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Abstract

Association rule mining typically results in large amounts of re-
dundant rules. We introduce efficient methods for deriving tight
bounds for confidences of association rules, given their subrules. If
the lower and upper bounds of a rule coincide, the confidence is
uniquely determined by the subrules and the rule can be pruned as
redundant, or derivable, without any loss of information. Experi-
ments on real, dense benchmark data sets show that, depending on
the case, up to 99–99.99% of rules are derivable. A lossy prun-
ing strategy, where those rules are removed for which the width of
the bounded confidence interval is 1 percentage point, reduced the
number of rules by a furher order of magnitude. The novelty of
our work is twofold. First, it gives absolute bounds for the confi-
dence instead of relying on point estimates or heuristics. Second,
no specific inference system is assumed for computing the bounds;
instead, the bounds follow from the definition of association rules.
Our experimental results demonstrate that the bounds are usually
narrow and the approach has great practical significance, also in
comparison to recent related approaches.

1 Introduction

Association rule mining often results in a huge amount of
rules. Attempts to reduce the size of the result for easier
inspection can be roughly divided to two categories. (1) In
the subjective approaches, the user is offered some tools to
specify which rules are potentially interesting and which are
not, such as templates [KMR+94] and constraints [NLHP98,
GVdB00]. (2) In the objective approaches, user-independent
quality measures are applied on association rules. While
interestingness is user-dependent to a large extent, objective
measures are needed to reduce the redundancy inherent in a
collection of rules.

The objective approaches can be further categorized by
whether they measure each rule independently of other rules
(e.g., using support, confidence, or lift) or address rule re-
dundancy in the presence of other rules (e.g., being a rule
with the most general condition and the most specific con-
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sequent among those having certain support and confidence
values ). Obviously only approaches of the latter type can
potentially address redundancy between rules. Our work will
be in this category.

We show how the confidence of a rule can be bounded
given only its subrules (the condition and consequent of
a subrule are subsets of the condition and consequent of
the superrule, respectively). It turns out, in practice, that
the lower and upper bounds coincide often, and thus the
confidence can be derived exactly. We call these rules
derivable: they can be considered redundant and pruned
without loss of information. We also consider lossy pruning
strategies: a rule is pruned if the confidence can be derived
with a high accuracy, i.e., if the bounded interval is narrow.

Unlike practically all previous work on pruning asso-
ciation rules by their redundancy, our method for testing the
redundancy of a rule is based on deriving absolute bounds on
its confidence rather than using an ad hoc estimate. Given an
error bound, we can thus guarantee that the confidence of the
pruned rules can be estimated (derived) within the bounds.
No (arbitrary) selection of a derivation method is involved:
the bounds follow directly from the definitions of support
and confidence. (A pragmatic choice we will make is that
only subrules are used to derive the bounds; see below.)

In a sense, the proposed method is a generalization of
the idea of only outputting the free or closed sets [PBTL99,
BBR00]. Using free sets and closed sets corresponds,
however, to only pruning out rules for which we know the
confidence is one. In the method we propose, the confidence
can have any value, and the rule is pruned if we can derive
that value. Closed sets and related pruning techniques
actually work on sets, not on association rules. There are
other, more powerful pruning methods for sets. In particular,
our work is an extension of the work on non-derivable
sets [CG02] to non-derivable association rules. The method
is simple, yet it has been overlooked by previous work on the
topic.

Optimally, the final collection of rules should be under-
standable to the user. The minimal collection of rules from
which all (pruned) rules can be derived would have a small



size, but it would most likely be difficult for the user to see
why the rest of the rules were pruned and what their confi-
dences must be. We consider different alternatives, includ-
ing the relatively popular compromise of grouping rules by
their consequents and ordering them by the size of the con-
dition. Then, each rule is checked for redundancy given only
its subrules having the exactly same consequent, and only
non-derivable rules are output.

As a summary, our contributions are the following. We
give theoretically sound methods for bounding the confi-
dence of an association rule given its subrules. We then pro-
pose to prune as redundant those association rules for which
the confidence can be derived exactly or within a guaran-
teed, user-specified error bound. Experiments with several
real data sets (chess, connect, mushroom, pumsb) demon-
strate great practical significance: 99–99.99% of rules had
(exactly) derivable confidences. Further significant prun-
ing is obtained by removing rules derivable within just ±0.5
percentage points: the remaining number of rules was only
0.005%–0.04%.

The rest of this article is organized as follows. Section 2
reviews the basic concepts and related work. In Section 3 we
define non-derivable association rules and give methods for
deriving absolute and tight upper and lower bounds for rule
confidences. In Section 4 we give experimental results on a
number of real data sets. Section 5 contains our conclusions.

2 Problem Definition and Related Work

The association rule mining problem can be described as
follows [AIS93]. We are given a set of items I and a database
D of subsets of I called transactions. An association rule is
an expression of the form X ⇒ Y , where X and Y are sets
of items, X is called the condition, and Y the consequent.
The support of a set I is the number of transactions that
include I . A set is called frequent if its support is no less than
a given minimal support threshold. An association rule is
called frequent if X ∪Y is frequent and it is called confident
if the support of X∪Y divided by the support of X exceeds a
given minimal confidence threshold. The goal is now to find
all association rules over D that are frequent and confident.

Typically, for reasonable thresholds, the number of
association rules can reach impractical amounts, such that
analyzing the rules themselves becomes a challenging task.
Moreover, many of these rules have no value to the user
since they can be considered redundant. Removing these
redundant rules is an important task which we tackle in this
paper.

Previous work on pruning redundant association rules
is typically based on a decision rule that compares the
confidence or support of an association rule to similar rules.
For instance, rule X ⇒ Y is a “minimal non-redundant
association rule” [BPT+00] if there is no rule X ′ ⇒ Y ′ with
X ′ ⊂ X,Y ′ ⊃ Y such that supp(XY ) = supp(X ′Y ′)

and conf (X ⇒ Y ) = conf (X ′ ⇒ Y ′). A similar but not
identical definition is given for “closed rules” in [Zak00] or
“minimal rules” in [ZP03]. A recent proposal is that rule
X ⇒ Y is not a “basic association rule” [LH04] if there
exists X ′ ⊂ X such that for all X ′′, X ′ ⊆ X ′′ ⊆ X ,
conf (X ⇒ Y ) = conf (X ′′ ⇒ Y ). Our proposal differs
from these techniques in two significant aspects. First, it has
a wider applicability: the above-mentioned concepts only
apply for rules with exactly the same confidence. Second,
these techniques use specific inference systems to decide
when a rule is pruned, and in order to know the confidence
or support of a pruned rule, the user must use the exact same
inference system. In our proposed technique, the bounds
follow from the definition of association rules.

Another approach is to estimate rule confidence from a
collection of other rules. For example, the maximum en-
tropy technique declares a rule to be redundant if its true
confidence is close to the estimate [MPS99, JS02]. In the-
ory, the maximum entropy principle yields consistent esti-
mates in the sense that the value is possible, i.e., it is within
the bounds implied by the constraints used. There are some
critical issues in its application to rule pruning, however.
First, the principle does not give any guarantees for the error
bounds. Second, a pruning strategy based on removing rules
for which the error is below a given upper bound alleviates
the first issue, but at the cost of assuming maximum entropy
principle as the inference system. Finally, it is computation-
ally demanding to compute the maximum entropy solution.
Practical alternatives rely on approximations, and then lose
the benefit of producing consistent estimates.

For a good and quite recent, yet brief overview of at-
tempts to find non-redundant association rules, see refer-
ence [LH04].

Some of the approaches mentioned above [BPT+00,
Zak00] utilize the concept of closed sets. A set is called
closed if it has no proper superset with the same support;
from this, it follows that a non-closed set X implies the rest
of its closure with 100% certainty, i.e., the confidence of
rule X ⇒ Y equals 1 when Y is a subset of X’s closure.
Given a non-closed set X , any set Y in its closure, and a
rule X ⇒ Z, it has been proposed to prune rules of the
form XY ⇒ Z and X ⇒ Y Z as redundant since their
frequencies and confidences are identical with the rule X ⇒
Z. As mentioned above, this approach makes assumptions,
and without knowing them the user cannot know why rule
XY ⇒ Z was pruned.

A good amount of work has focused on finding con-
densed representations for frequent sets by pruning redun-
dant sets. Obviously, the number of association rules is even
much larger and hence the problem is even more important
to solve. In the case of frequent sets, the most successful
condensed representation is the notion of closed sets: all fre-
quent sets can be derived from the closed frequent sets (or



frequent generators). δ-free sets generalize this notion to “al-
most closed” sets [BBR00].

More recently, a more powerful method for prun-
ing frequent sets has been presented, called non-derivable
sets [CG02]. The main idea is to derive a lower and an upper
bound on the support of a set, given the supports of all its
subsets. When these bounds are equal (the support of) the
set is derivable. In this paper, we extend this work in a natu-
ral way to association rules: we introduce similar derivation
techniques to find tight bounds on the confidence of a rule,
given its subrules.

The problem we attack can be formulated as follows.
Given the set R of association rules (with respect to a given
frequency threshold, confidence threshold, and database D),
choose a subset R′ ⊂ R such that the confidence of every
pruned rule R ∈ R′ \R can be derived up to a user-specified
error limit, possibly zero, from its subrules. Rule X ′ ⇒ Y ′ is
a subrule of X ⇒ Y iff X ′ ⊆ X and Y ′ ⊆ Y ; selecting only
the subrules to derive the confidence of a given rule should
improve the understandability of the results. (In this paper,
the term subrule will refer to proper subrules, i.e., subrules
not equal to the original rule.) In other words, rule X ⇒ Y
is derivable and redundant, if its confidence can be derived
from the confidences and supports of its subrules; otherwise
it is non-derivable. Note that being derivable is a function of
the subrules: the actual rule confidence and support are not
needed for knowing whether the rule is derivable.

Before going to the methods, we would like to remind
the readers that obviously redundancy is not the only reason
why some association rules are uninteresting. Interesting-
ness is often subjective, and tools such as templates or other
syntactical constraints can be very useful. Subjective inter-
estingness is, however, outside the scope of this paper.

3 Non-Derivable Association Rules

We now show how to derive lower and upper bounds for the
confidence of an association rule, given its subrules. We start
by reviewing the technique to derive bounds on the support
of a set [CG02].

3.1 Sets The main principle behind the support deriva-
tion technique used for mining non-derivable sets is the
inclusion-exclusion principle [GS00]. For any subset J ⊆ I ,
we obtain a lower or an upper bound on the support of I
using one of the following formulas.

If |I \ J | is odd, then

(3.1) supp(I) ≤
∑

J⊆X⊂I

(−1)|I\X|+1supp(X).

If |I \ J | is even, then

(3.2) supp(I) ≥
∑

J⊆X⊂I

(−1)|I\X|+1supp(X).

For example, in Figure 1, we show all possible rules to
derive the bounds for a given set {abcd}.

When the smallest upper bound equals the highest lower
bound, then we have actually obtained the exact support of
the set solely based on the supports of its subsets. These sets
are called derivable, and all other sets non-derivable. The
collection of non-derivable sets has several nice properties.

PROPERTY 3.1. [CG02] The size of the largest non-
derivable set is at most 1 + log |D| where |D| denotes the
total number of transactions in the database.

PROPERTY 3.2. [CG02] The collection of non-derivable
sets is downward closed. In other words, all supersets of
a derivable set are derivable, and all subsets of a non-
derivable set are non-derivable.

A less desirable property is that the number of bounds for a
given itemset is exponential in the size of the itemset. For
more results and discussions, we refer the interested reader
to [CG02].

3.2 Association Rules Now, consider a rule X ⇒ Y and
assume all its (proper) subrules are known, i.e., their supports
and confidences are given and hence, also the support of all
proper subsets of X ∪ Y . In order to compute bounds for
the confidence of that rule, we bound the support of X ∪ Y
using the above described technique and divide the lower and
upper bound by the support of X , resulting in a lower and
upper bound for the confidence of X ⇒ Y . The goal is
to find and remove all derivable association rules, i.e., rules
for which the lower and the upper bounds of confidence are
equal. From this procedure, the following property is readily
verified.

PROPERTY 3.3. Given all (proper) subrules of association
rule X ⇒ Y : X ⇒ Y is derivable if and only if X ∪ Y is a
derivable set.

This leads to an association rule pruning method which
can be represented as a simple modification to the original
association rule generation algorithm in which only non-
derivable itemsets are used.

Note that when considered as sets in separation, X can
be a non-derivable itemset while the set X ∪Y is a derivable
itemset, cfr. Property 3.2. A straightforward application of
non-derivability of itemsets to association rule mining would
be to output rules in which the condition X is non-derivable
(regardless of whether the union X ∪ Y is).

We next consider some interesting, more restricted cases
of pruning. When considering the possible redundancy
of a specific association rule, it is probably natural and
easier to focus only on those rules which have exactly the
same condition or exactly the same consequent. Such a
compromise results in less pruning but is likely to increase
the understandability of pruning.



supp(abcd) ≥ supp(abc) + supp(abd) + supp(acd) + supp(bcd) − supp(ab) − supp(ac) − supp(ad)
−supp(bc) − supp(bd) − supp(cd) + supp(a) + supp(b) + supp(c) + supp(d) − supp({})

supp(abcd) ≤ supp(a) − supp(ab) − supp(ac) − supp(ad) + supp(abc) + supp(abd) + supp(acd)
supp(abcd) ≤ supp(b) − supp(ab) − supp(bc) − supp(bd) + supp(abc) + supp(abd) + supp(bcd)
supp(abcd) ≤ supp(c) − supp(ac) − supp(bc) − supp(cd) + supp(abc) + supp(acd) + supp(bcd)
supp(abcd) ≤ supp(d) − supp(ad) − supp(bd) − supp(cd) + supp(abd) + supp(acd) + supp(bcd)
supp(abcd) ≥ supp(abc) + supp(abd) − supp(ab)
supp(abcd) ≥ supp(abc) + supp(acd) − supp(ac)
supp(abcd) ≥ supp(abd) + supp(acd) − supp(ad)
supp(abcd) ≥ supp(abc) + supp(bcd) − supp(bc)
supp(abcd) ≥ supp(abd) + supp(bcd) − supp(bd)
supp(abcd) ≥ supp(acd) + supp(bcd) − supp(cd)
supp(abcd) ≤ supp(abc)
supp(abcd) ≤ supp(abd)
supp(abcd) ≤ supp(acd)
supp(abcd) ≤ supp(bcd)
supp(abcd) ≥ 0

Figure 1: Bounds on supp(abcd).

3.3 Fixed Consequent First we consider the case of a
fixed consequent. In other words, the derivability (redun-
dancy) of a rule is a function of those subrules that explain
the same consequent. We handle this case as two separate
subclasses of rules, those with a single item consequent and
those with multiple items in the consequent.

First consider rules X ⇒ Y with |Y | = 1. Given all its
subrules with the same consequent and their respective sup-
ports and confidences, we immediately obtain the supports
of all subsets of X ∪ Y , except of the sets X and X ∪ Y
themselves.

EXAMPLE 1. Consider the rule abc ⇒ d. From each of
its subrules, e.g., ab ⇒ d, we obtain the support of two
subsets of abcd: the support of abd (the support of the rule)
and the support of ab (the support of the rule divided by its
confidence).

rule sets
ab ⇒ d ab, abd
ac ⇒ d ac, acd
bc ⇒ d bc, bcd
a ⇒ d a, ad
b ⇒ d b, bd
c ⇒ d c, cd

{} ⇒ d {}, d

The only two subsets of abcd that are missing are abc and
abcd, i.e., exactly those needed to compute the confidence of
the desired rule.

Thus, given the subrules of X ⇒ Y with the same
consequent, the support of X can be directly bounded.

For bounding the support of X ∪ Y , however, information
about X is missing, and we cannot simply use all derivation
formulas. To solve this, we first compute the bounds for
X , and then we compute the bounds for X ∪ Y for every
possible value of X . As a result, we have a set of triples
(v, l, u) with v a possible support value for X and l and u the
corresponding lower and upper bound for X∪Y respectively.

EXAMPLE 2. Suppose we want to bound the confidence of
the rule ab ⇒ c, given the following supports.

supp(ac) = 3
supp(bc) = 3
supp(a) = 7
supp(b) = 7
supp(c) = 5

supp({}) = 10

Then, bounding ab results in a lower bound of 4 = 7 + 7 −
10 = supp(a) + supp(b) − supp({}), and an upper bound
of 7 = supp(a) = supp(b). Then for every possible value
of the support of ab, we compute the bounds for the support
of abc and the corresponding bounds for the confidence of
ab ⇒ c.

supp(abc) conf (ab ⇒ c)
supp(ab) = 4 [1, 1] [1/4, 1/4]
supp(ab) = 5 [1, 2] [1/5, 2/5]
supp(ab) = 6 [2, 3] [2/6, 3/6]
supp(bb) = 7 [3, 3] [3/7, 3/7]

Hence, we can conclude that the confidence interval of ab ⇒
c is [1/5, 1/2].



As the example above shows, it is not sufficient to use
only values at the lower and the upper bounds of X when
computing the bounds for X ∪Y : the extreme values for the
confidence may occur at intermediate possible values of X .

Also note that a rule X ⇒ Y can be derivable even if
X is not. This is the case when all the bounds of X ∪ Y ,
for every possible value of X , result in the same equal upper
and lower bound on the confidende of X ⇒ Y , as illustrated
in the following example.

EXAMPLE 3. Suppose we want to bound the confidence of
the rule ab ⇒ c, given the following supports.

supp(ac) = 7
supp(bc) = 7
supp(a) = 7
supp(b) = 7
supp(c) = 10

supp({}) = 10

Then, bounding ab results in a lower bound of 4 = 7 + 7 −
10 = supp(a) + supp(b) − supp({}), and an upper bound
of 7 = supp(a) = supp(b). Then for every possible value
of the support of ab, we compute the bounds for the support
of abc and the corresponding bounds for the confidence of
ab ⇒ c.

supp(abc) conf (ab ⇒ c)
supp(ab) = 4 [4, 4] [1, 1]
supp(ab) = 5 [5, 5] [1, 1]
supp(ab) = 6 [6, 6] [1, 1]
supp(bb) = 7 [7, 7] [1, 1]

Therefore, we can conclude that the confidence of ab ⇒ c is
1, and hence, derivable.

When the consequent of a rule X ⇒ Y consists of more
than one item, then its subrules with the same consequent
do no longer provide the supports for all necessary subsets
of X ∪ Y . Although we can still derive tight bounds for X
using the usual inclusion-exclusion formulas, it becomes a
lot more complex to derive the bounds for X ∪ Y .

EXAMPLE 4. Consider the rule abc ⇒ de. From the
support and confidence of each of its subrules with the same
consequent, we again obtain the support of exactly 2 subsets
of abcde, i.e., the support of the conditions of the subrules
and the support of the sets containing the conditions and the
consequent.

ab ⇒ de ab, abde
ac ⇒ de ac, acde
bc ⇒ de bc, bcde
a ⇒ de a, ade
b ⇒ de b, bde
c ⇒ de c, cde

{} ⇒ de {}, de

Hence, apart from the missing supports of the subsets abc
and abcde, we now also don’t have any information on the
supports of d,e,ad,ae,bd,be,cd,ce,abd,abe,acd,ace,bcd, bce.

Since the consequents of all these rules are the same, we
can solve this problem by simply considering the consequent
as a single item which occurs in a transaction only if all items
in the consequent occur in that transaction. In that way, the
problem of multiple items in the consequent is reduced to the
case in which only a single item occurs in the consequent,
and hence, can be solved as described before.

3.4 Fixed Condition or Consequent We now study the
case where the considered subrules have either the same
condition or the same consequent as the original rule. The
motivation for this approach is that it is likely to be easier
for the user to understand redundancy with respect to such
subrules than all possible subrules.

To find such non-derivable rules, the first observation is
that we can divide the problem into two parts: (1) obtain con-
fidence bounds with fixed consequent subrules, as described
in the previous subsection, and with fixed condition subrules
(to be described below), and then (2) output the intersection
of the possible intervals as the result.

To bound the confidence of X ⇒ Y when only those
subrules are known that have X as the condition, we need to
bound the support of X ∪ Y , as the support of X is given.
To find the bounds, we simply restrict ourselves to those
inclusion-exclusion formulas containing only terms that are
supersets of X .

3.5 Using Only Some Subrules From an intuitive point of
view, it makes sense to measure the value or interestingness
of an association rule by comparing to its subrules. As
described above, this is exactly what happens when we
compute the bounds on the confidence of an association
rule using the inclusion-exclusion principle. Unfortunately,
for larger sets, the inclusion-exclusion formulas can become
quite large and complex, and hence, not so intuitive anymore.
Therefore, we also consider the case in which only those
subrules with a condition of a minimum size are allowed to
be used.

More specifically, for any subset J ⊆ I , we obtain
a lower or an upper bound on the support of I using one
of the formulas in (3.1) or (3.2), but now, we only allow
the formulas to be used for those subsets J ⊆ I such that
|I \ J | ≥ k − 1, for a user given parameter k > 0. We
also call this parameter the allowable depth of the rules to
be used. In Figure 1, the formulas are shown in descending
order of depth, starting with depth 5.

In our case we bound not one, but two sets which differ
by one in size. We use depth k − 1 for the condition of the
rule and depth k for all items in the rule.



Dataset #items trans. #trans. support
size threshold

chess 76 37 3 196 70% (2238)
connect 130 43 67 557 90% (60802)
mushroom 120 23 8 124 20% (1625)
pumsb 7117 74 49 046 85% (41690)

Table 1: Dataset characteristics

4 Experiments

For an experimental evaluation of the proposed algorithms,
we performed several experiments on real datasets also used
in [Zak00]. We implemented the proposed algorithms in
C++, and for comparison to recent methods we use the
original authors’ own implementations [LH04, JS02, Zak00,
ZP03].

All datasets were obtained from the UCI Machine
Learning Repository. The chess and connect datasets are
derived from their respective game steps, the mushroom
database contains characteristics of various species of mush-
rooms, and the pumsb dataset contains census data. Table 1
shows some characteristics of the used datasets; for each
dataset, we used the lowest support threshold that was men-
tioned in [Zak00]. The confidence threshold was set to 0%
in all experiments.

Figure 2 shows the effect of pruning for the four data
sets, as a function of the width of the bound on confidence.
Three different variants are shown in each panel (from
top to bottom): the number of non-redundant rules when
only subrules with identical consequent are used, when
only subrules with either identical consequent or identical
condition are used, and when all subrules are used. These
variants offer different trade-offs between the amount of
pruning and how easy it is for the user to understand what
was pruned. For a comparison, the number of (minimal)
closed rules is also given. (The numbers of minimal closed
rules have been obtained with M. Zaki’s implementation.
They differ from those reported by him in reference [Zak00],
since in the latter one he was not exactly mining minimal
rules [M. Zaki, personal communication].)

The immediate observation is that pruning has a dra-
matic effect on the number of rules (note that the Y axis has
a logarithmic scale). In particular, a large amount of rules
can be derived exactly. Some of the results are also given
in numerical form in Table 2. The table reports results for
exactly derivable rules with identical consequent subrules,
with identical condition or consequent subrules, or with all
subrules. The row “1% interval” was obtained by pruning
rules for which the lower and upper bounds of confidence
are at most 1 percentage point apart. Results with minimal
closed rules are included for comparison.

The number of non-derivable association rules is less

chess connect mushroom pumsb

All rules 8160101 3667831 19245239 1429297
100% 100% 100% 100%

Identical 1572360 557579 2829208 695871
consequent 19% 15% 15% 49%
Id. condition 65978 11231 94860 177155
or consequent 0.81% 0.31% 0.49% 12%
All subrules 4181 552 7546 16345

0.051% 0.015% 0.039% 1.1%
All subrules, 718 167 5358 543
1% interval 0.0088% 0.0046% 0.028% 0.038 %
Minimal 139431 15496 6815 71813
closed rules 1.7% 0.42% 0.035% 5.0%

Table 2: Number of rules after different pruning methods
(absolute number and percentage of all rules).

than the number of minimal closed rules already when using
only subrules with identical consequent or condition in chess
and connect datasets. In pumsb the number of non-derivable
association rules is less than the number of minimal closed
rules if we use all subrules to compute the upper and lower
bound. In mushroom the number of minimal closed rules
is slightly less than the number of non-derivable association
rules.

Relatively small error bounds, already in the order of
fractions of percent, can result in significant further pruning.
For example in the mushroom dataset, the number of non-
derivable association rules when using all subrules becomes
less than the number of minimal closed rules when we allow
the difference of upper and lower bound to be one percentage
unit. In other datasets the effect of allowing a small interval
for the confidence bounds is even more radical.

A comparison to the maximum entropy technique
[JS02] and basic association rules [LH04] is given in Fig-
ure 3. It shows the number of non-redundant rules with ex-
actly one item in the consequent, since the two other tech-
niques only find redundancies in such rules. A comparison
to the maximum entropy approach shows that sometimes it
is quite competitive, but it is not a very robust approach for
pruning in these cases. The algorithm is approximative and
iterative. As a compromise between efficiency and accuracy,
we used exactly 5000 iterations in these test; each run then
took less than a day except for the chess dataset, for which
the execution time was over three days. (The steps visible
in some of the maximum entropy graphs are due to a limited
accuracy in the output of the implementation, they are not
inherent in the method itself.)

The trend seems to be that for very low error bounds,
the proposed method is always superior. With a growing
error bound, the maximum entropy approach sometimes
outperforms non-derivable association rules. The number
of basic association rules is considerably greater than the
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Figure 2: The number of non-derivable and minimal closed association rules.

number of non-derivable rules in all four datasets. As a
technique that does not consider error bounds, the basic
association rules always outperform the maximum entropy
approach in terms of exact inference of rules; sometimes the
marginal is quite small, though.

For a further analysis of the proposed method, Figure 4
shows results for different depths of the formulas that were
allowed to be used (cf. Section 3.5). This figure only uses
association rules with exactly one item in the consequent.
The line labeled ’infinite depth’ denotes the number of non-
derivable rules when all possible formulas are allowed to be
used. Additionally, the figure also shows the number of asso-
ciation rules for which the condition is a non-derivable item-
set. Since this is a straightforward pruning mechanism based
on the notion of non-derivable sets, it shows from where
the actual power of the presented confidence derivation tech-

nique starts.
A remarkable result is that most of the derivable rules

are already derivable when only the inclusion-exclusion
formulas up to depth 3 are allowed to be used. Such a
result is particularly nice for the end user, since it means that
the reasons for redundancy of a rule are mostly in the most
immediate subrules, making the pruning more intuitive and
easy to understand.

Finally, Figure 5 shows the number of rules as a function
of the support thresholds much lower than those presented
in [Zak00]; again with a singular consequent. In these fig-
ures, an association rule was considered to be non-redundant
if the width of its confidence bound was more than 0.1%.
According to the figure, the presented technique scales very
well to low support thresholds and achieves roughly simi-
lar reductions in the number of association rules across the
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Figure 3: Number of non-derivable and basic association rules and rules produced by maximum entropy method.

ranges tested.

5 Conclusions

We presented a solid foundation for computing upper and
lower bounds of the confidence of an association rule, given
its subrules. When the upper and lower bounds are equal or
almost equal, we call the association rule derivable and con-
sider it to be redundant with respect to its subrules. The pre-
sented technique is based on the inclusion–exclusion princi-
ple, recently successfully used for bounding the support of
sets of items [CG02]. The method is simple, it gives abso-
lute bounds, and it does not assume any specific inference
system. The bounds and derivability follow from the def-
initions of support and confidence: when a rule is pruned
as exactly derivable, then there exists only one value for the
confidence that is consistent with all the subrules.

Experimental results with real data sets demonstrated
very high pruning power. In our experiments, up to 99–
99.99% of rules were exactly derivable, and always over
99.96% derivable within ±0.5% points. The amount of
pruning depends a lot on data set characteristics as well as
on the support threshold: the lower the threshold, the more
redundant is the rule set. In absolute terms, the figures
indicate great practical significance.

In comparison to related techniques, it is surprising how
efficient the proposed simple method is. The related tech-
niques almost invariably make strong assumptions, in the
form of fixing an inference system or an estimation method.
In the face of the experimental results, our simple and consis-
tent bounding can give much higher pruning factors without
any such assumptions.

We gave three different variants of the method, using
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Figure 4: The number of non-derivable association rules with a singular consequent.

different sets of subrules to obtain the confidence constraints.
They have different trade-offs between the amount of prun-
ing and understandability of pruning. An evaluation of dif-
ferent pruning mechanisms from the end user point of view
is a topic for further work.

An important and valid critique on the proposed tech-
niques is that in practice we do not actually have all subrules
of an association rule as some of them might not be con-
fident. Indeed, in our experiments, we never used the confi-
dence threshold for pruning, i.e. it was set to 0. Nevertheless,
also for higher minimum confidence thresholds, it is always
easy to simply compute the actual confidence of all necessary
subrules given the frequent itemsets. Furthermore, our ex-
periments show that the numbers of frequent non-derivable
association rules are extremely small without using a confi-
dence threshold. Note that in practice, it is not always clear

which confidence threshold should be used and rules with
small confidence can sometimes even be extremely interest-
ing.

Nevertheless, in future work, we will explore a sequen-
tial pruning mechanism in which only subrules are used that
are confident and that where not already pruned earlier.
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