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ABSTRACT
Motivation: The development of in silico models to predict
chemical carcinogenesis from molecular structure would
help greatly to prevent environmentally caused cancers.
The Predictive Toxicology Challenge (PTC) competition
was organized to test the state-of-the-art in applying
machine learning to form such predictive models.
Results: Fourteen machine learning groups generated
111 models. The use of Receiver Operating Character-
istic (ROC) space allowed the models to be uniformly
compared regardless of the error cost function. We
developed a statistical method to test if a model performs
significantly better than random in ROC space. Using this
test as criteria five models performed better than random
guessing at a significance level p of 0.05 (not corrected
for multiple testing). Statistically the best predictor was the
Viniti model for female mice, with p value below 0.002.
The toxicologically most interesting models were Leuven2
for male mice, and Kwansei for female rats. These models
performed well in the statistical analysis and they are
in the middle of ROC space, i.e. distant from extreme
cost assumptions. These predictive models were also
independently judged by domain experts to be among the
three most interesting, and are believed to include a small
but significant amount of empirically learned toxicological
knowledge.
Availability: PTC details and data can be found at: http:
//www.predictive-toxicology.org/ptc/
Contact: hannu.toivonen@cs.helsinki.fi

INTRODUCTION
The Predictive Toxicology Challenge (PTC) was initiated
to stimulate the development of advanced techniques for

∗To whom correspondence should be addressed.

predictive toxicology models. The goal was to provide
carcinogenicity predictions for a set of compounds with
unknown classification, using information derived from
their chemical structure alone. The challenge was taken up
by 14 groups who produced 111 predictive models. The
previous article (Helma and Kramer, 2003) presents the
general layout of the competition, the data sets (Table 1)
and the rules for participation. The focus of this paper is
a statistical analysis of the significance of the submitted
predictions.

METHODS
ROC curves
Ideally an in silico predictive carcinogenicity method
should correctly identify all carcinogenic compounds
while not incorrectly identifying any non-carcinogenic
compounds. However, in practice, predictive results may
overlap and errors be made. Two types of error are
possible: errors of commission, and errors of omission.
In an error of commission a compound is predicted to
be carcinogenic when it is not: in an error of omission,
a compound is not predicted to be carcinogenic when it
is. The costs associated with these two types of error are
not generally equal. Such costs are difficult to calculate
and subject to considerable debate. This means that
the assessment of predictive models should be robust
to differing cost assumptions. This is not true for the
standard approaches to measuring predictive success: use
of accuracy, or maximization of coverage for a fixed false
positive rate.

A better approach is to plot the predictive results in
Receiver Operating Characteristic (ROC) space. ROC
graphs were first developed for signal detection (e.g.
Van Trees, 1971) and later extended to machine learning,
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Fig. 1. ROC points and convex hulls of the submissions.

e.g. by Bradley (1995). In a ROC plot true positive rate
(or sensitivity) is plotted against the false positive rate (1-
specificity). Sensitivity is the probability that a compound
is predicted to be carcinogenic when it is actually carcino-
genic. Specificity is the probability that a compound is
predicted to be non-carcinogenic when the compound is
actually non-carcinogenic. Both measures are expressed
in the range 0–1. This produces a square space ranging
from 0 to 1 along the two axes, or unit square. This space
is called the ROC space. An ideal classifier, resulting
from a perfect discrimination between carcinogenic and
non-carcinogenic compounds, would be presented in
ROC space as a point in the top left-hand corner.

If a range of predictive results for different models are
plotted in ROC space, the convex-hull made from points
to the extreme top and left (see Fig. 1) defines the best
available predictors. The closer the curve follows the left-
hand border and the top border of the ROC space, the more
accurate are the predictions made. In general a ROC curve
indicates the trade-off between sensitivity and specificity,
as an increase in sensitivity is accompanied by a decrease
of specificity. If a predictor is not on the ROC convex-
hull it is sub-optimal compared to the ones on the hull,
regardless of the particular costs associated with errors
of commission and omission (assuming cost is a linear
function of the errors; Provost and Fawcett, 1997).
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Fig. 2. (a) Probabilities of classifiers that make 27 positive predictions in the male mice test set under the null hypothesis of random
predictions. (b) P value isolines for the male mice test set.

Statistical significance in ROC space
One problem with the use of convex-hulls in ROC space
is that they do not include any measure of statistical
significance. In this paper we adapt a standard statistical
test to judge if a result in ROC space is significantly better
than random predictions. The rationale for our p values
in the ROC space is as follows. For a classifier C with NC
predicted positives, the null hypothesis is that the selection
of the NC examples was statistically independent of their
true class. The p value of classifier C then expresses the
probability with which random selection of NC predicted
positives would give at least as good a result as the one
obtained by C .

Figure 2a gives, as an example, the distribution of points
in the ROC space for a classifier that makes 27 positive
predictions (such as the Baurin en model) for the male
mice test set (156 negatives and 29 positives). The points
are along a slanted line, with the most likely points closest
to the diagonal. The p value of a classifier on this line
is obtained by summing the probabilities above and at
the same point with the classifier. In statistical terms, this
corresponds to the one-tailed statistical significance of the
2 × 2 contingency table (confusion matrix) describing the
classifier performance in terms of the number of true and
false positives and true and false negatives. (Chi-square is
a well known tool for this; we obtained the exact p values
using Fisher’s exact test.) By computing the p values for
all NC from 0 to 185 (the number of examples in the test
set), one obtains p values over the whole ROC space, i.e.
for all possible classifiers.

The p value isolines can be overlaid with the ROC
space, to give an overview of how the p value behaves in
relation to ROC. Figure 2b shows the p value isolines for
the male mice data set. Since the p values also depend on
the size and the class distribution of the data set, p values
are different for different data sets and also for different
amounts of unclassified cases. (Some submitted predictors
left some test cases unclassified.)

The p value isolines are not symmetrical since the class
distribution is skewed, cf. Figure 2a. Further, the isolines
have been drawn at the points where the p value is at most
the one given in the label. For instance, 0.5 p value isoline
is drawn above the diagonal since points in the diagonal
tend to have p values larger than 0.5.

RESULTS
We plotted each of the 111 predictive models in ROC
space, see Figure 1. In these figures the convex-hull of the
best predictive models is displayed. We tested all the PTC
submissions to see if they were significantly better than
random. For this the statistical significance, expressed as a
p value, was computed for the submissions in ROC space.

Figure 3 shows the predictions again in the ROC space,
this time overlaid with p value isolines. All classifiers
are shown, but those that did not make predictions for
all cases are in parentheses. Their p values are more
conservative than is apparent from the graphs, due to the
smaller number of cases predicted.

Table 2 lists the statistically most significant results.
Five submissions have p values below 0.05 (not adjusted
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Fig. 3. P-value isolines and PTC submissions. Labels are the same as in Figure 1. (Parenthesis indicate classifiers that did not make predictions
for all examples and for which the true p values are thus more conservative than appears from the figure.)

for multiple testing), three of them are below 0.005†.
Statistically the most significant predictors are clearly
Viniti on female mice, and Baurin en and Viniti on male
mice. They obviously perform significantly better than
random guessing. This is arguably the first conclusive
proof that it is possible to empirically learn in silico
models which can predict chemical carcinogenicity based
purely on chemical structure.

† In the PTE1 three from 15 models had p-values lower than 0.05 and one
model was below 0.005, in the PTE2 three from 18 had p-values lower than
0.05, none of them was lower than 0.005. In both cases it was allowed to take
advantage of biological information (e.g. short-term tests).

The majority of the significant models cluster near the
bottom left corner. Such models only make few positive
predictions, but they are accurate in their predictions.
Among the five statistically best predictors, Leuven2 on
male mice and Kwansei on female rats are particularly
interesting as they occur in the middle of ROC space and
distant from a corner. This means that these methods are
optimal for non-extreme cost assumptions; the predictors
are both quite accurate and applicable to a number of
examples.

Given that 111 submissions were received in total, it
is interesting to look at their overall performance. How
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significant, overall, are the results? Could the best results
have been obtained by chance alone? The Bonferroni
adjustment could be used to test this if the classifiers were
independent. However, they are clearly not independent,
since they had the same features and training examples
available to them, some of them used similar methods, and
they were tested on the same test cases. The Bonferroni
adjusted p value for the statistically most significant result
(Viniti, female mice) would be 0.206, but due to the
contradicted independence assumption the value serves
merely as a very conservative upper bound for the adjusted
p value of Viniti.

A visual overview of the statistical significance of the
whole set of 111 submissions is obtained by looking at
the distribution of their (unadjusted) p values. By defini-
tion, under the null hypothesis p values are uniformly dis-
tributed in [0, 1]. Figure 4 illustrates the cumulative distri-
bution of p values of the 111 submissions. The distribution
is very close to the uniform distribution, indicating that ‘on
average’ the submitted classifiers did not make informed
predictions but rather collectively perform as well as ran-
dom guesses. This is clearly disappointing, and requires
an explanation.

DISCUSSION
Structural similarity of the training and test sets
One of the fundamental assumptions which statistical and
inductive learning methods are usually based on, is that
the examples which a predictive model are tested on come
from the same distribution as those on which the model

Table 1. Distribution of positive and negative examples among the training
and test sets

Positive Negative
examples examples

Training set (NTP)
Male rats 166 305
Female rats 135 371
Male mice 140 348
Female mice 155 334

Test set (FDA)

Male rats 52 133
Female rats 36 149
Male mice 29 156
Female mice 35 150

Structure Fragments

Cl

Cl
Cl c
Cl-c c-c
Cl-c-c c-c-c
Cl-c-c-c c-c-c-c
Cl-c-c-c-c c-c-c-c-c
Cl-c-c-c-c-Cl Cl-c-c-c-c-c-c

Fig. 5. Linear fragments of 1,4-dichlorobenzene (CAS 106-46-7).

was trained. This has two aspects:

(1) the distribution of positive and negative examples
(see Table 1);

(2) the distribution of structural features among the
training and the test set (i.e. if structural features of
the test set are contained in the training set).

Although the test set contains more negative examples
than the training set, the first point is of minor concern,
as we have used ROC analysis for the evaluations of
the results. Also note that Machine Learning algorithms
outputting probabilities along with classifications are
tunable for test sets with a changed class distribution
(Elkan, 2001).

To estimate the structural similarity between the training
and test set we have used the Molecular Feature Miner
(MOLFEA; Kramer et al., 2001). This technique is based
on the concept of molecular fragments. A molecular
fragment is defined as a sequence of linearly connected
heavy atoms. Figure 5 shows how to decompose an
example molecule into its fragments, more examples and
applications can be found in Kramer et al. (2001).

When predicting the biological activity of an untested
compound the ideal case is that all structural features of
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Table 2. The 10 statistically most significant submissions. Negative and positive examples are the true class distributions of the test examples. If a model did
not provide predictions for all compounds, the numbers are different from Table 1

Sex/species Negative Positive False True
p group Model/id examples examples positive rate positive rate

0.0019 Female mice Viniti/29 84 21 0.036 0.286
0.0027 Male mice Baurin en/7 156 29 0.109 0.345
0.0046 Male mice Viniti/29 97 14 0.031 0.286
0.0433 Female rats Kwansei/14 73 17 0.274 0.529
0.0488 Male mice Leuven2/16 153 29 0.366 0.552
0.0643 Female mice Animaths2v/2 148 34 0.115 0.235
0.0864 Male rats Gonzales/10 133 52 0.150 0.250
0.0916 Female mice Animaths1v/1 148 34 0.081 0.176
0.1186 Female mice Smuc1/25 150 35 0.280 0.400
0.1417 Female rats Viniti/29 69 17 0.101 0.235

this compound are already contained in the training set.
Otherwise, the predictions should be labeled as unreliable,
because unknown structural elements may contribute to
biological activity. The Chemical Inductive Database
Language of MOLFEA allows us to perform such a
comparison. For a given molecule, we have to find all
fragments that are present in this molecule, but not in the
training set.

Of course not every unknown fragment has equal rel-
evance. Long fragments can be decomposed into smaller
ones that may provide enough information to provide a re-
liable estimation of biological activity. But if a short frag-
ment, or even an element is unknown to the training set,
the reliability of predictions will be much lower, if the
missing fragment is relevant for a toxic mechanism. Thus
there are three factors that have to be considered for the
reliability of predictions:

(1) the number of unknown fragments;

(2) the length of unknown fragments;

(3) the chemical ‘meaning’ of unknown fragments.

These parameters can also be used to compare the
information content of two data sets. To compare the
structural diversity of the PTC training set (NTP) with the
test set (FDA), we have used the following procedure: For
each FDA compound we determined the number and size
of fragments that do not occur in the NTP learning set.
To obtain a reference, the same procedure was performed
on the NTP data set, using a leave-one-out procedure:
Sequentially, one compound was removed from the data
set and compared with the rest of the compounds to obtain
the unknown fragments for this compound.

Figure 6 shows the distribution of the number of
unknown fragments among the FDA test set and the NTP
training set. It is obvious that the test set contains more

unknown fragments than the training set. A closer inspec-
tion reveals that the NTP data set has a high proportion
of compounds with completely known fragments (211
from 417 compounds). In the FDA data there are only 23
from 285 compounds without unknown fragments. It is
tempting to see this as an indication that both data sets are
structurally dissimilar. Indeed the NTP data set contains
a very diverse selection of compounds (industrial chemi-
cals, pharmaceuticals, environmental contaminants,. . . ),
whereas the FDA data set is focused towards pharma-
ceuticals. This fact is also reflected in the distribution of
the molecular sizes (measured as the number of heavy,
i.e. non-hydrogen atoms per molecule) within both data
sets (Fig. 7). The median size of molecules in the NTP
data set is 13 heavy atoms/molecule, whereas the FDA
data set contains mostly medium-sized molecules with a
median of 20 heavy atoms/molecule. Since the probability
to encounter an unknown fragment increases with the size
of a molecule, this is a possible explanation for the high
ratio of compounds with completely known fragments
in the training set. Comparing the sizes of the smallest
unknown fragment within a molecule (Fig. 8) gives a
similar, although less pronounced result: In this case, the
median size is equal in both data sets, but the FDA data
is slightly skewed towards smaller (and potentially more
relevant) fragments.

Summing up, we know that the test set contains struc-
tural features that are not present in the training set. But
it is still unclear if the unknown features are toxicologi-
cally relevant and if they had any impact on the predic-
tions in the challenge. To investigate this point, we have
defined ‘easily predictable’ and ‘poorly predictable’ com-
pounds for each sex/species group. Compounds that were
correctly predicted by all optimal models (as determined
by ROC analysis) were classified as ‘easily predictable’,
those with consistently false classifications were classi-
fied as ‘poorly predictable’. Using the same procedure as
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Fig. 6. Number of unknown fragments in the training and the test
set.
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Fig. 7. Distribution of molecule sizes in the training and the test set.

above, we determined for each molecule in these groups
the length and size of fragments that are not present in
the NTP training set. The results are summarized in Fig-
ures 9 and 10. These figures and the associated statistics
(Wilcoxon rank sum tests were used for all comparisons)
clearly indicate that the distribution of unknown fragments
does not differ between ‘easily’ and ‘poorly predictable’
compounds. A similar picture is obtained by plotting the
rate of correct predictions (i.e. correct predictions/all pre-
dictions) against the number of unknown fragments and
the length of the smallest unknown fragment. Figures 11
and 12 present a summary of this data for all sex/species
groups. They show clearly that there is no correlation be-
tween the number (size) of unknown fragments and the
predictive accuracy.

Trainingset (NTP) Testset (FDA)

5
10

15

p=0.02

Le
ng

th
 o

f t
he

 s
m

al
le

st
 u

nk
no

w
n 

fr
ag

m
en

t/m
ol

ec
ul

e

Fig. 8. Sizes of the smallest unknown fragments in the training
and the test set (compounds with completely known fragments are
exluded).

We may therefore conclude that the structural differ-
ences between the training and the test set are not the main
reason for the poor performance of the submitted mod-
els. This assumption is further substantiated by the cross-
validation results on the NTP training set that are generally
lower than 70% (Blinova et al., 2003; Okada, 2003).

Toxicological knowledge and model reliability
To investigate if the predictive models involve some
(known or unknown) domain knowledge, we have
asked toxicological experts to judge the value (and
interpretability) of the submitted models.

This judgment resulted in the following ranking:

(1) Kwansei (model 14)

(2) Wai (models 30–32)

(3) Leuven (models 15–17)

It is noteworthy that two of these models are within
the top five statistically strongest models. This reinforces
our confidence that these models are probably the most
interesting. We next review these models briefly.

The Leuven2 model for male mice considers a com-
pound to be active if: (i) it contains bromine, or (ii) it
does not contain oxygen, or (iii) it contains oxygen but no
sulphur and no hydrogen bound to oxygen (i.e. if the oxy-
gen is not alcoholic or phenolic or part of the carboxylic
acid group); otherwise the compound is considered to be
inactive.

This model has the benefit of being concise and simple.
The first part about bromine is in general agreement
with accepted toxicological knowledge. The second part
has very broad coverage coupled with relatively low
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Fig. 9. Number of unknown fragments in easily and poorly predictable compounds.

accuracy. The third part of the rule covers a diverse
set of compounds, including ketones, aldehydes, ethers,
epoxides and nitro-organic compounds.

The Leuven rules are probably too general to be of much
current value to toxicologists. We believe this reflects the
bias of decision tree methods, which favors short general
rules. It is interesting to note that a learner which took into
account the maximum number of features would probably
have produced a more toxicologically relevant set of rules.

The Kwansei model was generated by the group with
probably the most experience in toxicology, and the
Kwansei methodology was favored by the toxicology
judge as its approach resembled that of a human toxicolo-
gist. The Kwansei model is much more complicated than
the Leuven2 model. We therefore only describe a couple
of its rules which are judged to contain toxicological
evidence. Rule Pos1 for carcinogenicity from the Kwansei
model is:

[C-N: n] & [C-c:c:c:c: y] & [N: y]

This rule requires nitrogen, but not an aliphatic carbon

nitrogen bond, and a set of aromatic carbon bonds (an
aromatic ring) connected to a aliphatic carbon. It covers
aromatic amines, nitroaromatics and azo compounds, all
of them well known classes of carcinogens. Rule Neg2 for
non-carcinogenicity is:

[S: y] & [HBD=0] & [O: y]

This rule requires sulphur and oxygen, but no hydrogen-
bond donors (e.g. alcohols, amines, . . . ).

Despite this success in generating toxicological knowl-
edge from data, most models generated in the PTC
contained little or no toxicological knowledge, which is
consistent with them performing close to random on the
test data.

Why is carcinogenicity hard to predict?
From 111 models submitted to the Predictive Toxicology
Challenge, only five submissions performed significantly
better (p � 0.05) than random guessing. Before dis-
cussing the possible reason for this—at a first glance
discouraging—result we should put it into perspective:
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Fig. 10. Sizes of the smallest unknown fragments in easily and poorly predictable compounds.

• we are unaware of a biological alternative to rodent
carcinogenicity tests that perform better than the
models submitted to the PTC. (Despite decades of
efforts the Salmonella microsome assay seems to be
still the most predictive short-term test (Zeiger, 1998).
The concordance with rodent carcinogenicity data is
60–70%, depending on the evaluation data.)

• the same or similar techniques as in the PTC have been
successfully applied to predict other toxic effects (for
a review see Helma et al., 2000).

We have identified several possible causes that may lead
to the poor predictability of carcinogenic effects‡:

‡ Additional complications may arise from the fact that the NTP dataset
is biased towards compounds whose carcinogenicity is hard to estimate.
The result is that most of the carcinogenic compounds cause cancer in
idiosyncratic ways, in only one species, or a few organs. This makes it hard
to deduce general rules from this dataset. The FDA test set was also hard to
predict because companies were careful not to submit compounds that are
likely carcinogens (John Ashby, personal communication, Feb. 2003).

(1) the biochemical mechanisms involved in chemical
carcinogenicity are too complex to be modeled by
machine learning or statistical techniques;

(2) the descriptors for chemical structures and proper-
ties are inadequate for predicting carcinogenicity;

(3) Structure Activity Relationship (SAR) models ignore
the importance of biological variables;

(4) rodent carcinogenicity classifications are too inaccu-
rate to learn accurate models from them;

(5) predictions are impossible, because compounds in
the test set contain too many structural features that
are unknown to the training set.

As we have discussed the last point already in the
previous section, we will focus on the first arguments. As it
is presently impossible to decide between the alternatives,
we will present arguments for and against each point,
present ideas for future exploration and indicate our
opinions.
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Fig. 11. Number of unknown fragments versus true prediction rate
for all sex/species groups.
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Fig. 12. Sizes of the smallest unknown fragments versus true
prediction rate for all sex/species groups.

Most experimental toxicologists will favor the first
argument. But we have to keep in mind that it is not
necessary (and impossible) to model the whole biological
system (transport, metabolism, . . . ), in order to make
toxicity predictions. In Structure Activity Relationship
(SAR) studies we are concerned only with the influence
of chemical structure on a certain biological effect.
SARs are in fact black box models that relate chemical
structures to a biological outcome. (It is nevertheless
possible to draw mechanistic conclusions from SAR
studies.) Theoretically, machine learning techniques can

learn arbitrarily complex relationships, but they will need
more data for complex models than for simple ones.
With this fact in mind it is possible (but beyond the
scope of this article) to perform an experiment to test the
complexity hypothesis, by comparing the predictivity of
models based on different numbers of training examples.
[For mutagenicity, Liu et al. (1996) determined an optimal
data base size/unit cost of ∼350 compounds]. This should
clarify if more than the presently publicly available
∼500 compounds are needed for accurate carcinogenicity
classifications.

It is theoretically possible to generate an almost unlim-
ited number of descriptors for chemical structures and
their properties. To select a subset for a SAR study is more
or less a trial and error process, especially when the under-
lying biological processes are to a large extent unknown.
One of the goals of the PTC was to provide a variety of
different descriptors in Stage 1, and let participants in
Stage 2 choose the best parameters. Unfortunately none of
the participants reported systematic parameter selection
experiments. So the optimal representation of chemical
structures and the choice of parameters for predicting
carcinogenicity is still an open question and has room for
improvements.

It is generally desirable to include biological informa-
tion in SAR studies, e.g. to improve cross-species pre-
dictions or to identify susceptible subpopulations. For the
sake of clarity we have to differentiate between three types
of biological data:

(1) information about the target organism;

(2) information about the experimental procedure;

(3) information about other biological effects of the
same compound.

In the NTP program the majority of studies were
performed with genetically identical animals (F344/N
rats and B6C3F1 mice), non-standardized studies were
removed from the training set during the data cleaning
step (Helma and Kramer, 2003). This design ensures
genetically determined variations do not influence the
outcome of carcinogenicity assays, therefore it does not
make sense to consider biological variables apart from sex
and species.

The experimental detail that has probably the highest
impact on the outcome of carcinogenicity experiments is
the administration route. As the majority of compounds
were administered by feed or gavage it was a deliberate
and debatable decision not to include this information in
the PTC. Further studies are certainly needed to clarify
the impact of the administration route on the outcome of
carcinogenicity assays.

Another detail that was omitted in the data set is the tu-
morigenic dose TD50. The consideration of dose informa-
tion might help in distinguishing between weak and strong
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carcinogens, but it adds considerable complexity to the
prediction problem, because we have to combine a classifi-
cation task (discrimination between carcinogens and non-
carcinogens) with a regression task (prediction of TD50’s
for carcinogens).

Information about biological effects on other organisms
or other endpoints than the one to be predicted can be
useful especially if there is a mechanistic relationship (e.g.
between mutagenicity and carcinogenicity). We omitted
such information from the PTC for two reasons: (i)
information of that kind is available only for a fraction of
the compounds in the training and the test set; and (ii) we
intended to test the ability to predict biological activities
purely in silico.

It is presently impossible to estimate the reproducibility
of rodent carcinogenicity assays. Due to the high costs
of these assays, we have presently no replicate experi-
ments under standardized conditions. The 2-year rodent
carcinogenicity assay is a very complex experiment
that involves uncountable experimental, measurement
and interpretation tasks that are later condensed into
a simple carcinogen/non-carcinogen classification. As
errors and mistakes accumulate, it is conceivable that
complex experiments like this have a lower accuracy than
comparatively simple toxicity assays (e.g. the Ames test
for mutagenicity). Gottmann et al. (2001) compared data
from the general literature with NTP results and found a
very low concordance of the results (<60%). The NTP
and FDA data sets, however have a high concordance of
>80% (Helma and Kramer, 2003), but we were unable
to ascertain that the replicate experiments have been
performed really independently. It should also be noted
that NTP priorities have shifted towards more problematic
compounds (e.g. non-genotoxic carcinogens). The inter-
pretation of these is the subject of many expert discussions
and classifications are presumably less reliable than those
of strong, direct acting carcinogens. Thus, the possibility
that the poor predictability of rodent carcinogenicity is
due to uncertainties in the experimental results cannot be
ruled out and requires further examination.

CONCLUSION
The aim of the PTC challenge was to test if it is possible
for statistical/machine learning methods to learn models
for the rodent carcinogenicity of chemical compounds.

Such a task is clearly scientifically challenging:

• chemical carcinogenicity is a very complex process.
It involves a complex network of biochemical mecha-
nisms (transport, metabolism, DNA damage, . . . ) that
may differ from organism to organism;

• there are only a limited amount of training examples (a
few hundred);

• the training data is not randomly distributed;

• the training data has an unknown amount of noise.

Given these difficulties it was not surprising to see that
the majority of contributions did not perform better than
random guessing. It was however encouraging to observe
a limited number of predictive models that performed
significantly better than random (see Table 2), and were
judged to have empirically learned a small but significant
amount of toxicological knowledge.
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