm is allowed
time polynomial in the number of variables n, and the size
of representing f in some representation language.

In particular we next consider the problem of learning
monotone functions with membership queries. A function
f is monotone if f(x) = 1, and y 2 x implies f(u) = 1,
where 5 is the normal partial order on {O,l}“. We also
consider the standard CNF and DNF representations for
such functions. A term is a conjunction of literals, e.g. zlzz
is a term. A DNF expression is a disjunction of terms, eg,
~1~2~~2x3 is a DNF expression. Similarly a CNF expression
is a conjunction of disjunctions, e.g. (x1 V x2)(z2 V x3) is a
CNF expression. It is well known that monotone functions
have unique minimum size representations in both DNF and
CNF, that include all minimal terms or clauses respectively
of the function. (A minimal term, called a prime implicant,
is a term that implies f and such that every subset of it does
not imply f.)

214

In the scenario that follows the learning algorithm is al-
lowed time relative to the number of attributes n, and the
sum of sizes of its DNF and CNF representations. That is,
we consider T(m), and Q(m) where m = n f IDNF(f)j +

ICNW)I.
The correspondence between learning monotone func-

tions and computing interesting sets is thus straightforward.
The elements of {O, 1)” correspond to subsets of the vari-
ables so that a v&e -1 implies that the corresponding at-
tribute is in the set. The value of the function on an assign-
ment corresponds to the negation of the interestingness rela-
tion 9. Since q is monotone, the function is monotone. Mem-
bership queries now naturally correspond to Is-interesting
queries. We therefore get:

Theorem 24 The problem of computing interesting sen-
tences for problems representable as sets is equivalent to
the problem of learning monotone functions with member-
ship queries, with representation class CNF (or DNF).

Example 25 The problem of computing frequent sets de-
scribed in Figure i is mapped to the problem of learning the
function f whose DNF representation is f = AD V CD and
whose CNF representation is f = (AV C)(D). The terms of
the DNF correspond to the elements of Bd-, and the clauses
of the CNF are the complements of the sets in MTR.

As an immediate corollary of the results in Section 4 We
get:

Corollary 26 The levelwise algorithm can be used to learn
the class of monotone CNF expressions where each clause
has at least n -E attributes and E = O(log n), in polynomial
time, and with a polynomial number of membership queries.

As a corollary of Theorem 2 we get a lower bound:

Corollary 27 Any algorithm that Zearns monotone func-
tions with membership queries must use at least jDNF(f)[+
ICNF(f)l queries.

While the bound is not. surprising, it explains the lower
bound given by Angluin [3]. It is shown there that an algo-
rithm may need to take time exponential in the DNF size
when not allowed CNF size as a parameter. Indeed the CNF
size of the function used to show the lower bound is expo-
nential. (The lower bound in [3] is, however, more compIex
since the learner has access to several additional oracles.)
On the other hand, by using Theorem 21 we see that with
membership queries alone one can come close to thii lower
bound.

Corollary 28 If there is an incremental T(I,i) time algo-
rithm for computing hypergraph transversals then there is a
learning algorithm for monotone functions with membership
queries, that produces both a DNF and a CNF representa-
tion for the function. The number of MQ queries is bounded
by ICNF(f)j . (JDNF(f)I + n’). The running time of the
algorithm is poIynomia2 in n and T(ICNF(f)j, jDNF(f)j).

We note that this corollary can be derived from a more
general construction in [5] (Theorem 18) that studies the
complexi.ty of learning, and uses NP-Oracles. For monotone
functions, the NP-Oracle used there, can be replaced with
a procedure for HTR, yielding a similar result.. This has
been previously observed [24]. The algorithm that results is
similar to the dualize and advance algorithm but is slightly
more complicated.

Here again using the result of Fredman and Khachiyan
[lo] we can derive a sub-exponential learning algorithm for
this problem.

Corollary 29 There is a learning algorithm for monotone
functions with membership queries. The running time of
the algorithm is bounded by T(m), where m = IDNF(f)I f
ICNF(f)l, and T(m) = m”@sm). The number of MQ
queries is bounded by ICNF(f)l . (IDNF(f)l + n”).

The relation to hypergraph transversals can also be used
in the other direction. However, since the learning problem
is not defined as an incremental task, the next corollary only
yields an output T() time algorithm.

Corollary 30 If there is a learning algorithm for monotone
functions, that produces a DNF representation, and whose
running time and number of queries is bounded by T(m),
where m is as above, then there is an output T() time algo-
rithm for the hypergraph transversal problem.

Acknowledgments

We wish to thank Eyal Kushilevitz for pointing out, the work
in 03, and Christino Tamon for useful discussions.

References

[l] R. Agrawal, T. Imielinski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases.
In Proceedings of ACM SIGMOD Conference on Man-
agement of Data (SIGMOD’93), pages 207 - 216, May
1993.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A, I. Verkamo. Fast discovery of association rules. In
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge Dis-
covery and Data Mining, pages 307 - 328. AAAI Press,
Menlo Park, CA, 1996.

[3] D. Angluin. Queries and concept learning. Machine
Learning, 2(4):319 - 342, Apr. 1988.

[4] C. Berge. Hypergraphs. Combinatorics of Finite Sets.
North-Holland Publishing Company, Amsterdam, 3rd
edition, 1973.

[5] N. H. Bshouty, R. Cleve, R. Gavalda, S. Kannan. and

if51

C. Tamon. diacles and-queries that are sufficient for
exact learning. Journal of Computer and System Sci-
ences, 52:421 - 433, 1996.

L. De Raedt and M. Bruynooghe. A theory of
clausal discovery. In Proceedings of the Thirteenth In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-93), pages 1058 - 1053, Chambkry, France,
1993. Morgan Kaufmann.

[71

P31

PI

L. De Raedt and S. Dieroski. Fist-order jt-clausal the-
ories are PAC-learnable. Artificial Intelligence, 70:375 -
392, 1994.

T. Eiter and G. Got&lob. Identifying the minimal
transversals of a hypergraph and related problems.
SIAM Journal on Computing, 24(6):1278 - 1304, Dec.
1995.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth.
From data mining to knowledge discovery: An
overview. In U. M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, editors, Advances in
Knowledge Discovery and Data Mining, pages 1 - 34.
AAAI Press, Menlo Park, CA, 1996.

215

I

[lo] M. Fredman and L. Khachiyan. On the complexity
of dualization of monotone disjunctive normal forms.
Journal of Algorithms, 21:618 - 628, 1996.

[11] D. Gunopulos, H. Mannila, and S. Saluja. Discov-
ering all most specific sentences by randomized algo-
rithms. In Proceedings of the International Conference
on Database Theory (ICDT’97), pages 215 - 229, Del-
phi, Greece, Jan. 1997.

[12] R. Khardon. Translating between Horn representations
and their characteristic models. Journal of AI Research,
3:349 - 372, 1995.

[13] J.-U. Kietz and S. Wrobel. Controlling the complexity
of learning in logic through syntactic and task-oriented
models. In S. Muggleton, editor, Inductive Logic Pro-
gramming, pages 335 - 359. Academic Press, London,
1992.

[14] W. Kloesgen. Efficient discovery of interesting state-
ments in databases. Journal of Intelligent Information
Systems, 4(1):53 - 69, 1995.

[15] P. Langley. Elements of Machine Learning. Morgan
Kaufmann, San Mateo, CA, 1995.

[16] H. Mannila and K.-J. RZhI. Design by example: An
application of Armstrong relations. Journal of Com-
puter and System Sciences, 33(2):126 - 141, 1986.

[1’7] H. Mannila and K.-J. RZihL Design of Relational
Databases. Addison-Wesley Publishing Company, Wok-
ingham, UK, 1992.

[18] H. Mannila and K.-J. RZhi. Algorithms for inferring
functional dependencies. Data d Knowledge Engineer-
ing, 12(1):83 - 99, Feb. 1994.

[19] H. Mannila and H. Toivonen. On an algorithm for find-
ing all interesting sentences. In Cybernetics and Sys-
tems, Volume II, The Thirteenth European Meeting on
Cybernetics and Systems Research, pages 973 - 978, Vi-
enna, Austria, Apr. 1996. Extended version available
as: Levelwise search and borders of theories in knowl-
edge discovery, Report C-1997-8, University of Helsinki,
Department of Computer Science.

[20] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient
algorithms for discovering association rules. In Iinowl-
edge Discovery in Databases, Papers from the 1994
AAAI Workshop (IiDD’94), pages 181 - 192, Seattle,
Washington, July 1994.

[21] H. Mannila, H. Toivonen, and A. I. Verkamo. Discov-
ering frequent episodes in sequences. In Proceedings of
the First International Conference on Knowledge Dis-
covery and Data Mining (KDD’95), pages 210 - 215,
Montreal, Canada, Aug. 1995.

[22] N. Misra and L. Pitt. On bounded-degree hypergraph
transversals. Manuscript., 1995.

[23] T. M. Mitchell. Generalization as search. Artificial
Intelligence, 18:203 - 226, 1982.

[24] C. Tamon. Private communication. 1997.

216

