
Graph Compression

Fang Zhou

Department of Computer Science and
Helsinki Institute for Information Technology HIIT,
PO Box 68, FI-00014 University of Helsinki, Finland

fang.zhou@cs.helsinki.fi

Abstract. Graphs form the foundation of many real-world datasets.
At the same time, the size of graphs presents a big obstacle to under-
stand the essential information they contain. In this report, I mainly
review the framework in article [1] for compressing large graphs. It can
be used to improve visualization, to understand the high-level structure
of the graph, or as a pre-processing step for other data mining algo-
rithms. The compression model consists of a graph summary and a set
of edge corrections. This framework can produce either lossless or lossy
compressed graph representations. Combined with Minimum Description
Length (MDL), it can produce a compact summary. The performance of
this framework is evaluated on multiple sets of real data graph.

1 Introduction

Nowadays, graphs are everywhere. Examples are social networks, communication
networks, biological networks and World Wide Web. With the development of
technology and the discovery of new knowledge, the size of these graphs become
larger and larger. Some graphs contain millions or even billions of nodes and
edges. Such a bulky graph presents new challenges to graph mining. One issue is
that a huge graph may severely restrict the application of existing pattern mining
technologies. Additionally, directly visualizing such a large graph is beyond our
capability.

The large number of nodes and edges encumber our discovery. Imagine a
compressed graph, conserving the characteristics of the original graph. We can
easily visualize it. The goal of compressing a graph is to make the high-level
structure of the graph easily understood. Therefore, informative graph compres-
sion techniques are required and have wide application domains. As an example,
Chen [2] successfully applies a graph compression method to reduce the number
of embeddings when searching frequent subgraphs in a large graph. Navlakha [3]
reveals biological modules with the help of compressed graphs. Furthermore,
Chen [4] incorporates the compressed graph notion with a generic topological
OLAP framework to realize online graph analysis.

Part of the graph compression problem is addressed by clustering algorithms,
as group members have similar characteristics and can be represented by (su-
per)nodes. Similar work is done by graph partitioning algorithms (e.g. [5, 6]),

2

which can be used to detect hidden community structures. However, most of
these algorithms are based on the distance matrix, and do not focus on the
structure of the original graph.

Another feasible technique is to construct a small graph consisting of a set of
the most important nodes and edges. Much literature has discussed how to rank
the centrality of nodes and edges (e.g. [7, 8]). For this work, the user needs to
specify a parameter which restricts the size of the output, while this parameter
sometimes will implicitly omit some information.

Frequent subgraph mining (e.g. [9]) can be an alternative technique, as it
already gives insight into the structure of subgraphs then we can only focus on
the rest of the graph. However, finding frequent subgraphs in a huge graph is a
complex computational task.

In this report, I focus on an information-theoretic technique [1] which can
construct both lossless and lossy compressed graph representations. This rep-
resentation R has two parts: one is a graph summary S, which captures the
important communities and relationships in the original graph; the other is a
set of edge corrections C, which helps to re-create the original graph from a
compressed graph.

The remainder of this report is organized as follows. We first describe several
compressed representation models in Section 2. In Section 3, we review one algo-
rithm to construct a globally compact representation and discuss its performance
in Section 4. Finally, we discuss future work in Section 5.

2 Compressed Representation Models

In this section, I first review some compressed graph representations proposed
by Navlakha [1]. Then, I discribe a complementary representation model by Tian
et al [10].

2.1 A general compressed graph representation

Assume an unweighted graph G = (VG, EG) is given. It has a representation
R = (S,C), which consists of a graph summary S = (VS , ES) and a set of edge
corrections C. Every node v in VG belongs to a (super)node V in VS which
represents a set of nodes of G. A (super)edge E = (Vi, Vj) in ES represents
the set of all edges connecting all pairs of nodes in Vi and Vj . I.e., we simply
collapse one bi-partite subgraph into two (super)nodes Vi and Vj , and replace
all the edges by a (super)edge between the (super)nodes. The edge corrections
in C have two forms: +e means adding e when re-creating the original graph,
and −e means deleting the edge when performing the re-creation. Now we have
the definition of an exact representation.

Definition 1. (An exact representation). Given a graph G = (VG, EG), suppose
VG can be partitioned into groups, i.e., VG = VG1 ∪ VG2 ∪ · · · ∪ VGk

, such that
VGi
∩ VGj

= ∅ (1 ≤ i 6= j ≤ k). Now we can summarize G into S, where S has

3

exactly k (super)nodes V1, V2, . . . , Vk that corresponds to each group (VGi
7→ Vi),

and each (super)edge (Vi, Vj) ∈ ES represents the edges between all pair of nodes
in Vi and Vj. The edge correction list C contains entries of the form ′− (vi, vj)′

for the edges represented by ES that are not present in G, and entries of the
form ′ + (vi, vj)′ for the edges that are in G but are not shown by (super)edges
in S. Pair (S,C) is an exact representation of G.

Fig. 1. A simple example of one graph’s representation. Source: [1].

Here, we give an illustrated example. Figure 1 shows the original graph (left)
and its representation (right). The original graph is divided into four parts, and
its size (number of edges) decreases from 11 to 6 (4 edges in the graph summary
and 2 in edge correction).

Note that in Definition 1, each node v inG belongs to exactly one (super)node
in S. That is, (super)nodes in S form disjoint subsets of nodes of G and the union
covers the set VG. Meanwhile, a self-edge can also exist in the compressed graph,
if, inside a subgraph, the nodes densely connect with each other.

The idea of this graph compression structure is to exploit the similarity of
the link structure of the nodes in the graph to realize space saving. The goal
is that S is a compact graph summary which highlights the key structure and
patterns of G, and C helps re-create the original graph. Intuitively, it is easy to
re-create the original graph from an exact representation, since it only needs to
expand each (super)node and correct edge connections through C.

2.2 MDL representation

Constructing a representation R is one form of space-saving approach. Here we
define the cost of a representation as the sum of the storage costs of its two
components, i.e., cost(R) = |ES | + |C|. (The cost of mapping of nodes onto
(super)nodes are ignored, since the cost are quite small compared to the storage
costs of the edge sets ES and C.) The edge sets ES and the edge corrections C
are solely determined by the internal structure of (super)nodes.

In information theory, the concept of Minimum Description Length (MDL) [11]
states that the best representation for a given set of data is the one that leads

4

to the largest compression of the data. Therefore, the representation of a given
graph which has the minimum cost is the best summary of that graph. We denote
this best graph summary as MDL representation R̂.

Theorem 1. (MDL representation). Given a graph G, an MDL representation
R̂ for G is one whose cost is the minimum, i.e., 6 ∃R′, cost(R′) < cost(R).

Here, we simplify the problem, assuming VS is fixed, and explain how to
construct a representation with minor cost. Consider any two (super)nodes Vi
and Vj . Πij denotes all possible edges between all pairs of nodes (vm, vn), vm ∈
Vi, vn ∈ Vj ; that is, |Πij | = |Vi| ∗ |Vj |, where |Vi| represents the number of
nodes belonging to (super)node Vi. The edges actually present between Vi and
Vj is denoted by Aij , i.e., Aij = Πij ∩ EG. Now we have two ways to represent
Aij in a compressed graph. One is adding all present edges in C, so the cost is
|Aij |. This is suitable in the case where two (super)nodes are loosely connected.
Another is to add one (super)edge between two (super)nodes and record other
nonexistent edges into C, so the cost is 1 + |Πij | − |Aij |. This can be used
when two (super)nodes have a dense connection. An extreme case is a complete
bi-partite subgraph, where only one (super)edge is needed.

Therefore, we simply choose, for each pair of Vi, Vj of (super)nodes, the
smaller cost cij of coding information Aij , i.e., cij = min{|Aij |, 1+ |Πij |−|Aij |}.
So, for a given graph, the representation cost is determined solely by the set
of (super)nodes chosen. However, finding the best set of (super)nodes for an
MDL representation is computationally expensive. We will discuss this issue in
Section 3.

2.3 Approximate representation

We have previously discussed an exact representation which can be used to
reconstruct the original graph. However, in most cases, users do not need the
original graph exactly. They can accept some tolerable errors in order to have a
more compact graph summary. A reasonably accurate construction is enough. So,
the exact neighbor set of a node can be replaced by an approximate neighbor
set. The error means that a neighbor of node v may not be v’s neighbor in
the representation, or vice-versa. We next define an approximate representation
formally.

Definition 2. (An approximate representation). Given a graph G and a user-
specified bounded error ε (0 ≤ ε ≤ 1), an ε-approximate representation Rε =
(Sε, Cε) satisfies the condition that, for each v ∈ G, the error(v) = |N ′

v −Nv|+
|Nv − N ′

v| ≤ ε|Nv|. Here, Nv and N ′
v denote the set of v’s neighbors in G and

Rε respectively.

In Definition 2, the term |N ′
v − Nv| is the number of v’s edges in the rep-

resentation which are not in the original graph, and the term |Nv − N ′
v| is the

number of v’s edges which can not be reconstructed. For each node, it is allowed

5

to have ε|Nv| errors at most. Therefore, ε-approximate representation Rε shows
at least (1− ε) fraction of all edges correctly.

Notice that, the MDL representation R̂ is a representaion with the error
ε = 0 and has a minimum cost. So, one simple and direct way to construct an
approximate representation is to remove some edges from C and S of an MDL
representation, where the removal action does not violate the approximatation
guarantee. Removing edges in C is easy; we just check whether removing edge
e = (u, v) guarantees that at least (1−ε) fraction of the orignal edges are still ad-
jancent to u and v. Removing a (super)edge in S is more complex, since we need
to check whether such removal will violate the guarantee of all edges’ endvertices
that have been merged into the two (super)nodes. Navlakha et al. [1] propose
the ApxGreeDY method to build an ε-approximate representation directly from
an original graph. However, we will not elaborate it here.

2.4 Label compatible representations

In above sections, the representation model deals with unlabeled graphs. How-
ever, edges often have labels. As an example, consider biological networks, where
nodes are biological entites, such as genes, protein, and edges have meaning, such
as “codes for”, “functionally associated to”, “belongs to”. Therefore, it is more
meaningful when compressing a graph that these labels are taken into account.
Here, I describe two representations presented by Tian [10].

Given a graph G = (VG, EG), Υ = {γ1, γ2, . . . , γn} denotes the set of edge
types and Λ = {a1, a2, . . . at} represents the set of nodes’ attributes. The value
of the attribute am of node vi is denoted as am(vi), and γi(G) represents the set
of edges of type γi. NeighborGroupsγm(vi) = {Vvt |(vi, vt) ∈ γi(G) and vt ∈ VG}
represents the group of (super)nodes to which vi’s neighbors belong and their
edge type is γm. Here, Vvt

denotes the (super)node to which node vt belongs.
We first describe a compressed graph that consists of a set of (super)nodes,

in which each node has the same attributes. Its definition is as follows.

Definition 3. (An attributes compatible representation SA.) Assume a graph
G = (VG, EG) and a set of attributes A ⊂ Λ(G). If a representation SA =
(V1, V2, . . . , Vn) satisfies that: ∀vi, vj ∈ VG, if vi ∈ Vm and vj ∈ Vm, then ∀ak ∈
A, ak(vi) = ak(vj). Then SA is compatible with A.

The difference between the previous representations and this attributes-
compatible representation is that the former focuses on the link structure of
nodes, i.e., the similarity of nodes’ neighborhood, and the latter focuses on the
attributes of nodes. One easy way to construct a global simplest representation
SA is to classify nodes based on the value of a node’s attribute.

Since SA only accounts for the node attributes, it ignores the relationship
between nodes. Therefore, we describe another representation SAL that is com-
patible with attributes and relationships.

Definition 4. (An attributes and relationships compatible representation SAL.)
Given a graph G = (VG, EG), a set of attributes A ⊂ Λ(G), and a set of re-
lationship types L ⊂ Υ , a representation SAL = (V1, V2, . . . , Vn) is compatible

6

with attributes A and relationship types L if: (1) SAL ⊂ SA; (2) ∀vi, vj ∈ VG, if
vi ∈ Vm and vj ∈ Vm, then ∀γm ∈ L, NeighborGroups γm

(vi) = NeighborGroups
γm(vj).

In a SAL, every node inside a (super)node has exactly the same value for A
and is adjacent to the same set of groups for all relationships in R.

3 Algorithm

In this section, I mainly review one algorithm, Greedy, for computing the MDL
representation. We first discuss how to choose which nodes to group together.

3.1 Cost of grouping nodes

Recall that the cost of storing the information between one (super)node Vi and
one of its neighbors Vj is cij = min{|Aij |, 1 + |Πij | − |Aij |}. If Vi and Vj are not
neighbors, then cij = 0. So the cost of one (super)node ci is the sum of the cost
of storing the information between Vi and all its neighbors, i.e., ci =

∑Nvi

k=1 cik,
where Nvi

is the number of vi’s neighbors. Therefore, we have the cost reduction
s(u, v) for any pair of nodes when combining node u and v into a new node w.

s(u, v) =
cu + cv − cw
cu + cv

The cost reduction s(u, v) is the ratio of the reduction in cost as u and v
are merged into w. Intuitively, any two nodes sharing common neighbors can
give a cost reduction. The reason for using relative cost reduction is to give
precedence to a pair of nodes whose common neighbors occupy a large proportion
of their total neighbors. Furthermore, the value of s(u, v) can be either positive
or negative (or zero). The maximum value of s(u, v) is 0.5 which occurs when
two nodes have exactly same neighbors, and the minimum value is negative when
the merger actually increases the cost. Here, we are only interested in the pair
(u, v) that has a positive s(u, v).

3.2 Greedy algorithm

The main idea of the Greedy algorithm [1] is to iteratively group two nodes with
the highest cost reduction.

The Greedy algorithm has three phases: Initialization, Iterative merging and
Output. It is outlined as Algorithm 1. In the initialization phase, the cost re-
duction s for all pairs of nodes who are 2 hops apart will be computed. When
the value of s is greater than 0, the pair of nodes and s value will be stored
in a standard max-heap strcture H (Line 5). The reason to add the “2 hops
apart”restriction is to ensure that such pair of nodes has at least one common
neighbor, since it is impossible to reduce the cost for a pair of nodes that have

7

no common neighbor. Furthermore, the heap strcture makes the calculation ef-
ficient.

In each round of merging phase, the globally best pair of nodes will be chosen
(Line 9), so node u and v will be removed from VS , and a new (super)node w
will be added into VS (Line 11). Now, we need to update two situations. The
first is to delete all pairs which have u or v in H, such as (u, x) and (v, x), since
u and v are not in the compressed graph any more. Then, we add (w, x) to H
when s(w, x) is greater than 0 (Line 12-15). The second is to examine whether
the removal of u and v will affect the cost reduction of their neighbors, denoted
by Nw, which is the union of the u’s neighbors Nu and v’s neighbors Nv)(Line
16-19). We need to update the cost reduction value s(x, y) for each x which is
one of the new (super)node w’s neighors. Meanwhile, y is 2 hops apart from x.
The total iteration will stop when there is no pair of nodes whose cost reduction
is bigger than 0.

In the output phase, the graph summary edge set, ES , and the edge correc-
tions, C, will be constructed. Recall that cuv = min{|Auv|, 1 + |Πuv| − |Auv|},
so if |Auv| > (1 + |Πuv|)/2, we add a (super)edge (u, v) into ES and other edge
−(a, b), which is not in the original graph, into C. Otherwise, we add all edges
between (super)nodes into C.

The Greedy algorithm can construct a much higher-level compressed graph
for a given graph. However, it has a high computational cost for finding the most
suitable pair of nodes to merge in every iteration. In [1], the authors propose
another light-weight algorithm, Randomized, which randomly picks a node and
merges it with the best node that gives the maximum cost reduction into (su-
per)nodes. The resulting graph of Randomized is not as compact as Greedy’s.
However, it is efficient. Here, we omit a detailed description of the procedure of
the Randmonized method.

4 Experiments and Conclusion

In this section, I describe the performance [1] of the MDL model from three
aspects. First, how much information can be compressed? Second, how efficient
is the algorithm? Third, how does the cost reduction compare with other com-
pression methods?

4.1 Experimental Data

For the experiments, the authors of article [1] choose the CNR dataset1, a web-
graph dataset which is extracted from a crawl of the CNR domain. The size of
graphs increases from 5k to 100k (CNR-100k has 100k nodes and 405,586 edges).
For performance comparison, they use the following three datasets: RouteView2

1 http://law.dsi.unimi.it/
2 http://www.routeviews.org/

8

Algorithm 1 Greedy Algorithm [1]
1: /* Initialization phase */
2: VS = VG; H = 0;
3: for all pairs (u, v) ∈ VS that are 2 hops apart do
4: if s(u, v) > 0 then
5: insert (u, v, s(u, v)) into H;
6:
7: /* Iterative merging phase */
8: while H 6= ∅ do
9: Choose pair (u, v) ∈ H with the largest s(u, v)

10: w = u ∪ v; /* merge (super)nodes u and v into w */
11: VS = VS − {u, v} ∪ {w}
12: for all x ∈ VS that are within 2 hops of u and v do
13: Delete (u, x) and (v, x) from H;
14: if s(w, x) > 0 then
15: insert (w, x, s(w, x)) into H;
16: for all pairs (x, y), such that x or y is in Nw do
17: Delete (x, y) from H;
18: if s(x, y) > 0 then
19: insert (x, y, s(x, y)) into H;
20:
21: /* Output phase */
22: ES = C = ∅
23: for all pairs (u, v) such that u, v ∈ VS do
24: if (Auv > (|Πuv|+ 1)/2) then
25: Add (u, v) to ES ;
26: Add −(a, b) to C for all (a, b) ∈ Πuv −Auv;
27: else
28: Add +(a, b) to C for all (a, b) ∈ Auv;
29: return representation R = (S = (VS , ES), C)

9

(10,000 ndoes and 21,000 edges), WordNet3(76,853 nodes and 121,307 edges),
and Facebook4(14,562 nodes and 601,735 edges).

4.2 Results

4.2.1 How much graphs can be compressed? The results are in Figure 2.
X-axis represents the number of nodes, and y-axis represents the number of
edges. The original cost of the graphs increases from 30k to 400k, and the cost
of the Greedy algorithm increases slowly from 10k to 110k. Notice that the
Greedy algorithm always makes the best compression. It consistently produces
a smaller compressed graph than the Randomized method does. When the size
of the original graph becomes larger, the compression ratio also increases. The
results indicate that a relatively large proportion of the original graph structure
can be compressed without losing any information.

Fig. 2. Costs of representation. Source: [1].

4.2.2 How efficient is the algorithm? The results are shown in Figure 3.
Observe that the running time of both methods climbs sharply when the size of
the graphs increases from 10k to 40k, and moves slowly when the size increases
from 40k to 100k. Furthermore, the Randomized method takes approximately
half of the time of Greedy, since during each merging step in Greedy method,
it first combines node pair that gives the maximum cost reduction, and then
for each neighbor of the new (super)node, it updates the cost of all pairs that
contains this neighbor.

3 http://vlado.fmf.uni-lj.si/pub/networks/data/
4 http://www.facebook.com/

10

Fig. 3. Comparison of running time. Source: [1].

4.2.3 Compression performance comparison Finally, we see the MDL
model compression performance compared with REF [12] and GRAC [13] on the
four datasets in Figure 4. REF is a popular technique for web graph compression,
and GRAC is a graph clustering algorithm. In Figure 4, the value of the y-
axis is the cost of the compressed representation divided by the original cost.
So, the lower the value is, the better the compression. Intuitively, the Greedy
method constructs highly compressed graphs for all four datasets. Meanwhile,
Randomized also performs better than REF and GRAC on all datasets.

Fig. 4. Comparison of graph compression algorithms. Source: [1].

11

5 Future Work

In this section, I discuss some issues which deserve to be studied based on what
I have learned from Article [1]

The first one is that, in articles [1] and [10], the authors propose compressed
graph models for unlabeled and labeled graphs, respectively, while both of them
ignore the edge weight. A novel graph compression model could produce a com-
pressed graph from a labeled and weighted graph. In a compressed graph, the
(super)edge weight represents the average weight between all pairs of nodes,
which is different from the meaning of (super)edge weight [10] which shows the
proportion of pairs of nodes directly connected with each other.

In this new model, the (super)edge weight shows the average connection be-
tween pairs of nodes in two (super)nodes. So, the real connection between each
pair of nodes may be modified, either increased or decreased, or left unchanged.
We can measure to which extent such information has been modified and then
construct a compressed graph with fewer (super)nodes and less quality modi-
fication. Or, we can allow the user to set the error bound, and the resulting
compressed graph would then consist of the fewest (super)nodes when the infor-
mation error is within bounds.

The second one is that, considering many real-world application domains are
naturally equipped with hierarchically organized taxonomies, we can construct
a taxonomy-based compressed graph, which can be a meaningful and under-
standable abstraction of the original graph. We can allow users to control the
resolutions of the compressed graph according to its hierarchical structure, and
provide “drill-down” and “roll-up” abilities to navigate through summaries with
different resolutions. Similar work has been done by Bonchi [14] in sequence
compression.

The last issue is that, the model in article [1] is a space-saving approach
to store a large graph, but it does not deal with the semantic meaning of the
original graph. Article [10] tries to extract the underlying information based on
the original graph. Another solution is based on the intermediary. For example,
we can first convert a graph into a text, and then do text mining, constructing
a smaller graph from the text instead of using the original graph.

References

1. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded
error. In: SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, New York, NY, USA, ACM (2008) 419–432

2. Chen, C., Lin, C., Fredrikson, M., Christodorescu, M., Yan, X., Han, J.: Mining
graph patterns efficiently via randomized summaries. In: 2009 Int. Conf. on Very
Large Data Bases, Lyon, France, VLDB Endowment (August 2009) 742–753

3. Navlakha, S., Schatz, M., Kingsford, C.: Revealing Biological Modules via Graph
Summarization. Presented at the RECOMB Systems Biology Satellite Conference.
J. Comp. Bio. 16 (2009) 253–264

12

4. Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.: Graph OLAP: Towards online ana-
lytical processing on graphs. In: ICDM ’08: Proceedings of the 2008 Eighth IEEE
International Conference on Data Mining, Washington, DC, USA, IEEE Computer
Society (2008) 103–112

5. Fjällström, P.O.: Algorithms for graph partitioning: A Survey. In: Linköping
Electronic Atricles in Computer and Information Science, 3. (1998)

6. Elsner, U.: Graph partitioning - a survey. Technical Report SFB393/97-27, Tech-
nische Universität Chemnitz (1997)

7. Gert, S.: The centrality index of a graph. Psychometrika 31(4) (December 1966)
581–603

8. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in
networks. Physical Review E 69 (2004)

9. Fiedler, M., Borgelt, C.: Subgraph support in a single large graph. In: ICDM
’07: Proceedings of the Seventh IEEE International Conference on Data Mining
Workshops, Washington, DC, USA, IEEE Computer Society (2007) 399–404

10. Tian, Y., Hankins, R., Patel, J.: Efficient aggregation for graph summarization.
In: SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international conference
on Management of data, New York, NY, USA, ACM (2008) 567–580

11. Rissanen, J.: Modelling by the shortest data description. Automatica 14 (1978)
465–471

12. Boldi, P., Vigna, S.: The webgraph framework i: compression techniques. In:
WWW ’04: Proceedings of the 13th international conference on World Wide Web,
New York, NY, USA, ACM (2004) 595–602

13. Dhillon, I., Guan, Y., Kulis, B.: A fast kernel-based multilevel algorithm for graph
clustering. In: KDD ’05: Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, New York, NY, USA, ACM
(2005) 629–634

14. Bonchi, F., Castillo, C., Donato, D., Gionis, A.: Taxonomy-driven lumping for
sequence mining. Data Mining and Knowledge Discovery (2009) 227–244

