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Abstract 

Several data mining problems can be formulated as problems 
of finding maximally specific sentences that are interesting 
in a database. We first show that this problem has a close 
relationship with the hypergraph transversal problem. We 
then analyze two algorithms that have been previously used 
in data mining, proving upper bounds on their complexity. 
The first algorithm is useful when the maximally specific 
interesting sentences are “small”. We show that this al- 
gorithm can also be used to efficiently solve a special case 
of the hypergraph transversal problem, improving on previ- 
ous results. The second algorithm utilizes a subroutine for 
hypergraph transversals, and is applicable in more general 
situations, with complexity close to a lower bound for the 
problem. We also relate these problems to the model of ex- 
act learning in computational learning theory, and use the 
correspondence to derive some corollaries. 

1 Introduction 

Data mining, or knowledge discovery in databases, aims at 
finding useful information from large masses of data; see [9] 
for a useful summary. The field of data mining has recently 
expanded considerably: both applications and methods have 
been developed at a fast pace. However, the theory of the 
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area is still at its infancy: there is virtually no information 
about the complexity of data mining problems, and there 
even is no generally accepted formal framework for the area. 

In this paper we attack the problem of obtaining useful 
general results about the complexity of data mining prob- 
lems. We consider problems that can be formulated as 
finding maximal elements in a lattice of sentences or pat- 
terns. Examples of such problems include finding frequent 
sets (the essential stage in finding association rules) [1], find- 
ing episodes from sequences [21], and finding keys or inclu- 
sion dependencies from relation instances [17]. It has been 
previously observed [19] that the problem of enumerating 
maximal elements is intimately connected to the hypergraph 
transversal problem [s]. We utilize this fact in analyzing two 
algorithms that have been used in practical applications of 
data mining. 

Several variations of the levelwise algorithm have been 
successfully applied to problems of data mining [2, 19, 20, 
211. This algorithm computes the maximal elements by 
wslking up in the lattice of interesting sentences, one level at 
a time. We show that under some conditions this algorithm 
is indeed optimal thus explaining its empirical success and 
shedding some light on when and why it is useful. Further- 
more, we show that this algorithm can be used to efficiently 
solve a special case of the hypergraph transversal problem, 
improving on previous theoretical results. 

We also analyze the algorithm Dualize and Advance. 
This algorithm was motivated by the relation to hypergraph 
transversals, and was recently used in an empirical study of 
data mining problems [ll]. We show that the algorithm has 
sub-exponential complexity, coming close to a lower bound 
for the problem, and that improving this bound hinges 
on the complexity of the hypergraph transversal problem 
(which is an open problem). 

We also show a correspondence between the data mining 
problem and the model of exact learning in computational 
learning theory. While it seems intuitive that the problems 
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are similar, the formal relation was not clear. In particular, 
in the problem of mining association rules, weak predictors 
A + B are found so that A and B are frequent in the 
database. In contrast, in machine learning the task is to 
find a single (and normally strong) predictor based on all 
attributes. 

The data mining task considered in this paper directly 
corresponds to the subtask of finding frequent sets in the 
problem of mining association rules. We show that there is 
a direct correspondence between this abstracted data mining 
problem studied here and the problem of learning monotone 
functions with membership queries [3]. Thus we show that 
the learning problem is embedded in the problem of min- 
ing association rules. We use this relation to derive corol- 
laries (mainly) for learning theory. Interestingly, an algo- 
rithm similar to the dualize and advance algorithm (though 
slightly more complicated) has been previously suggested in 
learning theory in an analysis of worst case complexity of 
learning [5], and can be used to yield a similar result. 

To summarize, we analyze and clarify the properties of 
two data mining algorithms that have already proved useful 
in several applications. This is also used to show that a new 
subproblem of hypergraph transversals is solvable. Further- 
more, we expose a relation to the problem of learning that 
proves useful in driving some corollaries of these results. 

The rest of the paper is organized as follows. In Section 2 
we present a simple framework for data mining that can be 
used to describe a variety of problems, and in Section 3 we 
look at the complexity of this task. Section 4 discusses the 
levelwise algorithm, and Section 5 discusses the dualize and 
advance algorithm. In Section 6 we study the connection to 
learning monotone functions. 

2 A Framework for Data Mining 

The model of knowledge discovery that we consider is the 
following. We are given a database r, a language C for ex- 
pressing properties or defining subgroups of the data, and 
an interestingness predicate q for evaluating whether a sen- 
tence ‘p E C defines an interesting subclass of r. The task is 
to find the theory of r with respect to C and q, i.e., the set 
Th(C, r, 9.) = {Q E C I q(r, to) is true). 

Note that we are not specifying any satisfaction relation 
for the sentences of L in r: thii task is taken care of by the 
interestingness predicate q. For some applications, q(r,cp) 
could mean that ‘p is true or almost true in r, or that ‘p 
defines (in some way) an interesting subgroup of r. The 
approach has been used in various forms for example in [l, 
2, 6, 7, 13, 14, 17, 211. 

Obviously, if L is infinite and q(r, (o) is satisfied for 
infinitely many sentences, (an explicit representation of) 
Th(L, r, q) cannot be computed. For the above formulation 
to make sense, the language L has to be defined carefully. 

As already considered by Mitchell [23], we use a special- 
ization/generalization relation between sentences. (See, e.g., 
[15] for an overview of approaches to related problems.) A 
speciali@ion relation is a partial order 3 on the sentences 
in L. We say that ‘p is more general than 8, if ‘p 3 8; we 
also say that 19 is more specific than ‘p. The relation 5 is 
a monotone specialization relation with respect to q if the 
quality predicate q is monotone with respect to 3, i.e., for 
all r and cp we have the following: if q(r, ~0) and ‘p’ 3 cp, 
then q(r, p’). In other words, if a sentence ‘p is interesting 
according to the quality predicate q, then also all less spe- 
cial (i.e., more general) sentences ‘p’ 5 cp are interesting. We 
write u + r if u 3 r and not r 3 4. 
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Typically, the relation 5 is (a restriction of) the scman- 
tic implication relation: if CT 5 7, then r b U, i.e., for 
all databases r, if r f= r, then r b b. Note that if the 
interestingness predicate q is defined in terms of statistical 
significance or something similar, then the semantic implica- 
tion relation is not a monotone specialization relation with 
respect to q: a more specific statement can be interesting, 
even when a general statement is not. 

Given a specialization relation 5, the set Th(L, r, q) can 
be represented by enumerating only its maximal elements, 
i.e., the set 

MTh(L, r, q) = (4 E WL,r, q) I 
for no B E Th(L, r, q) q5 4 0) 

Here again, one should be careful when working with infl- 
nite lattices. We assume throughout the paper that the max- 
imal elements exist and are well defined, and similarly for 
the minimal elements outside the theory Th(L, r, q). This 
definitely holds in finite lattices, and can be useful in more 
general cases as well. 

In this paper we consider the following problem, 

Problem 1 (MaxTh) Given L, r, and q, what is the com- 
plezity of computing MTh(L,r, q). 

It is easy to show [19] that finding frequent sets, episodes, 
keys, or inclusion dependencies are instances of the problem 
MaxTh. Especially for the problem of finding keys (or, more 
generally, functional dependencies) from relation instances 
the current framework has lots of connections to previous 
work. We describe here the problem of computing frequent 
sets, and use this example throughout the paper. Descrip- 
tions of the other mappings can be found in [19]. 

Association Rules and Frequent Sets: Given a O/l relation 
r with attributes R, an association rule is an expression 
X + A, where X C R and A E R. The intuitive meaning of 
such a rule is that if a row has 1 in all attributes of X then it 
tends also to have 1 in column A. Typically, in data mining, 
association rules are searched so that the set of rows having 
1 in the attributes in X U A is large enough; if we were to 
draw random rows from r, it is required that such rows will 
be drawn with frequency at least u, for some fixed u. The 
actual frequency is called the support of the rule. The ratio 
of rows including 1 in X U A to those including 1 in the set 
X is called the confidence of the rule. 

Given the above description, a major sub-task that 
is usually solved first is that of computing frequent sots. 
Namely, given a O/l relation r, compute all subsets 2 such 
that the frequency of rows having 1 in all attributes of 2 is 
larger than 0. Clearly, this is an instance of the problem dis- 
cussed above; L is the set of subsets of R, and q corresponds 
to having frequency higher than b. The set Tlt(L, r, q) cor- 
responds to the set of frequent sets, and similarly we can 
talk on maximal frequent sets. 

Once the frequent sets are found the problem of com- 
puting association rules from them is straightforward, For 
each frequent set 2, and for each A E 2 one can test tho 
confidence of the rule 2 \ A =S A. 

3 Complexity of Finding all Interesting Sentences 

To study the complexity of the generation problem we in- 
troduce some notation and basic results that appeared pre- 
viously in [19]. 



Consider a set S of sentences from t such that S is closed 
downwards under the relation 5, i.e., if 0 E S and ‘p 3 
6, then ‘p E S. The border &I(S) of S consists of those 
sentences o such that all generalizations of c are in S and 
none of the specializations of u is in S. Those sentences c in 
Bd(S) that are in S are called the positive border’ Bd+(S), 
and those sentences u in M(S) that are not in S are the 
negative border Bd-(S). In other words, 

Bd(S) = Bd+(S) u Bd-(S), . 

where 

B@(S) = {u E S 1 for all 7 s.t. u < y, we have 7 $Z S} 

and 

Bd-(S)={aEt\S] forally<u, wehaveycs}. 

The positive border of the theory is the set of its maximal 
elements, i.e., MTh(L, r, q) = Bdt (Th(t, r, q)). Note that 
Bd(S) can be small even for large S. 

Above we assumed that the set S is cIosed downwards. 
We generalize the notation for sets S that are not closed 
downwards by simply defining that Bd(S) = Bd(S’) where 
S’ is the downward closure of S. The generalization is sim- 
ilar for negative and positive borders. 

Some straightforward lower bounds for the problem of 
finding all frequent sets are given in [2,20]. Now we consider 
the problem of Iower bounds in a more realistic model of 
computation. 

The main effort in finding interesting sets is in the step 
where the interestingness of subgroups are evaluated against 
the database. Thus we consider the following model of com- 
putation. jsume the only way of getting information from 
the databhe is by asking questions of the form 

Is-interesting Is the sentence cp interesting, i.e., does 
q(r, up) hold? 

Theorem 2 [19] Any algorithm for computing Th(C, r, q) 
that accesses the data using only Is-interesting queries must 
use at least IBd(Th(t, r, q))l queries. 

This result, simple as it seems, gives as a corollary a re- 
sult about finding functional dependencies that in the more 
specific setting is not easy to find; cf. [17, 191. Siiarly, 
the corresponding verification problem requires at least this 
number of queries. 

Problem 8 (Verification) Given L, r, q, and a set S c 
.C. kify that S = MTh(.C,r, q). 

Corollary 4 [19] Given Is, r, q, and a set S E C, deter- 
mining whether S = MTh(C, r, q) requires in the worst case 
at least IBd(S)I evaluations of the predicate q, and it can be 
solved using exactly this number of evaluations of q. 

We now show that the verification problem is closely re- 
lated to computing hypergraph transversals. A collection 7r! 
of subsets of R is a (simple) hypergraph, if no element of 7-L 
isemptyandifX,YEHandXcYimplyX=Y. The 
elements of 3t are called the edges of the hypergraph, and 
the elements of R are the vertices of the hypergraph. Given 
a simple hypergraph l-l on R, a transversal T of ‘h! is a sub- 
set of R intersecting all the edges of 3c, that is, T n E # 0 
for all E E ‘FL 

‘Le., the positive border corresponds to the set 5” of [23]. 
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Transversals are also called hitting sets. Here we con- 
sider minimal transversals: a transversal T of ‘H is minimal 
if no T’ C T is a transversal. The collection of minimal 
transversals of Z is denoted by Tr(H). It is a hypergraph 
on R. 

Problem 5 (HTR) Given a hypergraph ‘FL, construct 
Tr(H) . 

For more information on hypergraphs see [4]. The 
computational problem of computing transversals appears 
in various branches of computer science; a comprehensive 
study of this problem is given by [8]. The HTR problem 
also appears in several forms in databases. In particular, 
the problem of translating between a set of functional depen- 
dencies and their corresponding Armstrong relation [16, 171 
is at least as hard as this problem and equivalent to it in 
special cases [S]. Further discussion of these issues is given 
by [12, 181. 

Notice that in general the output for this problem may 
be exponentially larger than its input, and thus the ques- 
tion is whether it can be solved in time polynomial in both 
its input size and output size. We say that an algorithm 
is output T() time algorithm for the problem if it runs in 
time T(I,O) where I is the input size, and 0 is the cor- 
responding output size. A more strict condition, that we 
will use here, requires that the output transversals be enu- 
merated, and that the time to compute the i’th transversal 
will be measured against the input size and i. That is, an 
algorithm solves the problem in incremental T(I, i) time if 
the i’th transversal is computed in time T(1, i). For further 
discussion and other variations see [8]. 

The exact complexity of the HTR problem is yet un- 
known. A sub-exponential solution for the problem has been 
recently discovered [lo], and several special cases can be 
solved in polynomial time [8, 221. We improve on one of 
these results here. 

Now we return to the verification problem. Given S C_ 
13, we have to determine whether S = MTh(L, r, q) holds 
using as few evaluations of the interestingness predicate as 
possible. 

Definition 6 (Representing as Sets) Let L be the Zan- 
guage, 3 a specialization relation, and R a set; denote by 
P(R) the pomerset of R. A function f : C + P(R) is a 
representation of .C (and 5) as sets, if f is one-to-one and 
surjectiue, f and its inverse are computable, and for all 0 
and ‘p we have 0 5 ‘p if and only if f(0) C f(p). 

Thus, representing as sets requires that the structure im- 
posed on .C by 5 is isomorphic to a subset lattice. In partic- 
ular, the lattice must be finite, and its size must be a power 
of 2. Note that frequent sets, functional dependencies with a 
fixed right-hand sides, and inclusion dependencies are easily 
representable as sets; the same holds for monotone Boolean 
functions. However, the language of [21] used for discovering 
episodes in sequences does not satisfy this condition. 

Given S, we can compute B@(S) without looking at 
the data r at all: simply find the most special sentences 
in S. The negative border Bd-(S) is also determined by 
S, but finding the most general sentences in .C \ S can be 
diflicult. We now show how minimal transversals can be 
used in the task. Assume that (.f, R) represents C as sets, 
and consider the hypergraph 7-L(S) on R containing as edges 
the complements of sets f(cp) for cp E Bd+(S): H(S) = 
{R \ f(cp) I ‘p E Sd+(S)}. Then Tr(Z(S)) is a hypergraph 
on R, and hence we can apply f-l to it: f-‘(Tr(‘H(S))) = 
{f-l(H) 1 H E Tr(%!(S))}. We have the following. 



ABCD 

Figure 1: The interesting sentences and negative border in 
the problem of computing frequent sets. 

Theorem 7 [19] f-l( Z’r(H(S))) = &Z-(S). 

Example 8 Consider the problem of computing frequent 
sets, where R = {A,B,C,D), and let S = {ABC,BD}, 
where we use a shorthand notation for sets, e.g., we repre- 
sent {A, B, C} by ABC. Then the downward closure of S 
is equal to {ABC,AB, AC, BC, BD,A, B, C, D}, and S in- 
cludes the maximal elements. The negative border (that can 
be found by drawing the corresponding lattice, see Figure I) 
is Bd-(S) = {AD, CD}. 

For this problem we already have .C represented as sets 
and thus use the identity mapping f(X) = X, thus ‘H(S) = 
{D,AC}. It is easy to see that Tr({D,AC}) = {AD, CD}, 
and thus f-l indeed yields the correct answer. 

The requirement for representing as sets is quite strong. 
It is however necessary. In particular the mapping f must 
be surjective, that is, cover all of P(R). Otherwise, after 
computing the transversal, a set may not have an inverse 
mapping to be applied in the last transformation in the the- 
orem. This is indeed the case in the episodes of [21]. 

As we have seen, for languages representable as sets the 
notions of negative border and the minimal transversals give 
the same results. In the next sections we make use of this 
result to study the complexity of the data mining problem, 
computing hypergraph transversals, and also exact learning 
of monotone functions. 

4 The Levelwise Algorithm 

Several variants of the levelwise algorithm have been used 
before [2, 20,211. The algorithm solves the problem MaxTh 
by simply finding all interesting statements, i.e., the whole 
theory Th(L,r,q) going bottom up. The method is as fol- 
lows: 

Algorithm 9 The levelwise algorithm for finding all inter- 
eating statements. 
Input: A database r, a language C with specialization rela- 
tion 5, and a quality predicate q. 
Output: The set Th(t, r, q). 
Method: 
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; 4 :T {‘p E C [ th ere is no ‘p’ in .C such that ‘p’ + cp); 

3: u&k Ci # 0 do 
4. 
5. 

6. i:=i+l; 
have pi E (Jjci Lj} \ Ujsi Cj; 

7. od; 
8. output uj<i Lj; 

The algorithm works iteratively, alternating between 
candidate generation and evaluation phases. First, in the 
generation phase of an iteration i, a collection Ci of new can- 
didate sentences is generated, using the information avail- 
able from more general sentences. Then the quality predi- 
cate is computed for these candidate sentences. The collcc- 
tion Li will consist of the interesting sentences in Ci. In the 
next iteration i + 1, candidate sentences in C&l arc gcncr- 
ated using the information about the interesting sentences in 
U Lj. Note that using the notion of border, Step 6 of the al- 
gorithm GUI be written as C&l := Bd-(Ujci Lj)\U,.s; Cj. 

The algorithm aims at minimizing fhe amount of 
database processing, i.e., the number of evaluations of q 
(Step 4). Note that the computation to determine the can- 
didate collection does not involve the database (Step 5). For 
example, in computations of frequent sets Step 5 used only 
a negligible amount of time [2]. 

Clearly, by definition, the algorithm finds the maximal 
interesting sentences. Moreover, we show that under certain 
conditions the algorithm does not take too much time. The 
following theorem is immediate. 

Theorem 10 The levelwise algorithm computes the set of 

interesting sentences correctly, and it evaluates the predi- 
cate q 

ITW, r, 4 U Bd’(Th(G r, q))I 

times. 

Example 11 Consider, again, the problem of computing 
frequent sets where R = {A, B,C, D} and MaxTh = 
{ABC, BD}, i.e., the situation of Figure I. The levelwise 
algorithm works its way up from the bottom. It starts by 
evaluating the singletons A, B, C, and D; all of these are 
frequent. In the second iteration C; contains pairs of at- 

tributes such that both attributes are frequent, in this casa 
all attribute pairs. Of them, AB, AC, BC, and BD are jre- 
quent. C3 then contains such sets of size three whose all 
subsets are frequent, i.e., the set ABC, which is actually 
frequent. Notice that the negative border corresponds exactly 
to the sets that have been found not interesting along the 
way, that is the sets AD and CD. 

In order to further analyze the complexity we use the fol- 
lowing notation. Denote by rank(d), the rank of a sentence 
4, defined as follows. If for no 0 E .C we have 0 4 4 then 
rank(4) = 0. Otherwise, rank(4) = 1 + max(rank(0) 1 
0 < 4). Denote by de(k) the maximal size of the downward 
closure of any sentence 4 of rank 5 k. Also, by width(C, 5) 
denote the maximal number of immediate successors on C 
and 5. That is, 

Theorem 12 Let k be the maximal rank over all interesting 
sentences in the problem (L, r, q). The leuelwise algorithm 



computes the set of interesting sentences correctly, and the 
number of queries it makes is bounded by 

de(k) width(C, 3) ]MTh(L,r, q)l. 

Proof. The number of sentences below any maximal ele- 
ment is bounded by de(k), and thus the number of elements 
not rejected from Ci at all stages together is bounded by 
dc(k)]MTh(L,r, q)l. Each of these sentences might create at 
most width(L, 3) new sentences for consideration in Ci+r 
that may be rejected (i.e. they are in Bd-(Th(L,r, q))). 

q 

This result holds for any (C, r, q). For problems repre- 
sentable as sets one can derive more explicit bounds. In 
particular, in the problem of frequent sets the rank corre- 
sponds to the size of the set, the width is the number of 
attributes, and de(k) = Zk. A standard assumption in prac- 
tical applications is that the size of frequent sets is bounded. 
In these cases the levelwise algorithm is indeed efficient: 

Corollary 13 Let k be the size of the largest frequent set, 
and n the number of attributes. The levelwise algorithm 
computes the set of frequent sets correctly, and the number 
of queries it makes is bounded by Zkn]MTh(C,r, q)l- 

As a further corollary of the above we get that if the 
size of frequent sets is not too large then the size of 
BW’W, r, 4)) is not prohibitive and thus the problem 
is feasible. 

Corollary 14 Let k be the size of the largest frequent set, 
and n the number of attributes. 
I-i;’ po;ny k the size of sets in Bd-(Th(L,r, q)) is bounded 

(ii) For’ k = O(logn), the size of Bd-(Z’h(t,r, q)) is 

bounded by O(n’@)]MTh(L,r, q)l). 

We thus get an application for hypergraph transversals: 

Corollary 15 For k = O(log n), the problem of computing 
hypergraph transversals, where the edges of the input graph 
are all of size at least n - k, is solvable in input polynomial 
time by the levelwise algorithm. 
Proof. If the edge size is at least n - k, then the maximal 
sets that are not transversals are of size at most k. Set 
non-transversals to be “interesting” and use the algorithm. 
We get that the negative border is the required transversal 
hypergraph. q 

This improves on previous result by [S] (Theorem 5.4) 
that show that this is possible for constant k (and uses a 
brute force enumeration algorithm using property (i) above). 
Notice that the levelwise algorithm does not use the struc- 
ture original hypergraph directly. All it does is to test 
whether certain subsets are transversals of it or not. 

5 The Dualize and Advance Algorithm 

In this section we present and analyze an algorithm for com- 
puting all maximal interesting sentences that uses the con- 
nection between transversals and the computation of max- 
imal elements. A variant of this Dualize and Advance al- 
gorithm has recently been used by [II], but no complexity 
analysis was provided there. This algorithm is far more 
applicable than the levelwise method, as this does not in- 
vestigate all interesting statements, but rather jumps more 

or less directly to maximal ones. Thus it can be used even 
in the cases where not all interesting sentences are small. 
While the algorithm can be phrased for any (L, 5), our anal- 
ysis only holds for problems representable as sets, and we 
thus describe it in the restricted setting. To further sim- 
plify notation, we describe the algorithm in terms of finding 
interesting subsets of attributes (as is the case in comput- 
ing frequent sets). The general case follows by using the 
representation as sets. 

Algorithm 16 The Dualize and Advance algorithm for 
finding all interesting statements. 
Input: A database r, a language .C with specialization rela- 
tion 3, and a quality predicate q. 
Output: The set MTh(L, r, q). 
Method: 

1. Cl := 0; 
2 i := 1; 
3. E := {complements of sets in Ci}; 
4. Use a subroutine to enumerate the minimal 

transversals of z; 
5. For each transversal X enumerated: 
6 if X is interesting then 

declare X a counterexample and quit loop; 
7. otherwise continue enumeration; 
8. If all transversals were non-interesting, output Ci 

and exit; 
9. Find a maximal superset Y of X that is interesting 

(using a greedy procedure that adds one attribute 
at a time); 

IO. Q-1 = Ci U {Y}; 
Il. i = i + 1; 
Id. Go To 3; 

The algorithm works iteratively, finding a new maximal 
interesting set in each iteration. The procedure for finding 
new maximal interesting sets utilizes the idea of transver- 
sals. Once a number of interesting sentences has been found, 
the negative border of these sentences is computed using a 
transversal computation. Each of the elements of this nega- 
tive border is checked to see whether it is interesting. If the 
set of interesting sentences found so far is complete, then 
all these sets are not interesting. If the set is not complete 
then at least one of the elements of the computed negative 
border is interesting. This interesting set can be extended 
to a new maximal interesting set by a series of queries, in a 
greedy manner. 

Example 17 Consider again the problem of computing fre- 
quent sets described in Figure 1. 

The dualize and advance algorithm starts with Cl = 0, 
and z = {ABCD}. The transversals are Tr(z) = 
{A, B, C, D}. Assume that in Step 6 the transversal A is 
tested first. Then A is found interesting and the algorithm 
continues in Step 9 to find a maximal element Y. This 
can be done by adding one attribute at a time, and test- 
ing whether q holds, and yields Y = ABC. in the next 
iteration Cz = {ABC}, z = {D}, and Tr(z) = {D}. 
In Step 6 D is found to be interesting, and in Step 9 the 
algorithm finds that Y = BD is maximal interesting. We 
therefore have Cs = {ABC,BD}, z = {D,AC}, and 
Tr(z) = {AD,AC}. All th e elements of the transversal 
are not interesting and therefore the algorithm stops. The 
set C’s is exactly MTh and Tr(z) is Bd-(MTh). 

In order to establish correctness we start with a simple 
lemma: 



Lemma 18 For any iteration i of the algorithm, if C; # 
MTh(L, r, q) then at least one of the elements of Tr(D;) is 
interesting. 
Proof. First note that the elements of C; are verified by 
the algorithm to be maximal interesting. We therefore have 
Ci E MTh(L, r, q). Now if there is a set c E MTh(.C, r, q) \ 
Ci, then (since 5 is monotone) there is a minim al interesting 
set not in Ci, that is there is an interesting set in Bd-(Ci). 
(Just walk down in the lattice to find such a set). 

As we saw earlier sets of attributes are already repre- 
sented as sets and the identity mapping j(X) = X is used. 
We thus get from Theorem 7 that Tr(Di) = &f-(S) and 
one of these elements is interesting. El 

The question is how many sets X should be enumerated 
before finding such a counterexample on the negative border. 
The following example shows that there are cases where the 
size of MZ%(L,r,q) and its negative border are small, but 
in an intermediate step the size of the negative border of Ci 
may be large. 

Example 19 [16] Consider the case zuhere MTh = 
MTh(C, r, q) includes all sets of size n - 2, and Bd’(MTh) 
thus includes all sets of size n- 1. Further consider the case 
where Ci is such that E = {{X2i-l,X2i} 1 1 I i 5 n/2}. 
Then the size of Tr(z) is 2”f2 while Bd-(MTh) is small. 

Nevertheless, as the following lemma shows, the number 
of sets that have to be enumerated is not too large. 

Lemma 20 For any iteration i of the algorithm, if Ci # 
MTh(t,r,q) then the number of sets enumerated be- 
fore a counterexample set X is found is bounded by 

~r~~$~“6”;40~~~ Iid- 
. = Bd-(MTh(L, r, q)). We show 

that each set X enumerated either exactly matches an ele- 
ment of Bd- exactly, or is interesting. In other words the 
set X cannot be both not interesting, and a strict superset of 
an element in BE. It follows that at most IBd-1 elements 
need to be enumerated. 

To prove the claim notice that every set that is deemed 
interesting by the Ci is indeed interesting. If X is both 
not interesting, and a strict superset of an element 2 in 
Bd-, then 2, which is not interesting, is claimed interesting 
by Ci (since X E Bd-(Ci) 
contradiction. 

is minimal, and 2 c X); a 
a 

We need the following notation. Let C s .C, by rank(C) 
we denote the maximal rank over all sentences in C. 

rank(C) = ~z. rank(e) 

Theorem 21 If there is an incremental T(I,i) time algo- 
rithm for computing hypergraph transversals then MTh = 
MTh(.C, r, q) can be computed in time polynomial in IMThl 
and T(IMThI, IBd-(MTh)l), while using at most IMThl . 
(j&l-(MTh)l + rank(MTh)width(C, 5)) queries. 
Proof. The bound follows by using the dualize and Ad- 
vance algorithm. By Lemma 18, each iteration finds a new 
maximal set, and therefore the algorithm is correct, and the 
number of iterations is IMThI. By Lemma 20, in each itera- 
tion the algorithm runs a transversals subroutine enumerat- 
ing at most IBd-(MTh)l sets, and asking the same number 
of queries before finding a counter example. The extension 
of the counter example X into a maximal set Y requires 
at most rank(MTh) stages each with at most width(t, 3) 
queries. 0 

Thus we see that the connection to hypergraph transver- 
sals holds not only for the verification problem but also for 
the generation problem. We note that for the case of func- 
tional dependencies with fixed right hand side, and for keys, 
even simpler algorithms can be used [16,12]. In this case ono 
can access the database and directly compute Bd’(MTh) 
(according to the appropriate representation as sets, this 
corresponds to the so called agree sets of the relation). Then 
a single run of an HTR subroutine suffices. The current rc- 
suit holds even if the access to the database is restricted to 
UIs-interesting” queries. 

Recently, Fredman and Khachiyan [lo] presented an in- 
cremental algorithm for the HTR problem with time com- 
plexity T(I, i) = (I+i) o(‘Oz(rsi)). We can therefore conclude 
the following: 

Corollary 22 For any problem representable as sets, 
MTW, r, q> can be computed in time t(IMThl + 
IBd-(MTh)l), where t(n) = n”t’ocn), while using at moat 
IMThl . (IBd-(MTh)l + rank(MTh)width(L, 5)) queries, 

6 Relation to Learning Theory 

We now show that the problems discussed above arc very 
closely related to problems in learning theory. The simple 
scenario discussed in learning theory is as follows: a Boolean 
function f : {O,l}" -+ {O,l} is fixed by some adversary 
(modeling a concept in the world). A learner is given access 
to some oracle giving it partial information on the function 
f. The task of the learner is to find a representation for a 
Boolean function that is identical (or approximates) f. In 
particular we will consider the model of exact learning with 
membership queries [3]. 

A membership query oracle MQ(f) allows the learner to 
ask for the value of f on a certain point. That is, given 
2: E {O,lln, MQ(f) t re urns the value f(z). The learning 
algorithm is given access to MQ(f), and the algorithm is 
required to produce an expression that computes f exactly, 

Definition 23 An algorithm is an exact learning algorithm 
with time complexity T(), query compIesity Q(), and rep- 
resentation class H, for a class of functions 3, if for all 
f E 3, when given access to MQ(f), the algorithm runs in 
time TO, asks MQ() on at most Q() points and then outputs 
a representation h E 7t for a Boolean function such that h 
is equivalent to f. 

In the above definition we omitted the parameters of the 
functions T() and Q(). N ormally the algorithm is allowed 
time polynomial in the number of variables n, and the size 
of representing f in some representation language. 

In particular we next consider the problem of learning 
monotone functions with membership queries. A function 
f is monotone if f(x) = 1, and y 2 x implies f(u) = 1, 
where 5 is the normal partial order on {O,l}“. We also 
consider the standard CNF and DNF representations for 
such functions. A term is a conjunction of literals, e.g. zlzz 
is a term. A DNF expression is a disjunction of terms, eg, 
~1~2~~2x3 is a DNF expression. Similarly a CNF expression 
is a conjunction of disjunctions, e.g. (x1 V x2)(z2 V x3) is a 
CNF expression. It is well known that monotone functions 
have unique minimum size representations in both DNF and 
CNF, that include all minimal terms or clauses respectively 
of the function. (A minimal term, called a prime implicant, 
is a term that implies f and such that every subset of it does 
not imply f.) 

214 



In the scenario that follows the learning algorithm is al- 
lowed time relative to the number of attributes n, and the 
sum of sizes of its DNF and CNF representations. That is, 
we consider T(m), and Q(m) where m = n f IDNF(f)j + 

ICNW )I. 
The correspondence between learning monotone func- 

tions and computing interesting sets is thus straightforward. 
The elements of {O, 1)” correspond to subsets of the vari- 
ables so that a v&e -1 implies that the corresponding at- 
tribute is in the set. The value of the function on an assign- 
ment corresponds to the negation of the interestingness rela- 
tion 9. Since q is monotone, the function is monotone. Mem- 
bership queries now naturally correspond to Is-interesting 
queries. We therefore get: 

Theorem 24 The problem of computing interesting sen- 
tences for problems representable as sets is equivalent to 
the problem of learning monotone functions with member- 
ship queries, with representation class CNF (or DNF). 

Example 25 The problem of computing frequent sets de- 
scribed in Figure i is mapped to the problem of learning the 
function f whose DNF representation is f = AD V CD and 
whose CNF representation is f = (AV C)(D). The terms of 
the DNF correspond to the elements of Bd-, and the clauses 
of the CNF are the complements of the sets in MTR. 

As an immediate corollary of the results in Section 4 We 
get: 

Corollary 26 The levelwise algorithm can be used to learn 
the class of monotone CNF expressions where each clause 
has at least n -E attributes and E = O(log n), in polynomial 
time, and with a polynomial number of membership queries. 

As a corollary of Theorem 2 we get a lower bound: 

Corollary 27 Any algorithm that Zearns monotone func- 
tions with membership queries must use at least jDNF(f)[+ 
ICNF(f)l queries. 

While the bound is not. surprising, it explains the lower 
bound given by Angluin [3]. It is shown there that an algo- 
rithm may need to take time exponential in the DNF size 
when not allowed CNF size as a parameter. Indeed the CNF 
size of the function used to show the lower bound is expo- 
nential. (The lower bound in [3] is, however, more compIex 
since the learner has access to several additional oracles.) 
On the other hand, by using Theorem 21 we see that with 
membership queries alone one can come close to thii lower 
bound. 

Corollary 28 If there is an incremental T(I,i) time algo- 
rithm for computing hypergraph transversals then there is a 
learning algorithm for monotone functions with membership 
queries, that produces both a DNF and a CNF representa- 
tion for the function. The number of MQ queries is bounded 
by ICNF(f)j . (JDNF(f)I + n’). The running time of the 
algorithm is poIynomia2 in n and T(ICNF(f)j, jDNF(f)j). 

We note that this corollary can be derived from a more 
general construction in [5] (Theorem 18) that studies the 
complexi.ty of learning, and uses NP-Oracles. For monotone 
functions, the NP-Oracle used there, can be replaced with 
a procedure for HTR, yielding a similar result.. This has 
been previously observed [24]. The algorithm that results is 
similar to the dualize and advance algorithm but is slightly 
more complicated. 

Here again using the result of Fredman and Khachiyan 
[lo] we can derive a sub-exponential learning algorithm for 
this problem. 

Corollary 29 There is a learning algorithm for monotone 
functions with membership queries. The running time of 
the algorithm is bounded by T(m), where m = IDNF(f)I f 
ICNF(f)l, and T(m) = m”@sm). The number of MQ 
queries is bounded by ICNF(f)l . (IDNF(f)l + n”). 

The relation to hypergraph transversals can also be used 
in the other direction. However, since the learning problem 
is not defined as an incremental task, the next corollary only 
yields an output T() time algorithm. 

Corollary 30 If there is a learning algorithm for monotone 
functions, that produces a DNF representation, and whose 
running time and number of queries is bounded by T(m), 
where m is as above, then there is an output T() time algo- 
rithm for the hypergraph transversal problem. 
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