Knowledge Discovery in Databases:

The Search for Frequent Patterns

Heikki Mannila Hannu Toivonen

September 24, 1998
(Minor modifications in 2002)

Contents

1 Introduction
1.1 What is knowledge discovery
1.2 The KDD process oo v i i ii i e e
1.3 Applications of knowledge discovery
1.3.1 Scientific applications.
1.3.2 Business applications
1.3.3 Data warchousing, OLAP, and knowledge discovery . .
1.4 KDD versus machine learning and statistics
1.5 Databases and data mining

2 Discovery of association rules
2.1 Associationrules, ... L,
2.2 Rulegeneration
2.3 Finding frequentsets
2.3.1 Apriori candidate generation
2.3.2 Databasepass.
24 Experiments.
25 Ruleranking L
2.6 Theoretical analyses
2.6.1 Alowerbound
2.6.2 Probabilistic analysis of random databases
2.6.3 Analysis of sampling
2.7 Extensions and bibliographic notes

3 An example problem: Alarm correlation
3.1 Fault management problems
3.2 Sketching asolution

4 Frequent episodes
4.1 Theframework,
4.2 Algorithms
4.2.1 Main algorithm L.
4.2.2 Generation of candidate episodes

31
31
34

39
39
43
43

CONTENTS

4.2.3 Recognizing episodes in sequences A7

4.2.4 General partialorders 53

4.2.5 Rule generation oL 54

4.3 Experiments. 55

5 Minimal occurrences of episodes 61
5.1 Outline of the approach 61
5.2 Finding minimal occurrences of episodes 63
5.3 Finding confidences of rules 65
5.4 Experimentalresults 66
5.5 Bibliographicnotes oL 67

6 The knowledge discovery process 71
6.1 AKDD framework, 71
6.2 Collecting and cleaning thedata. 72
6.3 Presentation of results using templates 73
6.4 Experiences with TASA, episodes, and associations 76
6.5 Bibliographicnotes L. 78

7 Discovery of all frequent patterns 81
7.1 Thediscovery task 81
7.2 The generic levelwise algorithm 83
7.3 BExamples 84
7.3.1 Associationrules L. 84

732 Episodes oo 85

7.3.3 Exactdatabaserules, ... 86

7.4 Discovery in several database states 89

8 Complexity of finding frequent patterns 91
8.1 Theborder 91
8.2 Complexity of the generic algorithm 93
8.3 The guess-and-correct algorithm 95
8.4 Problem complexity 97
8.5 Computing the border 98
8.6 Bibliographicnotes oL 101

9 Sampling large databases for frequent sets 103
9.1 Sampling in the discovery of frequent sets 103
9.2 Analysis of sampling 107
9.3 Experiments. 110
Bibliography 120

Preface

Knowledge discovery in databases (KDD), often called data mining, aims at
the discovery of useful information from large collections of data. The dis-
covered knowledge can be rules describing properties of the data, frequently
occurring patterns, clusterings of the objects in the database, etc. Data min-
ing has in the 1990’s emerged as visible research and development area; both
in industry and in science there is a need for methods for efficient analysis of
large data sets.

This book is intended to give an overview of the basic issues in KDD. The
technical emphasis is on the discovery of frequently occurring patterns, both
in relational and in sequential data, and in the search for database integrity
constraints from relational databases.

The book is divided into an introduction and 5 technical parts:

1.

2.

[

Introduction (Chapter 1): what is knowledge discovery?

Discovery of associalion rules (Chapter 2). Association rules are a
simple but useful formalism for expressing regularities in databases.
Association rules are a good example of how frequent patterns can be
located efficiently in a vast search space.

. Case study (Chapters 3 6): discovery of episodes in telecommunica-

tions alarm databases. In these chapters our aim is to give a general
picture of the process of knowledge discovery, from the initial problem
description to experiences with a fielded system. We also give detailed,
domain independent algorithms for the analysis of sequences of events.

. Theoretical aspects of knowledge discovery (Chapters 7 and 8). We give

a universal formulation of the problem of discovering of all frequent
patterns. We also provide a generic solution, and analyze properties of
both the problem and the solution.

. Sampling (Chapter 9). In the final chapter we discuss sampling and

show how it can be used to boost the (exact) discovery of patterns.

iii

Chapter 1

Introduction

Current technology makes it fairly easy to collect data, but data analysis
tends to be slow and expensive. Knowledge discovery in databases (KDD),
often called data mining, aims at the discovery of useful information from
large collections of data. The motivation for KDD is a suspicion that there
might be nuggets of useful information hiding in the masses of unanalyzed
or underanalyzed data, and therefore semiautomatic methods for locating
interesting information from data would be useful. The discovered knowledge
can be rules describing properties of the data, frequently occurring patterns,
clusterings of the objects in the database, etc. There are several successful
applications of data mining. See [23] for a recent overview of the area.

This introductory chapter gives a short discussion of some of the issues
in knowledge discovery. We start in Section 1.1 by looking at the definition
of knowledge discovery and some small examples, and we briefly discuss the
basic goals of knowledge discovery. The KDD process is considered in Sec-
tion 1.2. Some applications of KDD are described in Section 1.3. Section 1.4
discusses the role of machine learning and statistics in KDD and data mining,
Section 1.5 the role of databases.

1.1 What is knowledge discovery

Knowledge discovery in database can be loosely defined as the task of find-
ing interesting and potentially useful knowledge from large masses of data.
Examples of types of knowledge that could be discovered are

e association rules:
780 % of customers who buy beer and sausage buy also mustard”

e rules: ”if Age < 40 then Income < 10”

e functional dependencies:
“if t[A] = u[A], then {[B] = u[B]”

1

2 1. Introduction

o belief networks
o clusterings

To illustrate one of these concepts, we consider briefly association rules.
An association rule [1] about a relation 7 over schema R is an expression of
the form X = B, where X C R and B € R\ X. The intuitive meaning of
the rule is that if a row of the matrix r has a 1 in each column of X, then
the row tends to have a 1 also in column B.

Examples of data where association rules might be applicable include the
following.

e A student database at a university: rows correspond to students,
columns to courses, and a 1 in entry (s, ¢) indicates that the student s
has taken course c.

e Data collected from bar-code readers in supermarkets: columns cor-
respond to products, and each row corresponds to the set of items
purchased at one time.

e A database of publications: the rows and columns both correspond
to publications, and (p,p’) = 1 means that publication p refers to
publication p'.

e A set of measurements about the behavior of a number of systems,

say exchanges in a telephone network. The columns correspond to the
presence or absence of certain conditions, and each row corresponds to
a measurement: if entry (m, ¢) is 1, then at measurement m condition
¢ was present.

Given X C R, we denote by fr(X, r) the frequencyof X in r: the fraction
of rows of r that have a 1 in each column of X. The frequency of the rule
X = B in ris defined to be fr(X U {B},r), and the confidence of the rule
is fr(X U {B},r)/fr(X,r). The confidence is the observed probability with
which a row containing X also contains B.

In the discovery of association rules, the task is to find all rules X = B
such that the frequency of the rule is at least a given threshold min_fr and
the confidence of the rule is at least another threshold min_conf. In large
retailing applications the number of rows might easily be 106 or 107, and the
number of columns around 5000. The frequency threshold min_fr typically
is around 1072 — 107°. The confidence threshold min_conf can be anything
from 0 to 1. From such a database one might obtain hundreds or thousands of
association rules. (Of course, one has to be careful in assigning any statistical
significance to findings obtained with such methods.)

Note that there is no predefined limit on the number of attributes of the
left-hand side X of an association rule X = B; this is important so that

Draft 3

unexpected associations are not ruled out before the processing starts. It
also means that the search space of the rules has exponential size in the
number of attributes of the input relation. Handling this requires some care
for the algorithms, but there is a simple way of pruning the search space.

Example 1.1 Discovered in a student enrolment database, the association
rule { Distributed Operating Systems, Introduction to Unix } = Program-
ming in C (frequency = 2 %, confidence = 96 %) states that 96 % of the
students that have taken Distributed Operating Systems and Introduction
to Unix, also have taken Programming in C, and that 2 % of all the students
actually have taken all three courses. Such rules can be useful in obtaining
a picture of the combinations of courses actually taken by the students. The
acquired knowledge can be applied, e.g., in the design of individual courses
and the whole curriculum.

In market basket analysis, the number of products being sold can be large
and it is more difficult to have a hunch for all the associations in the data.
On the other hand, discovered patterns can be very valuable for the business.
A well-known story tells how a surprising association was discovered between
diapers and beer in late afternoons. With some research a fairly natural cause
was discovered: young fathers buying diapers on the way back home from
the work. This simple but surprising observation could maybe be capitalized
by placing beer closer to diapers, in order to make the impulse shopping
behaviour stronger, and maybe by placing chips right next to diapers and
beer.]

1.2 The KDD process

The goal of knowledge discovery is to obtain useful knowledge from large
collections of data. Such a task is inherently interactive and iterative: one
cannot expect to obtain useful knowledge simply by pushing a lot of data to
a black box. The user of a KDD system has to have a solid understanding
of the domain in order to select the right subsets of data, suitable classes of
patterns, and good criteria for interestingness of the patterns. Thus KDD
systems should be seen as interactive tools, not as fully automatic analysis
systems.

Discovering knowledge from data should therefore be seen as a process
containing several steps:

1. understanding the domain;
2. preparing the data set;

3. discovering patterns (data mining),

4 1. Introduction

4. postprocessing and presenting the discovered patterns, and
5. putting the results into use.

(See [22] for a slightly different process model and excellent discussion.)

Understanding the domain of the data is naturally a prerequisite for ex-
tracting anything useful: the user of a KDD system has to have some sort
of understanding about the application area before any valuable informa-
tion can be obtained. As an example, consider the discovered association
rule between diapers and beer. Beer probably is purchased in addition to
diapers, and the rule indicates a link that can potentially be strengthened.
On the other hand, if a strong association is discovered between bread and
butter, the actions taken could be opposite: placing bread and butter far
away from each other would force customers who really came to pick up
both items to spend more time in the store. Critical interpretation of data
mining results and the drawing of conclusions typically require good domain
knowledge. Data mining does not work by pushing a button.

If very good human experts exist for a domain, it can be hard for semi-
automatic tools to obtain any novel information. This can be the case in
fairly stable domains, where the humans have had time to achieve expertise
even in the details of the data. A possible example occurs in some areas of
retailing, where the products and customer profiles can stay about the same
for longer periods of time. The easiest application areas for KDD seem to
be ones where general human experts can be found, but the actual micro-
level properties of the data are changing. This seems to be the case in, e.g.,
telecommunications, where the operators of the networks have a fairly good
overview of the systems characteristics, but changes and updates in equip-
ment and software mean that actual expertise in the details of the data is
more difficult to obtain.

Preparation of the data set involves selection of the data sources, integ-
ration of heterogeneous data, cleaning the data from errors, assessing noise,
dealing with missing values, etc. This step can easily take up most of the time
needed for the whole KDD process. This is not surprising: the difficulties in
data integration are well known.

The pattern discovery phase in KDD is the step where the interesting and
frequently occurring patterns are discovered from the data. In this paper we
follow the terminology introduced in [22]: data mining refers to the pattern
discovery part of knowledge discovery. Elsewhere, especially in industry, data
mining is often used as a synonym for KDD.

The data mining step can use various techniques from statistics and ma-
chine learning, such as rule learning, decision tree induction, clustering, in-
ductive logic programming, etc. The emphasis in data mining research is
mostly on efficient discovery of fairly simple patterns.

The KDD process does not stop when patterns have been discovered.
The user has to be able to understand what has been discovered, to view

Draft 5

the data and patterns simultaneously, contrast the discovered patterns with
background knowledge, etc. Postprocessing of discovered knowledge involves
steps such as further selection or ordering of patterns, visualization, etc.
Some approaches to KDD methodology put a heavy emphasis on postpro-
cessing.

The KDD process is necessarily iterative: the results of a data mining
step can show that some changes should be made to the data set formation
step, postprocessing of patterns can cause the user to look for some slightly
modified types of patterns, etc. Efficient support for such iteration is one
important topic of development in KDD.

1.3 Applications of knowledge discovery

1.3.1 Scientific applications

Prominent applications of KDD include health care data, financial applica-
tions, and scientific data [65, 53, 20].

One of the more spectacular applications is the SKICAT system [21],
which operates on 3 terabytes of image data. Image processing of the pixels
produces approximately 2 billion objects, basically smudges of light, each
with 40 attributes. To be usable, the objects have to be classified into a few
classes: stars, galaxies, etc.

The task is obviously impossible to do manually. Using example classific-
ations provided by experts, the system induced decision trees and extracted
classification rules for the problem. The results are spectacular: verification
shows that the resulting classification is accurate, and the classification has
already been used to discover new high-redshift quasars.

Another astronomical application has been done on the radar data pro-
duced by the Magellan spacecraft that has surveyed the surface of Venus
using radar. The basic problem was to find out which features observed on
the surface are volcanos and which are not. The problem is complicated by
the fact that finding the “ground truth” is by no means trivial: it is not pos-
sible to obtain more accurate information about the surface of Venus than
that obtained by the Magellan spacecraft. The approach taken in [11] was to
search automatically for volcanos by first training the system using examples
provided by geologists.

In biological sciences the ability to analyze the 1-dimensional structure
of genes and proteins has made significant advances possible. Finding the
structures and functions of proteins is central in molecular biology. The
protein and gene data sets yield several important data mining problems,
such as the location of recurrent motifs from protein sequences, and similarity
searches among large sets of sequences. Several research groups have recently
used sophisticated hidden Markov model (HMM) methods to look for such
structural patterns [54, 55].

6 1. Introduction

1.3.2 Business applications

In business, the main area of application for KDD techniques has been mar-
keting. A typical problem is targeting of mail advertising: how to determine
which products should be offered to customers, on the basis of their past
purchase behavior? A good example of this type of work is the system Op-
portunity Explorer [6].

In many business domains, publication of details of succesful systems is
rare. Often the reason is simple: if data mining gives a competitive advant-
age, it is not wise to spread the word to competitors. Succesfull applications
are reported in in portfolio management, fraud detection, manufacturingand
production, and network management. See [10] for an overview of applica-
tions.

1.3.3 Data warehousing, OLAP, and knowledge discovery

In industry, the success of KDD is partly related to the rise of the concepts of
data warehousing and on-line analytical processing (OLAP). These strategies
for the storage and processing of the accumulated data in an organization
have become popular in recent years. KDD and data mining can be viewed
as ways of realizing some of the goals of data warehousing and OLAP.

In principle, a data warehouse aims at the storage and processing of all
relevant business data on an enterprise wide level for different analysis tasks.
The motivation for data warehousing is that such integrated data storage
can be immensely useful for making valuable inferences about the business
across the enterprise.

Knowledge discovery is a good way of using the data in the data ware-
house. Data warehousing, on the other hand, makes long-term knowledge
discovery cheaper, as a data warehouse removes a lot of the effort needed in
the early stages of the KDD process. On the other hand, data warehousing
often is very expensive: the integration of data from different sources can be
quite costly.

On-line analytical processing, OLAP, is a term introduced as a coun-
terpart to on-line transaction processing, OLTP, the traditional mode of
database usage. In OLAP the emphasis is on producing different types of
multidimensional reports for the use of strategic decision making in the or-
ganization. A possible way of differentiating between KDD and OLAP is to
say that OLAP is oriented towards verification, whereas KDD is typically
aiming at discovery. In OLAP systems, the user typically has in his mind a
question that he wants to be answered, whereas in KDD the user typically
has a less clear view of what is to be found from the data.

The boundary of KDD and OLAP is vague, and typically a succesful
KDD session leads to some more focused questions that could be labeled
OLAP-type.

1.4. KDD VERSUS MACHINE LEARNING AND STATISTICS 7

1.4 KDD versus machine learning and statistics

Data mining combines methods and tools from at least three areas: ma-
chine learning, statistics, and databases. Indeed, one can sometimes hear
the following comments.

e Data mining is just machine learning!
e Data mining is just statistics!
e What does data mining have to do with databases?

In this section we discuss briefly the first two points; the next sections are
devoted to a discussion on the third point.

The close links between machine learning, statistics, and data mining
are fairly obvious. All three areas aim at locating interesting regularities,
patterns, or concepts from empirical data. The exact relationships of these
areas have been subject to some debate.

Machine learning methods form the core of data mining: decision tree
learning or rule induction is one of the main components of several data
mining algorithms. There are some differences, however.

The emphasis on the process of knowledge discovery is one; large parts
of machine learning literature concentrate on just the learning or induction
step, although exceptions of course exist.

The next difference concerns the relative roles of concepts and data. It
seems that most of machine learning research assumes there is something to
be learned, i.e., that there is an underlying interesting concept or mechanism
that produces the data. The data can be corrupted by noise, errors, etc.,
but still the idea is that there is an interesting concept at the bottom. In
knowledge discovery, on the other hand, the data is the primary thing, and
one does not necessarily assume that there would be any sensible structure
behind the data. For example, in analyzing retail sales data, the data is what
it is, and the users are not interested in obtaining a full understanding of it;
useful nuggets of information are sufficient. Of course, this difference is not
absolute.

A third difference is related to the goals. KDD systems typically have
fairly modest aims, in terms of the complexity of the obtained knowledge.
Whereas parts of machine learning research aim at learning things that are
difficult for humans to do, most of the work in KDD aims at finding know-
ledge that a competent data analyst would in principle be able to find, if he
had the time. This distinction is particularly evident when one compares the
area of machine discovery to knowledge discovery.

An often cited difference between KDD and machine learning is the
amount of data. Traditionally, machine learning research has concentrated
on looking at data sets containing hundreds or thousands of examples, while

8 1. Introduction

KDD applications consider larger data sets. It is not clear how significant this
distinction is, however: some machine learning work has been done on huge
data sets, and KDD methods can be useful even on small data collections.
Furthermore, the essential source of complexity in data mining is typically
not the number of objects in the database, but rather the number of attrib-
utes: the number of possible patterns typically grows at least exponentially
in the number of attributes. This growth is the real source of difficulty, not
the number of objects in the database.

Summarizing, machine learning is at the core of KDD, but there are
differences between the areas.

In statistics the term data mining has been used for a long time, often
in slightly derogatory fashion, as referring to data analysis without clearly
formulated hypotheses. A more fashionable term is ezploratory data analysis
(EDA) [86], which stresses the supremacy of data as guiding the analysis
process. KDD and EDA have very similar aims and methods.

According to the interesting statistical perspective on KDD by Elder
and Pregibon [19], the focus of statistics has gradually moved from model
estimation to model selection. Instead of looking for the parameter values
that make a model fit the data well, also the model structure is part of the
search process. This trend fits the goals of KDD nicely: one does not want to
fix the model structure in advance. The recent advances in, say Markov chain
Monte Carlo (MCMC) methods, make it possible to consider far larger model
spaces than previously. In addition to these techniques, the KDD community
has lots to learn from statistics, e.g., in the handling of uncertainty.

The main difference between KDD and statistics is perhaps in the ex-
tensive use of machine learning methods in KDD, in the volume of data, and
in the role of computational complexity issues in KDD. For example, even
MCMC methods have difficulties in handling tens of thousands of parameter
values; some sort of combinatorial preprocessing is needed to make the model
selection task tractable. It seems that such combinations of methods can be
useful: combinatorial techniques are used to prune the search space, and
statistical methods are used to explore the remaining parts in great detail.

1.5 Databases and data mining

What is the role of database management systems in data mining? Normal
use of databases can be seen as deduction, whereas knowledge discovery aims
at induction. Furthermore, parts of database technology are not very relevant
to knowledge discovery. For example, recovery and transaction management
are issues that a KDD application typically does not have to care about.
Nevertheless, database management systems have been especially de-
veloped for the storage and flexible retrieval of large masses of structured
data, so at least in principle they should be suited for KDD. What database

Draft 9

systems have to offer is basically fast access to certain subgroups of a data
set and efficient computation of some characteristics of such subgroups.

Usual database systems are not very well suited for such tasks. Imple-
mentation of classification algorithms (say, C4.5) or neural networks on top
of a large database require tighter coupling with the database system and
smart use of indexing techniques. For example, training a classifier on a large
training set stored in a database requires possibly multiple passes through
the data using different orderings between attributes. This can be imple-
mented by utilizing DBMS support for aggregate operations, indexes and
database sorting (‘order by’). Clustering may require efficient implementa-
tions of nearest neighbor algorithms on the top of large databases. Finally,
generation of association rules can be performed in many different ways,
depending on the amount of main memory available. There have been a
growing number of papers on this subject at recent VLDB and SIGMOD
conferences.

Database mining should learn from the general experience of DBMS field
and follow one of the key DBMS paradigms [43]: building optimizing com-
pilers for ad hoc queries and embedding queries in application programming
interfaces. Thus, the focus should be on increasing programmer productivity
for KDD application development.

Queries, however have to be much more general than SQL; similarly,
the queried objects have to be far more complex than records (tuples) in
relational database.

1. Introduction

Chapter 2

Discovery of association rules

In this chapter we study the discovery of association rules, a simple but
important case of frequent patterns. Association rules we introduced in [1]
for the analysis of market baskets. We specify the problem formally in Sec-
tion 2.1. In Section 2.2 we review how association rules can be generated
when all frequent sets of items are given as input. In Section 2.3 we give an
cfficient method for the discovery of all frequent sets. Experiments with the
method are described in Section 2.4. Extensions and other related work are
reviewed in Section 2.7. In Section 2.5 we consider the problem of select-
ing interesting rules from the set of generated rules. Section 2.6 gives some
simple theoretical results about the association rule finding problem.

2.1 Association rules

Given a collection of sets of items, association rules describe how likely vari-
ous combinations of items are to occur together in the same sets. A typical
application for association rules is in the analysis of the so called supermar-
ket basket data: the goal is to find regularities in the customer behavior in
terms of combinations of products that are purchased often together. The
simple data model we consider is the following,.

Definition 2.1 Given a set R, a 0/1 relation r over R is a collection (or
multiset) of subsets of R. The clements of R are called ilems, and the
elements of r are called rows. The number of rows in r is denoted by |r|, and
the size of ris ||r]] = 20, |t]-]

Example 2.2 In the domain of supermarket basket analysis, items represent
the products in the stock. There could be items such as beer, chips, diapers,
milk, bread, and so on. A row in a basket database then corresponds to
the contents of a shopping basket: for each product type in the basket, the
corresponding item is in the row. If a customer purchased milk and diapers,
then there is a corresponding row {milk, diapers} in the database. The

11

12 2. Association rules

Row ID || Row

4 A,B,C,D,G}
ty A,B,E,F}

i3 B,I,K}

ta A,B,H}

s E,G,J}

Figure 2.1: An example 0/1 relation r over the set R = {A4,..., K}.

quantity or price of items is not considered in this model, only the binary
information whether a product was purchased or not.

The number of different items can be in the order of thousands, whereas
typical purchases only contain at most dozens of items. When practical
storage structures for such sparse databases are used, the physical database
size closely corresponds to ||r]| = 3,¢, |t]- O

We use letters A, B, ... from the beginning of the alphabet to denote
items. Theset of all items is denoted by R, and other sets of items are denoted
by letters from the end of the alphabet, such as X and Y. Calligraphic
symbols, such as §, denote collections of sets. Databases are denoted by
lowercase letters such as r, and rows by letters ¢ and u.

An interesting property of a set X C R of items is how many rows contain
it. This brings us to the formal definition of the term “frequent”.

Definition 2.3 Let R be a set and r a 0/1 relation over R, and let X C R
be a set of items. The item set X matchesarowt € r, if X Ct. The (multi)
set of rows in r matched by X is denoted by M(X,r), i.e., M(X,r) =
{t € r | X C t}. The frequency of X in r, denoted by fr(X,7), is \Mﬁ%ﬂ
We write simply M(X) and fr(X) if the database is unambiguous in the
context. Given a frequency threshold min_fr € [0, 1], the set X is frequent' if
(X, r) > min_fr. O

Example 2.4 Consider the 0/1 relation r over the set R = {4,..., K}
in Figure 2.1. We have, for instance, M({4, B},r) = {{1,l2,14} and
fr({A,B},r) = 3/5=0.6. The database can be viewed as a relational data-
base over the schema {A4, ..., K}, where 4, ..., K are 0/1-valued attributes,
hence the name “0/1 relation”. Figure 2.2 presents the database in this form.

O

A set X is frequent if it matches at least a fraction min_fr of the rows in
the database . The frequency threshold min_fris a parameter given by the

"In the literature, also the terms large and covering have been used for “frequent”, and
the term support for “frequency”.

Draft 13
[RwID[[A[B][C|DJEJF|G[H]T]J]K
4 T[I[1[1J0[0[TJ0]0J0]0
B T[1]0Jo[T[1][0]0]0]0]0
ts Ot joJoJojofolo[t]o[1
U T[1]0Jo0]0[0]0 T]0]0]0
[0OJojo]o[tjo[T]o]0][1]0

Figure 2.2: The example 0/1 relation r in relational form over 0/1-valued
attributes {4, ..., K}.

user and depends on the application. For notational convenience, we next
introduce notations for collections of frequent sets.

Definition 2.5 Let R be a set, 7 a 0/1 relation over R, and min_fr a fre-
quency threshold. The collection of frequent sets in r with respect to min_fr
is denoted by F(r, min_fr),

F(r,minfr) ={X C R | fr(X,r) > min_fr},

or simply by F(r) if the frequency threshold is clear in the context. The
collection of frequent sets of size [is denoted by Fi(r) = {X € F(r)||X| = {}.
m}

Example 2.6 Assume that the frequency threshold is 0.3. The collec-
tion F(r,0.3) of frequent sets in the database r of Figure 2.1 is then
{{A},{B},{F},{G},{A, B}}, since no other non-empty set occurs in more
than one row. The empty set § is trivially frequent in every 0/1 relation; we
often ignore the empty set as a non-interesting case.]

We now move on and define association rules. An association rule states
that a set of items tends to occur in the same row with another set of items.
Associated with each rule are two factors: its confidence and frequency.

Definition 2.7 Let R be a set, » a 0/1 relation over R, and X, Y C R
sets of items. Then the expression X = Y is an association rule over r.
The confidence of X = Y in r, denoted by conf(X = Y,r), is "r\&)&“:’ﬂ L
The frequency fr(X = Y,r) of X =Y in ris f(X UY,r). We write simply
conf(X = Y) and fr(X = Y) if the database is unambiguous in the context.

Given a frequency threshold min_fr and a confidence threshold min_conf,
X = Y holds in r if and only if fr(X = Y,r) > min_fr and conf(X =
Y, r) > min_conf. m}

In other words, the confidence conf(X = Y,r) is the conditional prob-
ability that a randomly chosen row from r that matches X also matches Y.

14 2. Association rules

The frequency of a rule is the amount of positive evidence for the rule. For
a rule to be considered interesting, it must be strong enough and common
enough. The association rule discovery task [1] is now the following: given R,
r, min_fr, and min_conf, find all association rules X = Y that hold in r with
respect to min_fr and min_conf, and such that X and Y are disjoint and
non-empty.

Example 2.8 Consider, again, the database in Figure 2.1. Suppose we have
frequency threshold min_fr = 0.3 and confidence threshold min_conf = 0.9.
The only association rule with disjoint and non-empty left and right-hand
sides that holds in the database is {A} = {B}. The frequency of the rule is
0.6 > min_fr, and the confidence is 1 > min_conf. The rule {B} = {A} does
not hold in the database as its confidence 0.75 is below min_conf. O

Note that association rules do not have monotonicity properties with
respect to expansion or contraction of the left-hand side. If X = Y holds,
then X U {A} = Y does not necessarily hold, since X U {A} = Y does not
necessarily have sufficient frequency or confidence. Or, if XU{A} = Y holds,
then X = Y does not necessarily hold with sufficient confidence. Association
rules are not monotone with respect to expansion of the right-hand side
neither: if X = Y holds, then X = Y U {A} does not necessarily hold with
sufficient frequency or confidence. Association rules are only monotone with
respect to contraction of the right-hand side: if X = Y U {A} holds, then
X =Y holds.

2.2 Rule generation

Association rules that hold in a 0/1 relation can be discovered in two
phases [1]. First, find all frequent item sets X C R and their frequencies.
Then test separately for all Y C X with Y # () whether the rule X \Y = Y
holds with sufficient confidence. Algorithm 2.9 (from [1]) uses this approach
to generate all association rules that hold in the input database. The harder
part of the problem, the task of finding the frequent sets, is considered in the
following section. Note that indentation is used in the algorithms to specify
the extent of loops and conditional statements.

Theorem 2.10 Algorithm 2.9 works correctly.

Proof First note that conf(X = Y,r) = %ﬂ = fl}-ﬁ%;)

Clearly, all association rules X = Y that are output by the algorithm
hold in the input database r: fr(X = Y) > min_frsince f(X UY) > min_fr
(line 2), and conf(X = Y) > min_conf (line 6).

All association rules X = Y that hold in the input database r are also
output by the algorithm. Since fr(X = Y) > min_fr, also f(XUY) > min_fr,

Draft 15

Algorithm 2.9
Input: A set R, a 0/1 relation r over R, a frequency threshold min_fr, and a
confidence threshold min_conf.
Output: The association rules that hold in r with respect to min_fr and min_conf,
and their frequencies and confidences.
Method:
// Find frequent sets (Algorithm 2.14):
compute F(r, min_fr) := {X C R ‘ fr(X,r) > min_fr};
/ Generate rules:
for all X € F(r, min_fr) do
for all Y C X with Y # 0 do
if fr(X)/fr(X \Y) > min_conf then
output the rule X \' Y =Y, fr(X), and fr(X)/fr(X \Y);

IS RN N ICE R

and X UY must be in F(r, min_fr) (line 2). Then the possible rule X =Y
will be checked (lines 4 and 5). Since conf(X = Y) > min_conf, the rule
will be output (line 6). O

2.3 Finding frequent sets

Exhaustive search of frequent sets is obviously infeasible for all but the smal-
lest sets R: the search space of potential frequent sets consists of the 2/Fl
subsets of R. A more efficient method for the discovery of frequent sets can
be based on the following iterative approach. For each [= 1,2,..., first
determine a collection C; of candidate sets of size [such that ;(r) C C;, and
then obtain the collection F;(r) of frequent sets by computing the frequencies
of the candidates from the database.

For large data collections, the computation of frequencies from the data-
base is expensive. Therefore it is useful to minimize the number of candidates,
even at the cost of the generation phase. To generate a small but sufficient
collection of candidates, observe the following properties of item sets. Obvi-
ously a subset of items is at least as frequent as its superset, i.e., frequency is
monotone increasing with respect to contraction of the set. This means that
for any sets X and Y of items such that Y C X, we have M(Y) D M(X)
and fr(Y) > fr(X), and we have that if X is frequent then Y is also frequent.
Proposition 2.11 takes advantage of this observation and gives useful inform-
ation for candidate generation: given a set X, if any of the subsets of X is not
frequent then X can be safely discarded from the candidate collection Cx|.
The proposition also states that it actually suffices to know if all subsets one
smaller than X are frequent or not.

Proposition 2.11 Let X C R be a set. If any of the proper subsets Y ¢ X
is not frequent then (1) X is not frequent and (2) there is a non-frequent
subset Z C X of size | X| — 1.

16 2. Association rules

Algorithm 2.14

Input: A set R, a 0/1 relation r over R, and a frequency threshold min_fr.
Output: The collection F(r, min_fr) of frequent sets and their frequencies.
Method:

¢ o= {{4} | A€ R);
l=1

while C; # 0 do
// Database pass (Algorithm 2.22):
compute Fi(r) :={X € C | f(X,r) > min_fr};
l:=1+1;
// Apriori candidate generation (Algorithm 2.18):
compute G := C(Fi—1(r));

for all { and for all X € #,(r) do output X and fr(X,r);

000 =1 T A WO N =

Proof Claim (1) follows directly from the observation that if X is fre-
quent then all subsets ¥ C X are frequent. The same argument applies
for claim (2): for any ¥ C X there exists Z such that Y C Z C X and
|Z] =|X]| - 1. If Y is not frequent, then Z is not frequent. O

Example 2.12 If we know that
Fa(r) = {{4, B}, {A4.C}, {4, E}, {4, F},{B,C}, {B. E}.{C. G},

then we can conclude that {A, B,C} and {A, B, E} are the only possible
members of F3(r), since they are the only sets of size 3 whose all subsets of
size 2 are included in Fy(r). Further on, we know that F4(r) must be empty.

O

We now use Proposition 2.11 to define a candidate collection of sets of
size { + 1 to consist of those sets that can possibly be frequent, given the
frequent sets of size [. This definition is the heart of the Apriori algorithm.

Definition 2.13 Given a collection Fi(r) of frequent sets of size {, the (Apri-
ori) candidale collection generated from Fi(r), denoted by C(Fi(r)), is the

collection of sets of size [+ 1 that can possibly be frequent:
C(A(r))={XCR||X|=l+1andY ¢ Fi(r)forall Y C X,|Y|=1}.
O
We now finally give Algorithm 2.14 (Apriori) that finds all frequent sets.
The subtasks of the algorithm, for which only specifications are given, are

described in detail in following subsections.

Theorem 2.15 Algorithm 2.14 works correctly.

Draft 17

Proof We show by induction on [that F;(r) is computed correctly for all I
For [= 1, the collection C; contains all sets of size one (line 1), and collection
Fi(r) contains then correctly exactly those that are frequent (line 5). For [>
1, assume F;_1(r) has been correctly computed. Then we have F;(r) C C; =
C(Fi—1(r)) by Proposition 2.11 (line 8). Collection Fj(r) is then correctly
computed to contain the frequent sets (line 5).

Note also that the algorithm computes ,ﬂX|(r) for each frequent set X:
since X is frequent, there are frequent sets at least the subsets of X of
sizes 1 to | X|, so the ending condition C; = @) is not true for { < |X]. a

From Proposition 2.11 it follows that Definition 2.13 gives a sufficiently
large candidate collection. Theorem 2.16, below, shows that the definition
gives the smallest possible candidate collection in general.

Theorem 2.16 For any collection S of subsets of X of size {, there exists a
0/1 relation r over R and a frequency threshold min_fr such that Fi(r) = §
and Fiyq(r) = C(S).

Proof We use a simple trick: set 7 = SUC(S) and min_fr=1/|r|. Now all
sets in § and C(S§) are frequent, i.e., § C Fi(r) and C(S) C Fiq1(r). Further
on, Fi41(r) C C(S) since there are no other sets of size {+1 in r. To complete
the proof we show by contradiction that F;(r) C S. Assume that Y € Fi(r)
is not in §. Then there must be X ¢ C(S) such that Y C X. However, by
Definition 2.13 all subsets of X of size [are in S.]

In candidate generation, more information can be used than just whether
all subsets are frequent or not, and this way the number of candidates can be
further reduced. Sometimes even the exact frequency of a set can be inferred.

Example 2.17 Assume sets {4, B}, {4,C}, {4, D}, {B,C}, and {B, D}
are frequent. Definition 2.13 gives {A, B,C} and {A, B, D} as candidates
for I = 3, and Theorem 2.16 shows that such a 0/1 relation exists where
{A,B,C} and {A, B, D} are indeed frequent.

If, however, we know that fr({A, B,C}) = fr({A, B}), then we can infer
that fr({A, B, D}) < min_fr. Intuitively, item C partitions the database: all
of {A, B} occurs with C, but less than min_fr of D occurs with C, since
fr({C, D}) < min_fr, and therefore {A, B, D} cannot be frequent. If the
frequency of {A, B,C} is computed first, it is not necessary to compute the
frequency of {A, B, D} from the database at all.

We have a slightly different situation if fr({A, B}) = fr({A}). Then we
have M({A}) C M({B}),s0 M({4,C}) = M({A, B,C})and fr({A,C}) =
fr({A, B,C}). Thus the frequency fr({4, B,C}) needs not to be computed
from the database.]

An algorithm such as 2.14 could, in principle, take advantage of situ-
ations similar to the above examples. Such situations do not, however, occur

18 2. Association rules

Algorithm 2.18

Input: A lexicographically sorted array ¥;(r) of frequent sets of size .

Output: C(F,(r)) in lexicographical order.

Method:

1 for all X € Fi(r) do

2 forallY € 7 (7) such that X <Y and X and Y share their { — 1
lexicographically first items do

3. for all Z C (X UY) such that [Z] =1 do

4. if Z is not in #;(r) then continue with the next Y at line 2;

5 output X UY;

frequently, and the effort saved can be less than the effort put into finding
these cases. Furthermore, Algorithm 2.14 combines the computations of the
frequencies of all candidate sets of size [to one pass; the number of database
passes would seldom be reduced.

2.3.1 Apriori candidate generation

‘We now consider the computation of candidate collections as defined in Defin-
ition 2.13. The trivial method to compute the candidate collection C(F(r))
is to check for each possible set of size [+ 1 whether the definition holds, i.e.,
if all its { + 1 subsets of size ! are frequent. A more efficient way is to first
compute potential candidates as unions X UY of size {+ 1 such that X and Y
are frequent sets of size {, and then to check the rest of their subsets of size [.
Algorithm 2.18 presents such a method. For efficiency reasons, it is assumed
that both item sets and collections of item sets are stored as arrays, sorted
in the lexicographical order. We write X < Y to denote that X precedes Y
in the lexicographical order.

Theorem 2.19 Algorithm 2.18 works correctly.

Proof First we show that the collection of potential candidates X UY
considered by the algorithm is a superset of C(Fi(r)). Given a set W in
C(Fi(r)), consider the subsets of W of size {, and denote by X’ and Y’ the
first and the second subset in the lexicographical order, respectively. Then
X' and Y’ share the [— 1 lexicographically first items of W. Since W is a
valid candidate, X’ and Y’ are in F(r). In the algorithm, X iterates over
all sets in Fi(r), and at some phase we have X = X’. Now note that every
set between X’ and Y’ in the lexicographical ordering of F;(r) must share
the same [— 1 lexicographically first items. Thus we have ¥ = Y' in some
iteration while X = X’. Hence we find a superset of the collection of all
candidates. Finally, a potential candidate is correctly output if and only if
all of its subsets of size [are frequent (line 4). O

Draft 19

The time complexity of Algorithm 2.18 is polynomial in the size of the
collection of frequent sets and it is independent of the database size.

Theorem 2.20 Algorithm 2.18 can be implemented to run in time O((?
[7i(r) | log | Fi(r)])-

Proof The outer loop (line 1) and the inner loop (line 2) are both iterated
O(|Fi(r)]) times. Given X and Y, the conditions on line 2 can be tested in
time O(!).? On line 4, the remaining / — 1 subsets need to be checked. With
binary search, a set of size [can be located from F;(r) in time O(llog | Fi(r)|).
The output on line 5 takes time O({) for each potential candidate. The
total time complexity is thus O(|F(r)|2({ + (I — 1)llog|Fi(r)| + 1)) =
O | Fi(r)|?log |Fi(r))- o

The upper bound of Theorem 2.20 is met when / = 1: all pairs of frequent
sets of size 1 are created. After that the number of iterations of the inner
loop on line 2 is typically only a fraction of | F;(r)].

Instead of only computing C(Fi(r)), several successive families C(F(r)),
C(C(F(r))),C(C(C(F(r)))),...can be computed and then checked in a single
database pass. This trades off a reduction in the number of database passes
against an increase in the number of candidates, i.e., database processing
against main memory processing. Candidates of size [+ 2 are computed
assuming that all candidates of size [+ 1 are in fact frequent, and therefore
C(Fi41(r)) C C(C(Fi(r))). Several candidate families can be computed by
several calls to Algorithm 2.18.

Generating several candidate families is useful when the overhead of gen-
crating and testing the extra candidates C(C(Fi(r))) \C(Fi41(r)) is less than
the effort of a database pass. Unfortunately, estimating the volume of extra
candidates is in general difficult. The obviously useful situations are when

[C(C(Fi(r)))] is small.
Example 2.21 Assume

Fa(r) = {{4,B},{4,C} {4, D}, {4, E},
{B,C},{B, D}, {B,G},{C, D}, {£:G}}.

Then we have

C(F() = {{4,B,C),{A. B,D},{A,C,D},{B.C, D}},
C(C(F2(r)) = {{4,B,C,D}}, and
ceEeFm)) = 0.
It would be practical to evaluate the frequency of all 5 candidates in a single
pass.]

2 Actually, the values of ¥ can be determined more efficiently with some extra book-
keeping information stored every time candidates are generated. A more detailed method
using this idea is presented in Section 4.2.2.

20 2. Association rules

Algorithm 2.22

Input: A set R, a 0/1 relation r over R, a candidate collection C; 2 Fi(r, min_fr),
and a frequency threshold min_fr.

Output: The collection F(r, min_fr) of frequent sets and their frequencies.
Method:

// Initialization:
for all A € R do A.is_contained_in :=
for all X € (; and for all A € X do
A.1s_contained_in := A.1s_contained_in U {X };
for all X € (; do X.freq_count := 0;
// Database access:
for allt € r do
for all X € C; do X.item_count :=0;
for all A €t do
10. for all X € A.is_contained_in do
11. X.ilem_counl := X .ilem_count + 1;
12. if X.ilem_count = | then X .freq_counl := X _freq_counl + 1;
13. // Output:
14. for all X € ; do
15. if X.freq_count/|r| > min_fr then output X and X.freq_count/|r|;

D00~ AL N =

2.3.2 Database pass

We turn now to the database pass of Algorithm 2.14. Algorithm 2.22 presents
a method for computing the frequencies of candidates from a database.

For each item A € R we maintain a list A.is_contained_in of candidates
that contain A. For each candidate X we maintain two counters. Variable
X.freq_count is used to count the number of rows that X matches, whereas
variable X.item_count records, for the current row, the number of items of X.

Theorem 2.23 Algorithm 2.22 works correctly.

Proof We need to show that the frequency of each candidate X € C; is
computed correctly; obviously the correct sets are then output (line 15). The
frequency counters are initialized to zero on line 5. The claim that remains
to be shown is that for every X in C;, the frequency counter is increased on
line 12 once for each row ¢ such that X C ¢.

First consider the initialization phase. After lines 2 and 4, foreach A € R
we have A.is_contained_in = {X | X € C; and A ¢ X}. Consider now lines 8
to 11: given a row ¢, these lines compute for each set X in C; the size of the
intersection ¢ N X in the variable X.item_count. The value of X.item_count
reaches the size of X (lines 11 and 12) if and only if X C ¢, in which case
the frequency counter is increased by one. O

The time complexity of the algorithm is linear in the size of the data-
base and in the product of the number of rows and the number and size of
candidates.

Draft 21

Theorem 2.24 The time complexity of Algorithm 2.221is O(]|r||+1|r]|Ci| +
|R]).-

Proof The time complexity of initialization is O(|R|-+1|C;|+|C]) (lines 2-5).
The time complexity of reading the database is O(||r|[) (line 7). Initialization
of candidates for all rows takes time O(|r||Ci|) (line 8). For each row, each
candidate is updated at most [times; the worst-case time complexity for
computing the frequencies is thus O(l|r||Cy|). Output takes time O([|Cy]).
The time complexity for the whole database pass is thus O(|R|+|C/| +|C/| +
el rHCil + EirlICil + 2|Cl) = O(lIrl] + LrlICi] + |R]). o

There are a number of practical improvements to the algorithm. As an
example, to determine that an infrequent set X C R really is not frequent,
one has to read at least a fraction 1 —min_fr of the rows of the database. With
a relatively large frequency threshold min_fr it could be practical to check
and discard a candidate if there are less rows left than are needed for the
candidate to be frequent. In the best case, all candidates could be discarded
when less than a fraction min_fr of the database rows are left. Thus the best
possible saving is less than a fraction min_fr of the original time.

2.4 Experiments

To illustrate the behavior of the methods in practice, we present experimental
results with a course enrollment database of the Department of Computer
Science at the University of Helsinki. The database consists of registration
information of 4 734 students: there is a row per student, and the items are
the courses offered by the department. The “shopping basket” of a student
contains the courses the student has enrolled to during his or her stay at the
university. The number of courses is 127, and a row contains on the average
4.3 courses. The experiments in this and the following chapters have been
run on a PC with a 90 MHz Pentium processor and 32 MB of main memory,
under the Linux operating system. The data collections resided in flat text
files.

Table 2.1 gives an overview of the amount of frequent sets of different
sizes found with frequency thresholds 0.01-0.2. The table shows that the
number and the size of frequent sets increases quickly with a decreasing
frequency threshold. Frequency threshold 0.2 corresponds to a set of at least
947 students, and 0.01 to 48 students, i.e., with threshold 0.01 all rules that
hold for at least 48 students are found.

An overview of various characteristics of the same experiments is given
in Table 2.2. On the top, the table shows the number of candidates and
the time it took to generate them. Next, the number of frequent sets, their
maximum size, and the time to compute the frequencies from the database
are shown. The row “match ratio” shows how large fraction of candidate sets

22 2. Association rules

Size Frequency threshold

0.200 0.100 0.075 0.050 0.025 0.010

1 6 13 14 18 22 36
2 1 21 48 7 123 240
3 0 8 A7 169 375 898
4 0 1 12 140 776 2203
5 0 0 1 64 1096 3805
6 0 0 0 19 967 4899
7 0 0 0 2 524 4774
8 0 0 0 0 165 3 465
9 0 0 0 0 31 1845
10 0 0 0 0 1 690
11 0 0 0 0 0 164
12 0 0 0 0 0 21
13 0 0 0 0 0 1

Table 2.1: Number of frequent sets of each size with different frequency
thresholds.

was actually frequent. The lower parts of the table then show the number of
rules generated from the frequent sets with different confidence thresholds,
and the time it took to generate them.

The table shows that for reasonable frequency and confidence thresholds
the time it takes to generate candidates is smaller by a magnitude than
the time for the database pass, although our database is small. For large
databases the candidate generation time can, in practice, be ignored. As
was already noted, the number of frequent sets grows quickly when the
threshold is lowered. The number of candidate sets grows almost identic-
ally, but the number of rules explodes: with frequency threshold 0.01 and
confidence threshold 0.5 there are 1.8 million rules.

The table shows that the candidate generation method works well: the
number of candidates is quite close to the number of frequent sets, espe-
cially with lower frequency thresholds. Table 2.3 shows in more detail the
experiment with min_fr = 0.025. In the first couple of iterations there is not
much combinatorial information available, and subsequently there are over
100 non-frequent candidates. After that the candidate generation method
works very effectively, and the match ratio is at least 90 %.

The execution times of the database passes of our experiments are roughly
linear in the total number of items in the candidate collection. This is con-
sistent with the result O(||r|| + {|r]|Ci| + |R|) of Theorem 2.24. In our case
[|7]] is a fairly small constant since the database is small, and |R] is even less
significant. We tested the scale-up properties of the algorithms by producing
2, 4, 8, and 16 fold copies of the data set. Figure 2.3 presents the relative

Draft 23

Frequency threshold
0.200 0.100 0.075 0.050 0.025 0.010

Candidate sets:
Count 142 223 332 825 4685 24 698
Generation time (s) 0.1 0.1 0.2 0.2 1.1 10.2

Frequent sets:

Count 7 43 122 489 4080 23 041
Maximum size 2 4 5 7 10 13
Database pass time (s) 0.7 1.9 35 103 71.2 379.7
Match ratio 5% 19% 31% 59% 87 % 93 %

Rules (min_conf=0.9):
Count 0 3 39 503 15737 239 429

Generation time (s) 0.0 0.0 0.1 0.4 46.2 2 566.2
Rules (min_conf=0.7):

Count 0 40 193 2347 65181 913 181

Generation time (s) 0.0 0.0 0.1 0.8 774 5 632.8
Rules (min_conf=0.5):

Count 0 81 347 4022 130680 1810 780

Generation time (s) 0.0 0.0 0.1 1.1 106.5 7 613.62

Table 2.2: Characteristics of experiments with different frequency thresholds.

Candidates Frequent sets Match

Size | Count Time (s) | Count Time (s) ratio

1 127 0.05 22 0.26 17 %

2 231 0.04 123 1.79 53 %

3 458 0.04 375 564 | 8%

4 859 0.09 776 12.92 | 90 %

5 1168 0.21 | 1096 18.90 | 94 %

6| 1058 0.30 967 18.20 | 91 %

7 566 0.24 524 9.69 | 93%

8 184 0.11 165 3.09 | 90%

9 31 0.04 31 0.55 | 100 %

10 3 0.01 1 0.15 | 33%
11 0 0.00

Total 4 685 1.13 | 4080 71.19 87 %

Table 2.3: Details of candidates and frequent sets for each size with min_fr =
0.025.

24 2. Association rules

16 A 0.025 A
0.075 =—
0.200 4$—

Relative
time 8 i

4

2 %

1 3

1 2 4 8 16

Relative size of database

Figure 2.3: Results of scale-up tests.

running times for frequency thresholds 0.2, 0.075, and 0.025, including both
candidate generation and database passes. As expected, the execution time
is linear with respect to the number of rows in the database. Note also that
the constant term of the candidate generation time does not essentially show
in the figures.

2.5 Rule ranking

The number of association rules can be large, as was demonstrated by the
experimental results with the course enrollment database in Section 2.4. Ob-
viously, it would be useful to be able to rank the resulting rules into an
approximate order of interest. We now briefly look at some possible ways to
rank association rules.

The most simple choices are the confidence and frequency of rules. These
are already known, so no extra computation is required. Confidence and
frequecy also have clear interpretations. One of the major problems that
remains is the redundancy of rules. For instance, if the frequency of A is
high then the confidence of any rule X = {A} is likely to be high (roughly
equal to the frequency of A) even when X and A occur independently of each
other. If the confidence of a rule X = Y is close to the frequency of Y then
X has no effect on Y, and the rule can hardly be interesting.

Draft 25

“Significance” Let us first consider a significance measure that closely
corresponds to the statistical significance level.

As a simple example, consider an association rule {A} = {B}. Consider
the frequencies fr(A) and fr(B) as given, and the size of M({A, B}) as a
random variable X. Recall that the confidence is obtained from |[M({A, B})|
by just dividing it by |[M(A)|. Assuming that A and B are independent, X
has a binomial probability distribution: you have |M(A)| Bernoulli trials
each with success probability fr(B).

The actual size of M({A, B}) is measured in the database (and it de-
termines the confidence). Given the distribution of X, one can compute the
probability that the value of X deviates from its expected value at most as
much as the size of M ({A, B}) does. This probability can be used as a meas-
ure of significance or deviation from expectation for the rule. A value close
to 1 means that the deviations would be smaller almost certainly if A and
B were independent, i.e., there is strong evidence for dependence between A
and B. A value close to 0 means that the deviation from the expected value
could be caused by common random effects.

Couple of notes are in order. First, a significance value of s would be
usually expressed as 1 — s by statisticians. Second, you should be careful
when talking about (statistical) significance: the statistical tradition is to
formulate a hypothesis, test it, and obtain some significance measure, whereas
in the case of association rules you test a huge number of hypothesis, and
it is likely that some will look significant by random. There are methods
like Boneferroni adjustment for taking this into account, but it is still not
quite clear what the whole picture is if you compare the situation with more
traditional statistical settings. So it is maybe safer to just talk about a
significance measure, or a measure of deviation or interestingness.

J-measure The J-measure, introduced in [80], is an information theoretic
measure for ranking rules. It measures, individually for each association rule
X =Y, the information gained about ¥ over the situation where only the
frequency of Y is known.

Expressed in terms of association rules, the J-measure is defined as

,
JX=Y) = f(X) (conf(X =) log (%) +

1 conf(X =Y)
)
The first term, fr(X), favours frequent rules, and the second term is known
as the cross-entropy, the information gain of the rule. The J-measure has
unique properties as a rule information measure and is in a certain sense a
special case of Shannon’s mutual information. From a practical viewpoint,
the measure provides a useful and sound method for ranking rules in a bal-
anced manner with respect to both the frequency and confidence of rules.

(1— conf(X = Y))log (

26 2. Association rules

2.6 Theoretical analyses

The algorithms presented in the previous sections perform quite well in prac-
tice. For large databases and meaningful frequency and confidence thresholds
the running time is dominated by the complexity O(||r|| + {|r]|Ci| + |R]) of
the database passes (Theorem 2.24).

2.6.1 A lower bound

The quantity |C| can be exponential in the number of items, as all itemsets
can be frequent. If there are only a few frequent sets, the above algorithms
still investigate several candidates. Next we show that this is to some degree
inevitable. We give an information-theoretic lower bound for finding one
association rule in a restricted model of computation where the only way of
getting information from a database is by asking questions of the form “is
the set X frequent”. This model is realistic in the case the database is large
and stored using a database system, and the model is also quite close to the
one underlying the design of the original algorithm [1].

Theorem 2.25 Assume the database has m = |R| items. In the worst case
one needs at least

log ('E) ~ hlog(m/h)

questions of the form “is the set X frequent” to locate one maximal frequent
set, where h is the size of the frequent set.

Proof Consider a database with exactly 1 maximal frequent set of size
h. There are (T) different possible answers to the problem of finding the
maximal frequent set. Each question of the form “is the set X frequent”
provides at most 1 bit of information. O

This lower bound is not optimal for small values of h. For example,
assume that there is exactly one frequent set of size 1. Then any algorithm for
finding this set has to use at least ©(m) queries of the above type. However,
the bound is fairly tight for larger values of h.

Loveland [57] has considered the problem of finding “critical sets”. Given
a function f : P(R) — {0,1} that is upwards monotone (i.c., if f(Y) =1
and Y C X, then f(X) = 1), aset X is eritical if f(X) =1, but f(Z) =0
for all subsets Z of X. Thus maximal frequent itemsets are complements
of critical sets of the upwards monotone function

., J 0 if R\Y is frequent
)= { 1 otherwise.

For example for h = m/2, the lower bound above matches exactly the upper
bound provided by one of Loveland’s algorithms.

Draft 27

2.6.2 Probabilistic analysis of random databases

The number of frequent sets is an important factor influencing the running
times of the algorithms. We now show that in one model of random databases
all frequent itemsets have small size.

Consider a randomly generated database r = {ty,...,,} over items R =
{A1, Ay, ..., Ay}; assume that each row [;, of the database contains any item
A; with probability ¢, and assume that the entries are independent. Then
the probability that {; contains A; for all A; in a given itemset X is q",
where h = | X|. The number z of such rows has a binomial distribution with
parameters n and ¢".

The Chernoff bounds [5, 36] state that for all @ > 0 we have

Prlz > ng" +d] < e 2%In,

We thus obtain

Prlz > sn] = Prlz > ng" + n(s — ¢")] < e m(s=a")?

where n is the number of rows and s = min_fr is the frequency threshold.
Thus the expected number of frequent itemsets of size h is bounded by
mhe’zn(s’qh)i, where m is the number of items. This is less than 1 provided
s > /(Rlnm)/n + ¢". TFor large databases and thus for large n the first
term is very small. Hence if s > ¢", the expected number of frequent sets
of size h is small. (For s = min_fr = 0.01 and ¢ = 0.1, this means h > 2;
for s = 0.0001 and ¢ = 0.1, this means h > 4.) Thus a random database
typically has only very few frequent itemsets. Of course, databases occurring
in practice are not random.

2.6.3 Analysis of sampling

The running times of the algorithms depended linearly on the size of the
database. One possibility of lowering this factor is to use only a sample of
transactions.

‘We postpone the discussion until Chapter 9, where we show that relatively
small samples give good approximations of frequencies and give a sampling-
based method for finding association rules in one or two passes over the
database.

2.7 Extensions and bibliographic notes

Since their introduction in 1993 [1], association rules have been researched a
lot. In this section we discuss related work, some of which regards extensions
to the basic framework of association rules. More remotely related research
is discussed in Chapter 8.

28 2. Association rules

Candidate generation Definition 2.13 and Algorithm 2.14 for candidate
generation were presented independently in [3, 62]. We touch this subject
again in Chapter 4, where we present in detail an algorithm that can deal,
in addition to sets, also with multisets and ordered sets.

The frequent set discovery method presented in [1] also works in a gen-
erate and test fashion, but the candidate generation is quite different. An
essential difference is that in [1] both candidate generation and evaluation are
performed during the database pass. Most importantly, however, the method
fails to take advantage of Proposition 2.11 and it generates candidates that
cannot be frequent. Also in experimental comparisons the method of [1] has
been shown to perform worse than the algorithms of this section [2, 3, 62].

Association rule generation The confidence of association rules is mono-
tone decreasing with respect to moving items from the left-hand side of the
rule to the right-hand side. This property can be used to reduce the number
of potential rules to be tested in the rule generation in Algorithm 2.9. The
idea is that for a set X € F(r), the rule X \'Y = Y is only tested if all
rules X \ Z = Z with Z C Y have high enough confidence. Actually, the
candidate generation Algorithm 2.18 can be used to construct candidates for
rule right-hand sides [3].

Database pass For large databases it is important to minimize the data-
base activity, i.e., improve on Algorithm 2.22. Matching a candidate X
against a row in the database in the straightforward way results in repeating
work that has been done previously. Namely, the subsets of X have been
matched against the row already in the previous passes. Instead of starting
from the scratch again, information about the matches of the subsets can be
utilized. In particular, a candidate set X matches exactly those rows that
are matched by any two subsets of size [X |—1[3]. One can create a new tem-
porary 0/1 relation with an item for each candidate, and fill in the database
during the database pass. Given a candidate X in the next pass, only two
items representing subsets of X from the previous pass are needed to determ-
ine a match, and the old database is not needed at all. There is a trade-off:
while matching is faster when reusing results, the size 3" x¢e, |[M(X)| of the
temporary database may be even larger than the original database. Such re-
use does not usually pay off in the first iterations: there are many candidates
and they have high frequencies.

An alternative strategy for the database pass is to use inverted struc-
tures [40, 77]. The idea here is to organize the storage by the items of the
original database rather than by its rows. The information per an item A
is represented by the set M({A}) of (the identifiers of) the rows that con-
tain A. With inverted structures, the database pass consists of computing
intersections between these sets: the set M (X) of rows containing X is the in-

Draft 29

tersection of the sets M ({A}) for all A in X. For |C;| candidates with / items
cach, the use of inverted structures results in somewhat smaller asymptotic
worst-case time complexity O(|r| |C;]) than the bound O(]|7||+|r||Ci|+|R])
of not using inverted structures. The main difference is that when using in-
verted structures, the non-frequent items need not be read at all. The above
mentioned idea of reusing results from previous database passes can be imple-
mented efficiently by storing the intersections representing frequent sets [40].
The size of the temporary database consisting of these inverted structures is
then Fxex () [M(X)].

An efficient method for the discovery of frequent sets takes advantage
of the fact that with small databases the database needs to be read only
once from the disk and can then remain in main memory. In the Partition
method [77], a database too large to fit in main memory is partitioned, and
cach partition is analyzed separately in main memory. The first database
pass consists of identifying in each part the collection of all locally frequent
sets. For the second pass, the union of the collections of locally frequent sets
is used as the candidate set. The first pass is guaranteed to locate a superset
of the collection of frequent item sets; the second pass is needed to merely
compute the frequencies of the sets.

Hashing has been used at least for two tasks in the discovery of frequent
sets. In [3], hashing is used during the database pass to efficiently determ-
ine the collection of candidates that match a row. The method of [73], in
turn, uses hashing to identify and prune non-frequent candidates before the
database pass.

There is also a modification of the original algorithm of [1] that uses SQL
for the discovery of frequent sets [42].

Item hierarchies Association rule algorithms have been generalized to
work with items arranged to hierarchies or taxonomies [37, 40, 81]. Concept
hierarchies exist often for the items: for instance, in the supermarket envir-
onment we know that Samuel Adams is a beer brand, that beer is a beverage,
and so on. The idea is now to search for rules on several levels in the hier-
archy, such as beer = chips and Samuel Adams = chips. The former rule
gives useful information about beers in general, while the latter one may be
interesting if its confidence differs significantly from the first one.

Non-binary data In the basic setting, association rules are found between
sets of items. It would be useful to be able to search for associations between
values of attributes in more general. Association rules between discrete values
of different attributes can be found in a straightforward way by considering
the (attribute, value) pairs as items. The number of items is then the sum of
the sizes of the domains of all attributes. The candidate generation method
can be modified so that it does not generate internally inconsistent candidate

30 2. Association rules

sets that contain items derived from the same attribute. Association rules for
numeric attributes are considered in [27, 82, 88]. In addition to associations
between single values, as above, the authors develop methods for automatic
selection of useful value intervals to be used in the sets and rules.

Chapter 3

An example problem: Alarm
correlation

In this part we consider a case-study in KDD: the problem of analyzing
alarms from a telecommunication network. Telecommunication networks are
large systems consisting of such complex components as switches, base sta-
tions, radio links, etc. Network elements produce large amounts of alarms
about the faults in a network. Fully employing this valuable data is, however,
difficult, due to the high volume and the fragmented nature of the informa-
tion.

This part consists of 4 chapters. In this chapter we introduce the problem
and outline one possible framework for knowledge discovery in alarm data-
bases. In Chapter 4 we give a full and domain independent formulation for
the framework and present algorithms for the task. In Chapter 5 we present
an alternative approach and algorithms. The ideas have been implemented
in a system called TASA, for Telecommunication Alarm Sequence Analyzer.
We conclude this part in Chapter 6, where we look briefly at the KDD process
in this particular case.

3.1 Fault management problems

Telecommunication networks are growing fast, and at the same time the task
of identifying and correcting faults is becoming more difficult. The task is
critical, since faults that interfere with the services offered by the network
are costly for the operator. The quality of service plays also an important
role in the growing competition between operators.

Telecommunication networks and alarms A telecommunication net-
work can be viewed as consisting of a number of interconnected components:
switches, transmission equipment, etc. Each component can in its turn con-
tain several subcomponents. The number of components depends on the

31

32 3. Alarm correlation

abstraction level used in viewing the system; a network operated by a local
telephone company can be considered to contain 10-1000 components. We
use the term network element to refer to the components under consideration.

An alarm is a message emitted by a network element, typically when a
problem is encountered. Telecommunication systems are more or less fault
tolerant, so the problem is not necessarily visible to the users. So faults are
reported by network elements, and typically before the users are affected,
but unfortunately a network element has a very narrow view to the network.
A network element can therefore only report the symptoms of the fault from
its limited viewpoint. On the other hand, one fault can result in a number
of different alarms from several network elements.

Example 3.1 An actual alarm, as shown to the network manager, typically
looks something like this:

1234 EL1 BTS 940926 082623 Al Channel missing

The first field identifies the type of the alarm and the last field is the name of
the alarm type. The second and third fields, EL1 and BTS, idendify the net-
work element that emitted the alarm and the type of that network element,
respectively. The next two fields are the date and time when the alarm was
sent. Finally, the sixth, A1, tells the priority level of the alarm on a scale
from 1 to 5. O

The information contents of alarms vary a lot. Some alarms concern
problems in logical concepts, such as virtual paths, some concern physical
devices, such as power supplies. Some alarms report a distinct failure, e.g.,
that the incoming signal is missing, whereas some only report high error rate
without any hint for the cause.

Even in a small telecommunication network there can be hundreds of
different types of alarms. The number of alarms produced by a network
varies greatly, of course, but typically there can be about 200-10000 alarms
a day.

Processing of the alarm flow is a difficult task for the following reasons.

e The size of the networks and the diversity of alarm types mean that
there are a lot of different situations that can occur.

The alarms occur in bursts, and hence there is only little time for
network managers to decide what to do with each alarm. However,
when lots of alarms occur within a short time the operators should
intervene.

The hardware and software used in telecommunication networks de-

velop fast. As new elements are added to the network or old ones are
updated, the characteristics of the alarm sequences are changed. Thus
the network managers do not have time to learn what the appropriate
response to each situation is.

Draft 33

Alarm correlation A central problem of fault management is to determ-
ine which alarms are related, to combine the information in related alarms,
and to make inferences about the faults and their locations. It is the task of
a network management center to correlate the alarms as they are received
from the network. Correlating alarms means combining the fragmented in-
formation they contain and interpreting the flow of alarms as a whole. Alarm
correlation systems typically are expert systems performing operations such
as (i) removing alarms carrying redundant information, (i) filtering out low-
priority alarms when higher-priority alarms are present, or (iii) substituting
a set of alarms by some new information [45]. The goal of alarm correlation
is to reduce the amount of information shown to the network managers, im-
prove the usefulness of the information, and ultimately to identify the most
probable faults that caused the alarms and to possibly even propose cor-
rective actions. While the prediction of severe faults is a difficult task, the
economic benefits that would be obtained from such predictions would be
significant.

In addition to the alarms received from a network, several sources of
background information are essential in alarm correlation. Knowledge about
the topological relationships of network elements is crucial. A lot of other
sources are also useful for interpreting alarms. For instance, knowledge about
recent problems in the network may help to explain certain alarms.

While the use of alarm correlation systems is quite popular and methods
for specifying the correlations are maturing, acquiring all the knowledge ne-
cessary for constructing an alarm correlation system for a network and its
clements is difficult. The complexity and diversity of network elements and
the large variation in the patterns of alarm occurrences pose serious problems
for network management experts trying to build a correlation model.

Alarm correlation is typically based on looking at the active alarms
within a time window, and interpreting them as a group. We adopt the
following formal view to alarm correlation, similar to the one taken, e.g.,
in [44]. Abstractly, the input to a correlation system is an ordered sequence
(A1, t1), (Agyty), ... of alarm occurrences. A correlation patlern describes a
situation that can be recognized in an alarm sequence within a time window
of a given length. Typically, a correlation pattern is an expression on the set
of active alarms of, e.g., the last five minutes. If in a given window there is
a set of alarms that matches the correlation pattern, then the set is said to
be an occurrence of the pattern. Associated with each correlation pattern is
a correlation action, which is to be executed when there is an occurrence of
the corresponding pattern in a window.

Example 3.2 Consider a correlation pattern containing two alarms, “link
alarm from X with severity 17 (alarm type A) and “high faull rate in X7
(alarm type B), where the variable X may be replaced by the same network
clement in both alarms. Assume that when alarms of types A and B co-occur,

34 3. Alarm correlation

they are known to be followed by fatal problems in the network element X.
The correlation action could combine the information in the alarms to a high
priority warning message “X will probably collapse within an hour”, present
it to the network manager, and filter out the original alarms. O

Given correlation patterns and actions, and a sequence s of alarms,
an alarm correlation process continuously observes the incoming alarm se-
quence s, considers the last time window on s, and executes the actions
associated with the patterns that occur in the window.

Alarm correlation and filtering systems for telecommunication network
management have been presented, e.g., in [29, 30, 44, 45, 47, 71, 9]. Similar
approaches have been used successfully also in process control tasks [66].

The problem Building a system for alarm correlation is a difficult task.
Networks are large and network elements are complex. The number of cor-
relation patters can be very large, and acquiring them from technical experts
is a tedious task.

Correlations may pass unnoticed by the experts, for different reasons. It
can be that an expert knows a correlation but did not come to think about
it, or a correlation can be such that the expert did not even know there was
a connection between certain alarms. Both networks and network elements
evolve quickly over time, so a correlation system is never complete. It also
takes time for the experts to learn new correlations and to modify existing
ones.

3.2 Sketching a solution

Setting the goal Our high-level goal is to discover useful knowledge from
telecommunication alarms, mainly to help in the construction of alarm correl-
ation systems. From a sequence of alarms different types of knowledge can
be discovered, for example neural networks, hazard models, or rule-based
representations. If the goal would be just to obtain good predictive perform-
ance, a neural network could be useful. There is impressive evidence on the
wide applicability of neural networks. However, in the current application
one important goal is the comprehensibility of the discovered knowledge: the
telecommunication operators do not wish to install any “black boxes” into
their systems. This rules out the simple-minded use of neural networks.
From the statistical point of view, an alarm sequence can be viewed as a
marked point process, and each event (i.e., an alarm) can be considered as a
failure of a component. Therefore the hazard rate based methods of analysis
of failure-time data for the data can be used. Combined with the Bayesian
paradigm, the statistical machinery for these types of models is very powerful.
However, these methods require a lot of human effort in the building of the

Draft 35

EDF A BCEF C D BAD C EFC BEAECF A D

time

Figure 3.1: A sequence of alarms.

statistical models, as well as enormous amounts of computational resources.
Currently they are not feasible for the analysis of hundreds of different types
of alarms and their potential relations.

In this case rather simple rule-based formalisms are useful. Since the
correlation systems are often based on looking at a time window of the alarm
sequence at a time, it would be useful to use a similar concept in the dis-
covered rules. So we choose as our goal the discovery of rules of the following
form: “if certain alarms occur within a time window of a given width, then
certain other alarm also occur within the time window”. This type of rules
are particularly useful for the following reasons.

e Comprehensibility: such rules are easy to understand and verify.
e “Standards”: Correlation patterns closely resemble this rule format.

e Characteristics of the application domain: such rules can be represent-
ations of simple small causal relationships within the domain.

A first solution Let us now outline an exact representation of the problem.
The alarms contain a number of fields, and the most important ones are the
type of the alarm and the network element that sent the alarm. We first
consider only the alarm type. The occurrence time is also essential: in the
interest of considering different windows on the alarm sequence, we want to
know the times of the alarms. Unfortunately though, the time stamps on
the alarms can be inaccurate, due to unproper synchronization of clocks in
the network elements. Anyway, we choose to view an occurrence of an alarm
abstractly as a pair (A, t), where A is the alarm type and L is the time of the
alarm. A sequence of alarms can now be represented as a sequence of alarm
types, as in Figure 3.1. In the figure, A, B,C, D, F, and F are alarm types,
and they have been marked on a time line.

What are the useful rules like more exactly? We want a set of alarms to
occur close to each other, i.e., within a time window, as in the correlation
patterns. Because of the poor synchronization of clocks, the rules should not
be very sensitive to changes in the order of alarms. If we look at a window
on the alarm sequence and consider the alarms in it as an (unordered) set,
we obtain these goals at least partially. Additionally, the alarm sequence is
merged from several sources, and therefore the rules should be insensitive to
intervening events. We thus want to search for rules that only test the pre-
sense of alarms in a window and that do not require that other alarms are not

36 3. Alarm correlation

present. If we look at an alarm sequence through a sliding window and find
out which sets of alarms tend to occur together, we fulfill the requirements.
This task is obviously very similar to the task of finding frequent sets, and
we can actually formulate a first solution as a modification of the frequent
set discovery task. Consider a window at a given starting position and with
a given width as a (multi) set of those alarm types that occur within the
window. Denote now the set of all windows of the given width but over all
possible starting positions by r, and denote the set of alarm types by R.
Now r can be considered a binary database over R, and one can discover the
collection F(r, min_fr) of frequent sets in r with respect to some frequency
threshold min_fr. This way one finds all those sets of alarms that occur in
a randomly chosen window of the given width with a probability at least
min_fr. By discovering association rules one finds the kind of rules we were
looking for: X = Y means that “if the set X of alarms occurs within a time
window of a given width, then alarms Y also occur in the time window”.

A more general approach Let us have another look at the alarms in the
sequence of Figure 3.1 and the kind of patterns that seem to occur frequently.
Clearly, an alarm of type E is soon followed by F. One can also make the
observation that whenever A and B occur (in either order), C' occurs soon.
The frequent alarm sets are interesting, but they do not take the order of
alarms into consideration at all. What if we know that the order of alarms
is important?

Instead of sets of alarms, we can consider partially ordered sets of alarms
in general. Let us call such frequently occurring patterns episodes. We can
draw episodes simply as directed acyclic graphs. Consider, for instance,
episodes a, 3, and v in Figure 3.2. Episode a occurs in a sequence only if
there are events of types £ and F that occur in this order in the sequence.
We call such totally ordered episodes serial. Episode 3 is a parallel episode:
no constraints on the relative order of A and B are given. Episode v is an
example of non-serial and non-parallel episode: it occurs in a sequence if
there are occurrences of A and B and these precede an occurrence of C'; no
constraints on the relative order of A and B are given.

It would not be very useful to search for all possible episodes with arbit-
rary partial orders. Even for small episodes there would be a large number of
different partial orders, and frequent episodes would most probably contain
a lot of redundancy. Instead, we assume that the user restricts the search
to a certain class of episodes, in practice to either parallel or serial episodes.
Note that even these classes have an infinite number of episodes if episodes
are allowed to contain multiple similar events and if the size of episodes is
not restricted.

Once the frequent episodes are known, they can be used to obtain rules,
e.g., for prediction. For example, if we know that the episode /3 of Figure 3.2

Draft 37

&—®

g@

Figure 3.2: Episodes.

occurs in 4.2 % of the windows and that the superepisode v occurs in 4.0 %
of the windows, we can estimate that after seeing a window with A and B,
there is a chance of about 0.95 that C' follows in the same window. One can
compute such rules and their confidences from the frequencies of episodes,
just like confidences are computed for association rules.

Summary of the approach We propose automatic methods for the ana-
lysis of alarms, to aid in the knowledge acquisition phase of building an alarm
correlation system. Briefly, the scenario for building alarm correlation sys-
tems is the following. First, a large database of alarms is analyzed off-line,
and episode rules are discovered automatically. Then, for the construction
of an alarm correlation system, the network management specialists have a
collection of patterns of alarms at hand, and they can build the alarm cor-
relation model from them. In the final step, the correlation rules are applied
in real-time fault identification.

The discovery methods, although not directly applicable for on-line ana-
lysis themselves, can be used also in network surveillance. The analysis can
be rerun or augmented, e.g., every day or every hour. Recent patterns may
point to yet unnoticed faults in the network.

To sum up, the knowledge discovery task we consider is the following.
Given a class of episodes, an input sequence of events, a window width, and
a frequency threshold, find all episodes that are frequent in the windows on
the event sequence. In the algorithm for solving this task we can use many
ideas from the algorithm for discovering frequent sets. Additionally, episodes
can be recognized efficiently in the database pass by “sliding” a window on
the input sequence. Windows starting at successive positions have a lot of
overlap and are therefore similar to each other. We can take advantage of this
similarity: after recognizing episodes in a window, we can make incremental
updates in our data structures to determine which episodes occur in the next
window.

38

3. Alarm correlation

Chapter 4

Frequent episodes

In Chapter 3 we introduced the problem of analyzing telecommunication
alarm sequences, and we briefly outlined a solution based on the idea of
discovering frequent alarm sets in alarm sequences. Motivated by Chapter 3,
we now give exact and domain-independent formulations for the ideas about
finding all frequent episodes.

We define concepts related to event sequences and episodes in Section 4.1.
In Section 4.2 we give algorithms for the discovery of all frequent parallel and
serial episodes. We touch on the discovery of episodes with other types of
partial orders, and on the rule generation process. Illustrative experimental
results are presented in Section 4.3. Experiences are discussed in Chapter 6
in the context of the whole KDD process.

4.1 The framework

Let us now work out the approach in more detail. Since the framework
is application independent—although motivated by fault management—we
talk about events instead of alarms. We start by defining event sequences
and windows.

Definition 4.1 Given aset R of event types, an event is a pair (A, t), where
A € Ris an event type and is an integer, the (occurrence) time of the event.

An event sequence s on R is a triple (s, T, T.), where T < 7T are integers,
T is called the starting time and 7, the ending time, and

s=((A1, 1), (A2, t2), ..., (A, ln))

is an ordered sequence of events such that A; € R and T < {; < T, for all
i=1,...,n,and {; < ljgq foralli=1,... . n— 1. O

Example 4.2 Figure 4.1 presents graphically the event sequence s =
(8,29, 68), where

s=((B,31),(D,32), (F,33), (A, 35), (B, 37),(C,38),....(D,67)).

39

40 4. Episodes

EDF A BCEF C D BAD C EFC BEAECF A D

30 35 40 45 50 55 60 65

Figure 4.1: The example event sequence s and two windows of width 5.

Observations of the event sequence have been made from time 29 to just
before time 68. For cach event that occurred in the time interval [29, 68), the
event type and the time of occurrence have been recorded. m}

Think now of looking at an event sequence through a narrow window,
giving a view to the events within a relatively small time period. We define
a window as a slice of an event sequence that is seen at any given time. We
then discuss the case where one considers an event sequence as a sequence of
partially overlapping windows.

Definition 4.3 A window on event sequence s = (s, 7, 7T;) is an event se-
quence w = (w, lg, L), where {; < 1,1, > T, and w consists of those pairs
(A, t) from s where t; <t < t.. The time span {, — {, is called the width of
the window w, and it is denoted width(w). Given an event sequence s and
an integer win, we denote by W(s, win) the set of all windows w on s such
that width(w) = win. O

There is a small trick in the definition. The first and last windows on a
sequence extend outside the sequence, so that the first window only contains
the first time point of the sequence, and the last window only contains the last
time point. With this definition an event close to either end of a sequence is
observed in equally many windows to an event in the middle of the sequence.
Given an event sequence s = (s, 7}, 7,) and a window width win, the number
of windows in W(s, win) is T — T + win — 1.

Example 4.4 Figure 4.1 shows two windows of width 5 on the sequence s
of the previous example. A window starting at time 35 is shown in solid line,
and the immediately following window, starting at time 36, is depicted with
a dashed line. The window starting at time 35 is

({(A,35), (B, 37), (C,38), (E,39)), 35,40).

Note that the event (F,40) that occurred at the ending time is not in the
window. The window starting at 36 is similar to this one; the difference is
that the first event (A, 35) is missing and there is a new event (F,40) at the
end.

The set of the 43 partially overlapping windows of width 5 constitutes
W(s,5); the first window is (0,25,30), and the last is (((D,67)),67,72).

Draft 41

©&—®

a
Figure 4.2: An episode.

Event (D, 67) occurs in 5 windows of width 5, as does, e.g., event (C,50).
If only windows totally within the sequence were considered, event (D, 67)
would occur only in window (({(A, 65), (D, 67)),63,68).

We now move on to define episodes formally. We also define when an
episode is a subepisode of another; this relation is then used in the candidate
generation for frequent episodes.

Definition 4.5 An episode a is a triple (V, <, g) where V is a set of nodes,
< is a partial orderon V', and g : V — R is a mapping associating each node
with an event type. The interpretation of an episode is that the events in
¢(V) have to occur in the order described by <. The size of o, denoted |a],
is |V|. Episode a is parallel if the partial order < is trivial (i.e., £ y for
all z,y € V such that z # y). Episode a is serial if the relation < is a total
order (i.e.,, z < yory < z forall z,y € V). Episode a is injective if the
mapping ¢ is an injection, i.e., no event type occurs twice in the episode. O

Example 4.6 An episode a = (V, <, g) can be drawn as a directed acyclic
graph, where g(z) is the label of node 2 € V, and where edges indicate
temporal ordering. Consider episode a = (V, <, g) in Figure 4.2. The set V
contains two nodes; call them z and y. The mapping g labels these nodes
with the event types that are seen in the figure: g(z) = E and g(y) = F.
An event of type E is supposed to occur before an event of type F, i.e.,
z precedes y, and we have z < y. Episode a is injective, since it does
not contain duplicate event types; in a window where a occurs there may,
however, be multiple events of types E and F. O

Definition 4.7 An episode § = (V', <', ¢') is a subepisode of a = (V, <, g),
denoted 3 < a, if there exists an injective mapping f : V' — V such that
g'(v) = g(f(v)) for all v € V', and for all v,w € V' with v <’ w also
f(v) < f(w). An episode a is a superepisode of 3 if and only if § < a. We
write f < a if § < o and a £ 3.]

Example 4.8 Figure 4.3 presents two episodes, 4 and . From the figure we
see that we have § < 7 since /3 is a subgraph of . In terms of Definition 4.7,

42 4. Episodes

B v

Figure 4.3: A subepisode and episode.

there is a mapping f that connects the nodes labeled A with each other and
the nodes labeled B with each other, i.e., both nodes of § have (disjoint)
corresponding nodes in 7. Since the nodes in episode 3 are not ordered, the
corresponding nodes in v do not need to be ordered, either, but they could
be. O

Consider now what it means that an episode occurs in a sequence. The
nodes of the episode need to have corresponding events in the sequence such
that the event types are the same and the partial order of the episode is
respected. Below we formalize this. We also define the frequency of an
episode as the fraction of windows in which the episode occurs.

Definition 4.9 An episode a = (V, <, g) occurs in an event sequence

s = (((Ah[l)* (‘42712)1 sy (An,[n]) 'rTﬁTe)v

if there exists an injective mapping 2 : V' — {1,...,n} from nodes to events,
such that g(z) = Ap(z) forall 2 € V, and for all z.y € V with z # y and
z <y we have 1,y < Lp(y)- [}

Example 4.10 The window (w, 35, 40) of Figure 4.1 contains events A, B,
C, and E, in that order. Both episodes § and v of Figure 4.3 occur in the
window. O

Definition 4.11 Given an event sequence s and a window width win, the
frequency of an episode a in s is

[{w € W(s, win) | a occurs in w}|
W (s, win)]| ’

Sfr(a, s, win) =

i.e., the fraction of windows on s in which a occurs.

Given a frequency threshold min_fr, o is frequent if fr(o, s, win) > min_fr.
The collection of episodes that are frequent in s with respect to win
and min_fr is denoted F (s, win, min_fr). The collection of frequent episodes
of size [is denoted Fi(s, win, min_fr). O

Draft 43

Algorithm 4.13

Input: A set R of event types, an event sequence s over R, a set £ of episodes, a
window width win, and a frequency threshold min_fr.

Output: The collection F(s, win, min_fr) of frequent episodes.

Method:

1 compute C; == {a € € | la| = 1};
2 l:=1;
3 whlle C # 0 do
4. // Database pass (Algorithms 4.19 and 4.21):
5. compute Fi(s, win, min_fr) := {a € C | fr(a,'s, win) > min_fr};
6. L:=1+1;
7 // Candidate gencratlon (Algorithm 4.14):
8 compute C; :={a € £ | |a| =, and ﬂ € I:w(s win, min_fr) for all
€ & such that 8 < o and 18] < 1};
9 for all I do output Fi(s, win, min_fr);

We can now give an exact formulation of the discovery task at hand:
given an event sequence s, a set & of episodes, a window width win, and a
frequency threshold min_fr, find F (s, win, min_fr).

4.2 Algorithms

In the algorithms of this section we assume that the search space £ consists
of all parallel or serial episodes constructed from the events in a given set R.
Our main algorithm makes only the assumption that there are candidates and
frequent episodes of each size up to the size of the largest frequent episodes;
the more detailed algorithms for candidate generation and database pass, in
turn, assume that episodes are etither parallel or serial. Towards the end of
this section we briefly consider the discovery of episodes with more general
partial orders.

4.2.1 Main algorithm

Algorithm 4.13 computes the collection F (s, win, min_fr) of frequent episodes.
The algorithm has the familiar structure of alternation between candidate
generation and database pass phases. The crucial point in the candidate
generation is given by the following immediate lemma.

Lemma 4.12 If an episode a is frequent in an event sequence s, then all
subepisodes J < a are frequent.

4.2.2 Generation of candidate episodes

We present in detail a candidate generation method which is a generalization
of the candidate generation for frequent sets. The method can be adapted to

44 4. Episodes

Algorithm 4.14

Input: A sorted array F; of frequent parallel episodes of size [.
Output: A sorted array of candidate parallel episodes of size [+ 1.
Method:

1.

2. H

3. 1 then for h :=1 to |£| do F,.block_start[h] := 1;

4. fori:=1to|F|do

5. current_block_start := k + 1;

6. for (j := i; Fi.block_start[j] = Fi.block_start[i]; j =j+1) do

7. // .F[[] and F;[j] have | — 1 first event types in common,
8. build a potential candidate a as their combination:

9. for z :=1to [do afz] := F[i][z];

10. ofl + 1] = A1

11. fory:=1tol—-1do

12. 1/ Bulld and test subeplsodes 3 that do not contain a[y]:
13.

14.

15. if 8 is ‘ot in F; then continue w1t]| the next j at line 6;
16. // All subeplsodes are in F, store o as candidate:

17. k=k41;

18. Cip1 k] == (v

19. (’l+1 block. .slarl[k] := currenl_block_start;

20. output Cppq;

deal with parallel episodes (i.e., multisets of items), serial episodes (ordered
multisets), and injective parallel and serial episodes (sets and ordered sets).

Algorithm 4.14 computes the candidates for parallel episodes. In the
algorithm, an episode a = (V,<,g) is represented as a lexicographically
sorted array of event types. The array is denoted by the name of the episode
and the items in the array are referred to using square brackets. For example,
a parallel episode a with events of types A,C,C, and F is represented as an
array a with a[l] = A,a[2] = C,a[3] = C, and a[4] = F. Collections of
episodes are also represented as lexicographically sorted arrays, i.e., the ith
episode of a collection F is denoted by FJi].

Since the episodes and episode collections are sorted, all episodes that
share the same first event types are consecutive in the episode collection. In
particular, if episodes Fj[i] and F;[j] of size [share the first [— 1 events,
then for all £ with ¢ < k& < j we have that Fj[k] shares also the same
events. A maximal sequence of consecutive episodes of size { that share the
first [— 1 events is called a block. Potential candidates can be identified by
creating all combinations of two episodes in the same block. For the efficient
identification of blocks, we store in F.block_start[j] for each episode Fi[j] the
index ¢ such that Fi[4] is the first episode in the block.

Theorem 4.15 Algorithm 4.14 works correctly.

Proof The crucial claim is that in the algorithm the pairs F;[i] and F;[j] of

Draft 45

episodes generate all candidates. For a moment assume that for each episode
Filj] the value of F.block_start[j] is the index i such that Fi[4] is the first
episode in the block. We show later that this assumption holds. —In the
following we identify an episode with its index in the collection.

In the outer loop (line 4) variable 7 iterates through all episodes in Fj,
and in the inner loop (line 6) variable j iterates through those episodes in F
that are in the same block with 7 but are not before i. Consider now any
block b of episodes in F;. Variables i and j obviously iterate through all
(unordered) pairs of episodes in block b, including the case where i = j.

Since i and j are in the same block, they have the same [— 1 first event
types. Conceptually we construct a new potential candidate o as the union
of episodes (multisets) ¢ and j. We build a by taking first the common
! — 1 events and the /th event from episode ¢ (both done on line 9), and
finally the event number / + 1 from episode j (line 10). Then the events
of a potential candidate are lexicographically sorted. Since the iteration of
episodes proceeds in lexicographical order (over the sorted collection #;), the
collection of candidates is also constructed in lexicographical order.

Next we show that the collection of potential candidates o contains all
valid candidates v of size [+ 1. All subepisodes of v are frequent, and in
particular those two subepisodes &; and d&; of size [that contain all but the
last and the second last events of v, respectively. Since é; and 93 are in F;
and they have [— 1 items in common, they are in the same block. At some
time in the algorithm we have F;[i] = 6; and F[j] = 02, and 7 is considered
as a potential candidate in the algorithm.

We need to show that no false candidates are output. An episode of size
{+1 has [+ 1 subepisodes /3 of size {, and for all of these we make sure that
they are in F;. We obtain all these subepisodes by leaving out one of the
events in a at a time (line 11). Note that the two subepisodes that were used
for constructing a do not need to be checked again. Only if all subepisodes
of size [— 1 are in Fj, is a correctly output as a candidate.

Finally we show that we have the correct value Fj.block_start[j] = i for
all j, i.e., the index i such that F[¢] is the first episode in the block. For
! =1 the structure is built on line 3: all episodes of size 1 have at least 0
common events, so they are all in the same block, and Fy.block_start[h] = 1
for all h. For [> 1 and Fi41, ablock bof Fiyy (orCiy1) has the property that
all episodes in the block have been generated from the same episode Fi[i].
This is due to the simple fact that the first [events have been copied directly
from Fi[i] (line 9). We save for each ¢ the index of the first candidate gener-
ated from it (line 5), and then use the saved value to set Ciyq.block_start[k]
correctly for all candidates k in the block (line 19).]

Algorithm 4.14 can be easily modified to generate candidate serial epis-
odes. Now the events in the array representing an episode are in the order
imposed by a total order <. For instance, a serial episode § with events

46 4. Episodes

of types C, A, F, and C, in that order, is represented as an array § with
Bl1]=C, B[2] = A, p[3] = F, and j[4] = C. Collections of episodes are still
stored as lexicographically sorted arrays. The only change to the algorithm
is to replace line 6.

Theorem 4.16 With the line
6. for (j := Fi.block_start[i]; Fi.block_start[j] = F;.block_start[i];
j:=j+1)do

Algorithm 4.14 works correctly for serial episodes.

Proof The proof is similar to the proof for Theorem 4.15; now, however,
i and j iterate over all ordered pairs of episodes in each block. The (po-
tential) candidates are ordered sequences of event types, not sorted arrays
as before, but the candidate collection is still constructed in lexicographical
order. The same arguments for the correctness of the candidate collection
and the structure F;.block_start hold. O

There are further options with the algorithm. If the desired episode class
consists of parallel or serial injective episodes, i.e., no episode should contain
any event type more than once, simply add one line.

Theorem 4.17 With the line
6b. if j = i then continue with the next j at line 6;

inserted after line 6, Algorithm 4.14 works correctly for injective parallel
episodes (or injective serial episodes with the change of Theorem 4.16).

Proof Clearly, the effect of the inserted line is that some candidates are not
generated. Consider now those excluded candidate episodes. First note that
only candidates a that contain some event type at least twice are excluded.
Either a candidate is excluded explicitly because i = j, or it is not generated
because some of its subepisodes is not in Fj. If o is excluded explicitly,
then it contains the event type a[l] = a[l + 1] twice. If, on the other hand,
some tested subepisode 3 is not in the collection F;, then there must be a
subepisode v < A that has been excluded explicitly. Then a contains twice
the event type v[|v]].

Now note that no episode a with at least two occurrences of an event
type is generated. Let A be an event type that occurs at least twice in a.
Then for the episode v of size 2 such that y[1] = A and 7[2] = A we have
74 < a, and thus a cannot be a candidate unless v is frequent. However,
has been excluded explicitly by the inserted line in an earlier iteration, and
thus « is not a candidate. O

The time complexity of Algorithm 4.14 is polynomial in the size of the
collection of frequent episodes and it is independent of the length of the event
sequence.

Draft A7

Theorem 4.18 Algorithm 4.14 (with any of the above variations) has time
complexity O((% |F|? log | 7).

Proof The initialization (line 3) takes time O(|F|). The outer loop (line 4)
is iterated O(|F;|) times and the inner loop (line 6) O(]F;|) times. Within the
loops, a potential candidate (lines 9 and 10) and { — 1 subcandidates (lines 11
to 14) are built in time O(l + 1+ (I — 1){) = O({?). More importantly, the
I — 1 subsets need to be searched for in the collection F; (line 15). Since
F; is sorted, each subcandidate can be located with binary search in time
O(llog |F]). The total time complexity is thus O(|F| + |F| | F| (12 + ([-
1)1 log| 7)) = O(| 7 log | Fi). o

In practical situations the time complexity is likely to be close to
O(I? | Fi| log | Fi|), since the blocks are typically small.
3 ; ypically

4.2.3 Recognizing episodes in sequences

Let us now consider the implementation of the database pass. We give al-
gorithms which recognize episodes in sequences in an incremental fashion.
For two windows w = (w, L, L5+ win) and w’ = (w', L5+ 1,7+ win+ 1), the
sequences w and w’ of events are similar to each other. We take advantage of
this similarity: after recognizing episodes in w, we make incremental updates
in our data structures to achieve the shift of the window to obtain w’.

The algorithms start by considering the empty window just before the in-
put sequence, and they end after considering the empty window just after the
sequence. This way the incremental methods need no other special actions
at the beginning or end. For the frequency of episodes, only the windows
correctly on the input sequence are, of course, considered.

Parallel episodes Algorithm 4.19 recognizes candidate parallel episodes
in an event sequence. The main ideas of the algorithm are the following.
For each candidate parallel episode a@ we maintain a counter a.event_count
that indicates how many events of a are present in the window. When
a.evenl_counl becomes equal to |a|, indicating that a is entirely included in
the window, we save the starting time of the window in a.inwindow. When
a.event_count decreases again, indicating that a is no longer entirely in the
window, we increase the field a.freg_count by the number of windows where
a remained entirely in the window. At the end, a.freg_count contains the
total number of windows where a occurs.

To access candidates efficiently, they are indexed by the number of events
of each type that they contain: all episodes that contain exactly a events of
type A are in the list contains(A,a). When the window is shifted and the
contents of the window change, the episodes that are affected are updated.
If, for instance, there is one event of type A in the window and a second

48 4. Episodes

Algorithm 4.19
Input: A collection € of parallel episodes, an event sequence s = (s,7s,1e), a
window width win, and a frequency threshold min_fr.
Output: The episodes of C that are frequent in s with respect to win and min_fr.
Method:
// Initialization:
for each a in C
for each 4 in a do
A.count := 0;
for i := 1 to |o| do conlains(A,i) = ;
for each a in C do
for each 4 in a do
a := number of events of type A in «;
contains(A, a) := contains(A, a) U{a};
10. a.event_count 0
11. «.freq_count =
12. // Recognition:
13. for start :==T, — win+ 1 to T, do

D00~ L N =

5

14. // Bring in new events to the window:

15. for all events (4,t) in s such that ¢ = start + win— 1 do
16. A.count := A.count + 1;

17. for cach a € contains(A, A.count) do

18. a.evenl_count := «.event_counl + A.count;

19. if a.eveni_count = |a| then a.inwindow := start;
20. // Drop out old events from the window:

21. for all events (A,¢) in s such that { = start — 1 do

22. for each a € contains(A, A.count) do

23. if a.evenl_count = |a| then

24. a.freq_counl = «.freq_count — a.inwindow + slart;
25. a.evenl_count := «.evenl_counl — A.count;

26. A.count := A.count — 1;

27. // Output:
28. for all episodes a in C do
29. if a.freq_count /(T. — Ts + win — 1) > min_fr then output «;

one comes in, all episodes in the list contains(A,2) are updated with the
information that both events of type A they are expecting are now present.

Theorem 4.20 Algorithm 4.19 works correctly.

Proof We consider the following two invariants. (1) For each event type
A that occurs in any episode, the variable A.count correctly contains the
number of events of type A in the current window. (2) For each episode a,
the counter a.eveni_count equals |a| exactly when a occurs in the current
window.

The first invariant holds trivially for the empty window starting at 7y —
win, since counters A.count are initialized to zero on line 4. Assume now that
the counters are correct for the window starting at start —1, and consider the
computation for the window starting at start, i.e., one iteration of the loop
starting at line 13. On lines 15 — 16, the counters are updated for each new

Draft 419

event in the window; similarly, on lines 21 and 26, the counters are updated
for events no longer in the window.

For the second invariant, first note that cach set contains(A, a) consists of
all episodes that contain exactly a events of type A: the lists are initialized to
empty on line 5, and then filled correctly for each event type in each episode
on line 9. Now consider the counter a.eveni_count for any episode a. In the
beginning, the counter is initialized to zero (line 10). Given an event type A,
denote by a the number of events of type A in a. The effect of lines 18 and 25
is that a.event_count is increased by a exactly for the time when there are
at least a events of type A in the window. Thus a.eveni_count = |a| exactly
when there are enough events of each type of a in the window.

Finally note that at the end a.freg_count is correct. The counter is ini-
tialized to zero (line 11). Given any number of consecutive windows contain-
ing a, by the invariant the index of the first window is stored in a.inwindow
on line 19. After the last window of these, i.e., in the first window not
containing a, the counter a.freg-count is increased by the number of the con-
secutive windows containing a (line 24). Since the last window considered
is the empty window immediately after the sequence, occurrences in the last
windows on the sequence are correctly computed. On the last lines the fre-
quent episodes are output.]

Serial episodes Serial candidate episodes are recognized in an event se-
quence by using state automata that accept the candidate episodes and ignore
all other input. The idea is that there is an automaton for each serial epis-
ode a, and that there can be several instances of each automaton at the same
time, so that the active states reflect the (disjoint) prefixes of a occurring in
the window. Algorithm 4.21 implements this idea.

We initialize a new instance of the automaton for a serial episode a every
time the first event of a comes into the window; the instance is removed when
the same event leaves the window. When an automaton instance for o reaches
its accepting state, indicating that « is entirely included in the window, and
if there are no other instances for a in the accepting state already, we save the
starting time of the window in a.inwindow. When an automaton instance
in the accepting state is removed, and if there are no other instances for a
in the accepting state, we increase the field a.freq_count by the number of
windows where a remained entirely in the window.

1t is useless to have multiple automaton instance in the same state, as they
would only make the same transitions and produce the same information. It
suffices to maintain the one that reached the common state last since it will
be also removed last. There are thus at most |a| automaton instances for an
episode a. For cach instance we need to know when it should be removed.
We can thus represent all the automaton instances for a with one array of
size |a|: the value of a.inilialized[i] is the latest initialization time of an

50 4. Episodes

Algorithm 4.21
Input: A collection C of serial episodes, an event sequence s = (s, 7y, 7.), a window
width win, and a frequency threshold min_fr.
Output: The episodes of C that are frequent in s with respect to win and min_fr.
Method:
// Initialization:
for each a in C
fori:=1to
a.initialized[d) :
wails(afi]) == 0;
for each a € C do
waits(a[1]) := waits(a[1]) U {(a, 1)};
a.freq_count := 0;
for { := T, — win to T — 1 do beginsal(t) := §;
10. // Recognition:
11. for start := Ty — win+ 1 to T, do

D00~ A L N =

12. // Bring in new events to the window:
13. beginsal (start + win—1) :=f;
14. transilions :=
15. for all cvulta (A, t) in s such that ¢ = start + win — 1 do
16. for all («,j) € wails(A) do
17. if j = |o| and a.imtialized[j] = 0 then a.inwindow := start;
18. if j = 1 then
19. transitions := transitions U {(a, 1, start + win — 1)};
20. else
21. transilions := lransilions U {(,J, ainitialized]j — 1])};
22. beginsat (a.initialized[j —
begmbal(u mztzﬂlued[_/ =P\ {(e.i = 1)}
23. a.initialized[j — 1] :=
24. wails(A) := wails(A) \{(Db
25. for all (o, j,t) € transitions do
26. a.inizalized[j] = {;
27. beginsat(t) := begmsat(U{(a,4)};
28. if j < |a| then wails(afj + 1]) := wmts(I+ uf{(a, i+ 1)}
29. // Drop out old events from the window:
30. for all (o, 1) € beginsat(start — 1) do
31. if { = |a| then o.freg_count := a.freq_count — a.inwindow + start;
32. else waits(a[l + 1)) := waits(a[l + 1]) \ {(a,l+ 1)};

33. a.initialized[l] := 0;

34. // Output:

35. for all episodes a in C do

36. if a.freq_count /(T. — Ts + win — 1) > min_fr then output «;

automaton instance that has reached its ¢th state. Recall that a itself is
represented by an array containing its events; this array can be used to label
the state transitions.

To access and traverse the automata instances efficiently they are organ-
ized in the following way. For each event type A € R, the instances that
would next accept A are linked together to a list wails(A). The list contains
entries of the form (a,) meaning that episode a is waiting for its zth event.
When an event (A, () enters the window during a shift, the list waits(A4) is
traversed. If an automaton instance reaches a common state with another

Draft 51

instance, the earlier entry in the array a.initialized[] is simply overwritten.

The transitions made during one shift of the window are stored in a
list transitions. They are represented in the form (o, z,t) meaning that
episode a got its zth event, and the latest initialization time of the prefix of
length z is t. Updates regarding the old states of the automaton instances
are done immediately, but updates for the new states are carried out only
after all transitions have been identified, in order to not overwrite any useful
information. For easy removal of automaton instances when they go out of
the window, the instances initialized at time ¢ are stored in a list beginsal(t).
Note that only lists beginsal(start — 1) — beginsat(start + win— 1) are needed
at any particular moment, and lists beginsal(j) with j < start — 1 can be
removed.

Theorem 4.22 Algorithm 4.21 works correctly.

Proof Let a be a serial episode in C, j an integer such that 1 < j < |a|,
and A an event type, and consider a window on the input sequence. Denote
by mpt(a, j) the maximal time ¢ in the window such that the prefix of length
j of a occurs within the subsequence starting at time ¢ and ending at where
the window ends. Consider the following invariants.

1. We have a.initialized[j] = 0, if the prefix does not occur in the win-
dow at all, or if j < |a| and mpt(a, j) = mpt(a,j+ 1). Otherwise
a.initialized[j] = mpt (o, 7).

2. For each time ¢ in the window, we have (a, j) € beginsal(t) if and only
if a.initialized[j] = t.

3. The list waits(A) consists of entries (a, j) such that a[j] = A and either
j =1 or a.initialized[j — 1] # 0.

The first invariant holds trivially for the empty window in the beginning,
as the data structures are initialized to zeros on line 4. Assume now that the
data structures are correct for the window starting at start — 1, and consider
the computation for the window starting at start. We show by induction
that the computations are correct for all j. First, consider the case j = 1.
When a new event comes to the window, it is always the latest prefix of
length j = 1 for all episodes that start with the event type. The value of
a.initialized|1] is correctly set to start + win — 1 for all such episodes a on
lines 19 and 26. Assume now that j > 1, that a[j] comes into the window,
and that a.inilialized[k] is correct for all k < j. Now mpi(a, j) clearly equals
the old value of mpt(a, j — 1); the correct updates are done on lines 21 and 26
for av.inilialized[j] and on line 23 for av.initialized[j — 1]. Note that the value
of a.initialized[j — 1] is set to non-zero later if mpt(a,j — 1) > mpi(a, j).
Note also that when a prefix of length [is not in the window anymore,
a.initialized[l] is correctly set to zero on line 33.

52 4. Episodes

The second invariant holds also trivially in the beginning (line 9). Assum-
ing that the data structures are correct for the window starting at start — 1,
the correct additions to beginsal are done on line 27, and correct removals
on line 22. (Removing lists beginsat(t) with ¢ < start is not necessary.)

The third invariant holds for j = 1 for the whole algorithm: the waits
lists are set correctly on line 7, and they are not altered during the algorithm.
For larger prefixes correct additions to the wails lists are made on lines 19,
21, and 28, and correct removals are made when a.initialized[j — 1] becomes
zero (lines 24 and 32).

Based on these invariants, the index of the window is correctly stored
in a.inwindow for the first of consecutive windows containing a (line 17),
and a.freq_count is correctly increased after the last of consecutive windows
containing « (line 31). Finally, the frequent episodes are correctly output on
the last lines of the algorithm. O

Analysis of time complexity For simplicity, suppose that the class of
event types R is fixed, and assume that exactly one event takes place every
time unit. Assume candidate episodes are all of size /, and let n be the length
of the sequence. We go back to parallel episodes, and start the analysis from
Algorithm 4.19.

Theorem 4.23 The time complexity of Algorithm 4.19 is O((n + (2) |C]).

Proof Initialization takes time O(|C|{?). Consider now the number of the
operations in the innermost loops, i.c., accesses to a.eveni_count on lines 18
and 25. In the recognition phase there are O(n) shifts of the window. In
each shift, one new event comes into the window, and one old event leaves
the window. Thus, for any episode a, a.event_count is accessed at most twice
during one shift. The cost of the recognition phase is thus O(n [C]). m]

In practice the size [of episodes is very small with respect to the size
n of the sequence, and the time required for the initialization can be safely
neglected. For injective episodes we have the following tighter result.

Theorem 4.24 The time complexity of recognizing injective parallel epis-
odes in Algorithm 4.19 (excluding initialization) is O(% |C| {+ n).

Proof Consider win successive shifts of one time unit. During such sequence
of shifts, each of the |C| candidate episodes a can undergo at most 2{ changes:
any event type A of a can have A.count increased to 1 and decreased to 0
at most once. This is due to the fact that after an event of type A has come
into the window, we have A.count > 1 for the next win time units. Reading
the input takes time n. O

Compare this to a trivial non-incremental method where the sequence is
pre-processed into windows, and then frequent sets are searched for. The

Draft 53

time requirement for recognizing |C| candidate sets in n windows, plus the
time required to read in n windows of size win, is O(n|C|l+ n - win), i.c.,
larger by a factor of win.

Theorem 4.25 The time complexity of Algorithm 4.21 is O(n |C| ().

Proof The initialization takes time O(|C| [+ win). In the recognition phase,
again, there are O(n) shifts, and in each shift one event comes into the
window and one event leaves the window. In one shift, the effort per an
episode a depends on the number of automaton instances accessed; there are
a maximum of [instances for each episode. The worst-case time complexity
is thus O(|C|l + win + n |C|l) = O(n |C|) (note that win is O(n)). m|

The input sequence consists in the worst case of events of only one event
type, and the candidate serial episodes consist only of events of that par-
ticular type. Every shift of the window results now in an update in every
automaton instance. This worst-case complexity is close to the complexity of
the trivial non-incremental method O(n |C| [+ n-win). In practical situations,
however, the time requirement is considerably smaller, and we approach the
savings obtained in the case of injective parallel episodes.

Theorem 4.26 The time complexity of recognizing injective serial episodes
in Algorithm 4.21 (excluding initialization) is O(n |C]).

Proof Each of the O(n) shifts can now affect at most two automaton in-
stances for each episode: when an event comes into the window there can be
a state transition in at most one instance, and at most one instance can be
removed because the initializing event goes out of the window. O

4.2.4 General partial orders

So far we have only discussed serial and parallel episodes. We now discuss
briefly the use of other partial orders in episodes. The recognition of an
arbitrary episode can be reduced to the recognition of a hierarchical combin-
ation of serial and parallel episodes. For example, episode 7 in Figure 4.4 is a
serial combination of two episodes: §’, a parallel episode consisting of A and
B, and 46", an episode consisting of C' alone. The occurrence of an episode
in a window can be tested using such hierarchical structure: to see whether
episode 7 occurs in a window one checks (using a method for serial episodes)
whether & and 8" occur in this order; to check the occurrence of §’ one uses
a method for parallel episodes to verify whether A and B occur.

There are, however, some complications one has to take into account.
First, it is sometimes necessary to duplicate an event node to obtain a decom-
position to serial and parallel episodes. Consider, for instance, the episode on
the left in Figure 4.5. There is no hierarchical composition consisting only

54 4. Episodes

oo |ohc

Figure 4.4: Recursive composition of a complex episode.

@?\@

Figure 4.5: Recursive composition of a complex episode.

of serial and parallel episodes. In the composite episode on the right, the
node labeled B has been duplicated. Such duplication works with injective
episodes, but non-injective episodes need more complex methods. Another
important aspect is that composite events have a duration, unlike the ele-
mentary events in R.

A practical alternative is to handle all episodes basically like parallel
episodes, and to check the correct partial ordering only when all events are
in the window. Parallel episodes can be located efficiently; after they have
been found, checking the correct partial ordering is relatively fast.

Another interesting approach to the recognition of episodes is to use in-
verse structures. That is, for each frequent episode we store the identifiers
of the windows in which the episode occurs. Then, in the recognition phase,
for a candidate episode a we can compute the set of windows in which «
occurs as the intersection of the sets of windows for two subepisodes of a.
This holds for all but serial episodes, for which some additional information
is needed.

4.2.5 Rule generation

Once the frequent episodes and their frequencies are known, one can generate
episodes rules, similar to association rules. An episode rule can state, for
instance, that if there are events of types A and B in a window, then an

Draft 55

event of type C'is also in the window (parallel episode rule), or that if there
are events I/ and G in the window and in that order, then an event of type F’
is between them (serial episode rule). Serial episode rules can point forward
or backward in time and, as illustrated by the example, the left-hand side
can also have places that are filled by corresponding events on the right hand
side. Episode rules can be generated from frequent episodes in the same
way that association rules are generated from frequent sets. Extending the
association rule methods to deal with multisets and ordered sets is fairly
straightforward.

4.3 Experiments

We present experimental results obtained with two telecommunication net-
work fault management databases. The first database sy is a sequence of
73 679 alarms covering a time period of 7 weeks. The time granularity is one
second. There are 287 different types of alarms with very diverse frequen-
cies and distributions. On the average there is an alarm every minute. The
alarms tend, however, occur in bursts: in the extreme cases there are over
40 alarms in one second. We present results from experiments with serial
episodes and injective parallel episodes, i.e., the opposite extreme cases of
the complexity of the recognition phase.

Performance overview Tables 4.1 and 4.2 give an overview of the discov-
ery of frequent episodes. In Table 4.1, serial episodes and injective parallel
episodes have been discovered in s; with a fixed frequency threshold 0.003
and a varying window width; in Table 4.2, episodes have been discovered
with a fixed window width of 60 seconds and a varying frequency threshold.
These ranges for the parameter values have been given by experts of the
alarm correlation domain.

The experiments show that the approach is efficient. Running times are
between 5 seconds and 8 minutes, in which time hundreds of frequent episodes
could be found. The methods are robust in the sense that a change in one
parameter only adds or removes some frequent episodes, but does not replace
any.

Quality of candidate generation Table 4.3 shows the number of can-
didate and frequent serial episodes per iteration, with frequency threshold
0.003, and averaged over test runs with window widths 10, 20, 40, 60, 80, 100,
and 120 seconds.

In the first iteration, for size 1, all 287 event types have to be checked.
The larger the episodes become, the more combinatorial information there
exists to take advantage of. From size 4 up, over one half of the candidates
turned out to be frequent.

56 4. Episodes
Injective

Window Serial episodes parallel episodes
width (s) || Count Time (s) | Count Time (s)
10 16 31 10 8

20 31 63 17 9

40 57 17 33 14

60 87 186 56 15

80 145 271 95 21

100 245 372 139 21

120 359 A78 189 22

Table 4.1: Results of experiments with s; using a fixed frequency threshold
of 0.003 and a varying window width.

Tnjective
Frequency Serial episodes parallel episodes
threshold Count Time (s) | Count Time (s)
0.1 0 7 0 5
0.05 1 12 1 5
0.008 30 62 19 14
0.004 60 100 40 15
0.002 150 407 93 22
0.001 357 490 185 22

Table 4.2: Results of experiments with s; using a fixed window width of 60 s
and a varying frequency threshold.

As can be seen from the table, a possible practical improvement is to
combine iterations by generating candidate episodes for several iterations at
once, and thus avoid reading the input sequence so many times. This pays
off in the later iterations, where there are otherwise only few candidates to
recognize, and where the match is good.

Scale-up We performed scale-up tests with 1 to 8 fold multiples of the
sequence sy, i.e., sequences with approximately 74 000 to 590 000 events. The
results in Figure 4.6 show that the time requirement is linear with respect to
the length of the input sequence, as could be expected from the analysis.

Incremental recognition We also tested the efficiency of the database
pass, in particular the effect of the incremental recognition. Figure 4.7
presents the ratio of times needed for trivial vs. incremental recognition of
candidate episodes. The time required to generate the windows for the trivial

Draft 57

Episode || Number of Number of Number of

size [episodes candidate frequent Match
287 episodes episodes

1 287 287.0 30.1 1%

2 82 369 1078.7 44.6 1%

3 2.107 192.4 20.0 10 %

4 7-10° 17.4 10.1 58 %

5 2.10'? 7.1 5.3 74 %

6 6-10" 4.7 2.9 61 %

7 2.10'7 2.9 2.1 5 %

8 510" 2.1 1.7 80 %

9 1-10% 1.7 1.4 83 %

10 17.4 16.0 92 %

Table 4.3: Number of candidate and frequent serial episodes in s; with fre-
quency threshold 0.003 and averaged over window widths 10, 20, 40, 60, 80,
100, and 120 s.

100 B
300 [~ 4
Time (s) B

200 i

100 -

Relative size of database

Figure 4.6: Scale-up results for serial episodes (dotted line) and injective
parallel episodes (solid line) in s; with window width 60 s and frequency

threshold 0.01.

58 4. Episodes

20 -

15 -
Efficiency
ratio

10

0 20 40 60 80 100 120
Window width (s)

Figure 4.7: Ratio of times needed for trivial vs. incremental recognition meth-
ods in sy for serial episodes (dotted line) and injective parallel episodes (solid
line) as functions of window width.

method has been excluded from the results. The figure shows that the incre-
mental methods are faster by a factor of 1-20, roughly linearly with respect
to the window width of 10-120 seconds. This is consistent with the analysis
of Algorithm 4.19: for injective parallel episodes the worst-case analysis gave
a difference of a factor of win. The results indicate that the incremental
recognition method is useful in practice also for non-injective serial episodes.

To analyze the effect of the incremental recognition in more detail we
conducted the following more controlled tests. We used an alarm database s,
from a different network; this sequence contains 5000 events covering a time
period of 6 days. We ignored the actual times of the events and assumed
instead that one alarm had arrived in a time unit. There are 119 event types
and the number of their occurrences ranges from 1 to 817. For these tests
we considered only injective parallel episodes.

Table 4.4 presents results of test runs with different window widths and
frequency thresholds. Results about the efficiency with respect to the number
of frequent episodes and candidates are similar to the ones obtained with
sequence s1. The frequency thresholds have in these experiments been higher
since the data is dense: there is an event every time unit.

A central outcome of the analysis of the windowing methods was the
effect of window width win on the time complexity. We examined it with tests
where all other factors, in particular the candidate collection, were fixed. Our

Draft 59

Window | Frequency || Candidate Frequent

width | threshold cpisodes episodes Time (s)
10 0.05 444 84 16

20 0.10 463 161 27

40 0.20 632 346 71

60 0.30 767 488 84

80 0.40 841 581 112

100 0.50 755 529 90

120 0.60 578 397 49

160 0.70 633 479 64

Table 4.4: Results of experiments with sequence sg.

1000 T T T T
800 | e

600
Time (s)
400 - -

Trivial method

200 - =

Incremental method

ey o . & 4
0 -

0 20 40 60 80 100 120 140 160 180
Window width

Figure 4.8: Time for the database pass over s; as a function of the window

width.

collection of candidates consists of 385 episodes of sizes 1 to 11. Figure 4.8
presents total times for recognizing these candidates in the input sequence s;.
Within window widths of 10 to 160 time units, the total time with the trivial
method doubles from 400 to 800 seconds. With the incremental method the
time is in turn cut from 60 down to 10 seconds. The running time of the
trivial method is approximately 3win+ 420, and for the incremental method
700/win+ 5. These results match the time complexity analysis given earlier.
In particular, the time complexity of the trivial method is greater by a factor
of the window width win; the approximating functions give a factor of 0.6win.
The efficiency ratio was in these experiments better than in the experiments
described earlier: the ratio ranges from 6 up to 80.

60

4. Episodes

Chapter 5

Minimal occurrences of
episodes

In this chapter we describe an alternative approach to the discovery of epis-
odes. Instead of looking at the windows and only considering whether an
episode occurs in a window or not, we now look at the exact occurrences of
episodes and the relationships between those occurrences. One of the advant-
ages of this approach is that focusing on the occurrences of episodes allows
us to more easily find rules with two window widths, one for the left-hand
side and one for the whole rule, such as “if A and B occur within 15 seconds,
then C follows within 30 seconds”.

We give an introduction to the approach in Section 5.1. Sections 5.2 and
5.3 present the main ideas of the discovery of all frequent episodes and the rule
generation, respectively. Finally, experiments are described in Section 5.4. In
this chapter our aim is to convey the main ideas of an alternative approach,
and we skip detailed proofs and algorithms.

5.1 Outline of the approach

The approach is based on minimal occurrences of episodes. Besides the new
rule formulation, the use of minimal occurrences gives rise to the following
new method for the recognition of episodes in the input sequence. For each
frequent episode we store information about the locations of its minimal
occurrences. In the recognition phase we can then compute the locations
of minimal occurrences of a candidate episode a as a temporal join of the
minimal occurrences of two subepisodes of a. In addition to being simple
and efficient, this formulation has the advantage that the confidences and
frequencies of rules with a large number of different window widths can be
obtained quickly, i.e., there is no need to rerun the analysis if one only wants
to modify the window widths. In the case of complicated episodes, the time
needed for recognizing the occurrence of an episode can be significant; the use

61

62 5. Minimal occurrences

Oan0) @
5 Y

Figure 5.1: Episodes.

EDF A BCEF C D BAD C EFC BEAECF A D

30 35 40 45 50 55 60 65

Figure 5.2: The example event sequence s.

of stored minimal occurrences of episodes eliminates unnecessary repetition
of the recognition effort.

‘We identify minimal occurrences with their time intervals in the following
way. Given an episode a and an event sequence s, we say that the interval
[ts,te) is a minimal occurrence of o in s, if (1) o occurs in the window
w = (w,ls, L) on s, and if (2) a does not occur in any proper subwindow
on w, i.e., not in any window w’ = (w',t,,1) on s such that t; < i,
t, < t., and width(w') < width(w). The set of (intervals of) minimal
occurrences of an episode a in a given event sequence is denoted by mo(a):
mo(a) = { [Ls, L) | [ts, Le) is a minimal occurrence of a}.

Example 5.1 Consider the episodes in Figure 5.1 (reproduced from Fig-
ure 3.2) and the event sequence s in Figure 5.2 (reproduced from Fig-
ure 4.1). The parallel episode 3 consisting of event types A and B has
four minimal occurrences in s: mo(f3) = {[35, 38),[46, 48), [47,58), [57,60)}.
The partially ordered episode has the following three minimal occurrences:
[35,39),[46, 51), [57, 62). O

An episode rule is an expression 3 [win;] = a[winy], where § and a are
episodes such that 3 < &, and win; and win; are integers. The interpretation
of the rule is that if episode $# has a minimal occurrence at interval [t, L)
with £, — t; < winy, then episode a occurs at interval [, t/) for some £} such
that / — I, < winy. Formally this can be expressed in the following way.
Given winy and J3, denote moy;n, (3) = {[ls, L) € mo(B) | le — L5 < wing}.
Further, given o and an interval [us, u.), define occ(a, [us, ue)) = true if and
only if there exists a minimal occurrence [u}, u) € mo(a) such that u, <

Draft 63

and u) < u.. The confidence of an episode rule 3 [win] = a [winy] is now

[{[ts, te) € mowin, (B) | occ(a, [Ls, L + wing))}|
‘"wwim (ﬂ)l ’

Example 5.2 Continuing Example 5.1, we have, e.g., the following rules and
confidences. For the rule 3[3] = 7 [4] we have three minimal occurrences
[35, 38),[46,48), [57,60) of of width at most 3 in the denominator. Only
one of them, [35, 38), has an occurrence of o within width 4, so the confidence
is 1/3. For the rule 4 [3] = 7[5] the confidence is 1. O

Since in a rule 3 [wini] = a [winy] episode § is a subepisode of a, the
rule right-hand side @ contains information about the relative location of
cach event in the rule. Thus the “new” events in the rule right-hand side
can actually be required to be positioned, e.g., between events in the left-
hand side. There is also a number of possible definitions for the temporal
relationship between the intervals. For instance, rules that point backwards
in time can be defined in a similar way. For brevity, we only consider this
one case.

In the previous chapter we defined the frequency of an episode as the
fraction of windows that contain the episode. While frequency has a nice
interpretation as the probability that a randomly chosen window contains the
episode, the concept is not very useful with minimal occurrences: (1) there
is no fixed window size, and (2) a window may contain several minimal
occurrences of an episode. Instead of frequency we use the concept of support,
the number of minimal occurrences of an episode: the support of an episode
a in a given event sequence s is |mo(a)|. Similarily to a frequency threshold,
we now use a threshold for the support: given a support threshold min_sup,
an episode a is frequent if |mo(a)| > min_sup.

The current episode rule discovery task can now be stated as follows.
Given an event sequence s, a class & of episodes, and a set W of time bounds,
find all frequent episode rules of the form 3 [winy] = o [winy], where 8,0 € &
and winy, wing € W.

5.2 Finding minimal occurrences of episodes

In this section we describe algorithms that locate the minimal occurrences
of frequent serial and parallel episodes. Let us start with some observations
about the basic properties of episodes. Lemma 4.12 still holds: the subepis-
odes of a frequent episode are frequent. Thus we can use the main algorithm
(Algorithm 4.13) and the candidate generation (Algorithm 4.14) as they are.
We also have results about the minimal occurrences of an episode containing
minimal occurrences of its subepisodes.

64 5. Minimal occurrences

Lemma 5.3 Assume a is an episode and < a is its subepisode. If [t,,t.) €
mo(a), then 3 occurs in [L,, L) and hence there is an interval [u,, u.) € mo(f3)
such that t; < ug < u, < L.

Lemma 5.4 Let a be a serial episode of size k, and let [L,, t.) € mo(a). Then
there are subepisodes a; and a; of a of size k — 1 such that [, t}) € mo(aq)
for some ¢! < t, and [t2,t.) € mo(ay) for some ¢ > ¢;.

Lemma 5.5 Let a be a parallel episode of size k, and let [t t.) € mo(a).
Then there are subepisodes a1 and as of « of size k — 1 such that [t},¢!) €
mo(aq) and [t2,t2) € mo(as) for some ¢!, ¢}, ¢2,12 € [ts,t.], and furthermore

ts = min{t!, (2} and t, = max{t!,?}.

The minimal occurrences of a candidate episode a are located in the
following way. In the first iteration of the main algorithm, mo(a) is computed
from the input sequence for all episodes a of size 1. In the rest of the
iterations, the minimal occurrences of a candidate o are located by first
selecting two suitable subepisodes a; and aj of @, and then computing a
temporal join between the minimal occurrences of @y and as, in the spirit of
Lemmas 5.4 and 5.5.

To be more specific, for serial episodes the two subepisodes are selected
so that ay contains all events except the last one and a3 in turn contains all
except the first one. The minimal occurrences of a are then found with the
following specification:

mo(a) = {[ts,uc) | there are [t,,t.) € mo(a;) and
[us, ue) € mo(avz) such that ¢y < us,

le < uc, and [{s, u) is minimal }.

For parallel episodes, the subepisodes a; and a; contain all events except
one; the omitted events must be different. See Lemma 5.5 for the idea of how
to compute the minimal occurrences of a.

The minimal occurrences of a candidate episode « can be found in a linear
pass over the minimal occurrences of the selected subepisodes ay and az. The
time required for one candidate is thus O(|mo(a1)| + |mo(asz)| + |mo(a)|),
which is O(n), where n is the length of the event sequence. To optimize
the running time, oy and a; can be selected so that [mo(aq)| + |mo(as)] is
minimized.

The space requirement of the algorithm is 37, 3", [mo(a)|, assum-
ing the minimal occurrences of all frequent episodes are stored, or as
max; (P aexur,, Imo(a)]), if only the current and next levels of minimal
occurrences are stored. The size of 3,7 |mo(a)| is bounded by n, the
number of events in the input sequence, as each event in the sequence is a
minimal occurrence of an episode of size 1. In the second iteration, an event

Draft 65

in the input sequence can start at most |F;| minimal occurrences of episodes
of size 2. The space complexity of the second iteration is thus O(|F|n).

While minimal occurrences of episodes can be located quite efficiently
from minimal occurrences, the size of the data structures can be even lar-
ger than the original database, especially in the first couple of iterations. A
practical solution is to use in the beginning other pattern matching meth-
ods, e.g., similar to the ones described in Section 4.2, to locate the minimal
occurrences.

5.3 Finding confidences of rules

We now show how the information about minimal occurrences of frequent
episodes can be used to obtain confidences for various types of episode rules
without looking at the data again.

Recall that we defined an episode rule as an expression 3 [winy] =
a [winy], where 3 and « are episodes such that 3 < a, and win; and winy are
integers. To find such rules, first note that for the rule to be frequent, the
episode a has to be frequent. So rules of the above form can be enumerated
by looking at all frequent episodes «, and then looking at all subepisodes
of a. The evaluation of the confidence of the rule §[win;] = a[winy] can
be done in one pass through the structures mo(j) and mo(a), as follows.

For each [Ly,t.) € mo(f3) with L, — t; < winy, locate the minimal occur-
rence [ug, ue) of a such that t; < ug and [us, u.) is the first interval in mo(a)
with this property. Then check whether u, — ¢, < winy.

The time complexity of the confidence computation for a given episode
and given time bounds win; and winy is O(|mo(B)] + |mo(a)|). The con-
fidences for all winy, winy in the set W of time bounds can be found, using
a table of size |W|%, in time O(|mo(B)| + |mo(a)| + |W|?). For reasons of
brevity we omit the details.

Number of frequent episodes and informative rules

min_sup Time bounds W (s)

15,30 30, 60 60,120 15,30, 60, 120
50 |[1131 617 | 2278 1982 | 5899 7659 | 5899 14205

100 || 418 217 | 739 642 | 1676 2191 | 1676 3969

250 || 111 57| 160 134 | 289 375 | 289 611

500 16 21 59 49 80 87 80 138

Table 5.1: Experimental results: number of episodes and rules

66 5. Minimal occurrences

Execution times (s) |
min_sup Time bounds W (s)
15,30 | 30,60 | 60,120 | 15,30, 60,120
50 158 | 210 274 268
100 80 87 103 104
250 56 56 59 58
500 50 51 51 52

Table 5.2: Experimental results: execution times

5.4 Experimental results

We have experimented with the methods using as test data a part of the
WWW server log from the Department of Computer Science at the Uni-
versity of Helsinki. The log contains requests to see WWW pages at the
department’s server; such requests can be made by WWW browsers at any
host in the Internet.

An event in the log can be seen as consisting of the attributes page, host,
and time. The number of events in our data set is 116308, and it covers
three weeks in February and March, 1996. In total, 7634 different pages
are referred to from 11635 hosts. Requests for images have been excluded
from consideration. For simplicity, we only considered the page and time
attributes; we used relatively short time bounds to reduce the probability of
unrelated requests contributing to the minimal occurrences.

We experimented with support thresholds min_sup between 50 and 500,
and with time bounds between 15 s and 2 min. In three cases we used two
time bounds, and in one case we searched simultaneously for all combinations
of four time bounds in W. Episode rules discovered with these parameters
should reveal the paths through which people navigate when they know where
they want to go.

Table 5.1 shows the number of frequent episodes and the number of in-
formative rules with confidence at least 0.2. (A rule §[wini] = a[wing)
is considered informative if its confidence is higher than the confidence of
all the rules f[winj] = a[winb] with win}] > winy, or winj = win; and
winh < winy.)

The number of frequent episodes is in the range from 40 to 6000, and it
seems to grow rather fast when the support threshold becomes lower. Our
data is relatively dense, and therefore the effect of the time bounds on the
number of frequent episodes is roughly linear. The largest frequent episodes
consist of 7 events. Note that the method is robust in the sense that a change
in one parameter extends or shrinks the collection of frequent episodes but
does not replace any.

Draft 67

Table 5.2 shows the execution times for the experiments on a PC (90 MHz
Pentium, 32 MB memory, Linux operating system). The data resided in a
3.0 MB flat text file. The execution times are between 50 s and 5 min. Note,
in particular, that searching for episodes with several different time bounds
(the right-most columns in the tables) is as fast as searching for episodes with
only the largest time bound. Minimal occurrences are thus a very suitable
representation for queries with different time bounds.

Following are some examples of the episode rules found (we use the
titles of the pages here, or their English translations, which should be self-
explanatory). All these rules show users going down in the hierarchy or
pages.

e “Department Home Page”, “Spring term 96” [15 s| = “Classes in
spring 967 [30 s] (confidence 0.83). In other words, in 83 % of the
cases where the departmental home page and the spring term page
had been accessed within 15 seconds, the classes page was requested
within 30 seconds (that is, within 30 seconds from the request for the
departmental home page).

“Resecarch at the department” = “Staff of the department” [2 min]
(confidence 0.29). (There is no time bound for the left-hand side since
there is only one event.)

“Department Home Page”, “Department Home Page in Finnish”,
“Classes in spring 96", “Basic courses” [15s] = “Introduction to Docu-
ment Preparation (IDP)”, “IDP Course Description”, “IDP Exercises”
[2 min] (confidence 0.42).

Experiments with the alarm data set s; of Chapter 4 show that—with
comparable parameters—the present method is as fast or faster. The new
method has, however, two important advantages: the rule formalism is more
useful, and rules with several different time bounds can be found with the
same effort.

5.5 Bibliographic notes

Most data mining and machine learning techniques are adapted towards the
analysis of unordered collections of data. However, there are important ap-
plication areas where the data to be analyzed has an inherent sequential
structure. Examples of such data are telecommunications network alarms,
user interface actions, crimes committed by a person, occurrences of recur-
rent illnesses, etc. Recently, interest in knowledge discovery from sequences
of events has increased: see, e.g., [17, 56, 87, 69, 8]. Episodes were introduced
in [64], but the first formulations and results on the discovery of parallel epis-
odes were presented already in [63]. Applications of the methods have been
described in [38, 39]. A similar approach to the automatic acquisition of

68 5. Minimal occurrences

network management knowledge from the existing data has been presented
in [31].

Many ideas, for instance the candidate generation method, stem from
the discovery of frequent sets and association rules. Various extensions to
association rules apply directly or with minor modifications to episodes, too.
For instance, these methods can be extended with an event taxonomy by a
direct application of the similar extensions to association rules [37, 40, 81].
See Section 2.7 for extensions and work related to association rules.

Technical problems related to the recognition of episodes have been re-
searched in several fields. Taking advantage of the slowly changing contents
of the group of recent events has been studied, e.g., in artificial intelligence,
where a similar problem in spirit is the many pattern/many object pattern
match problem in production system interpreters [24]. Also, comparable
strategies using a sliding window have been used, e.g., to study the locality
of reference in virtual memory [16]. Our setting differs from these in that our
window is a queue with the special property that we know in advance when
an event will leave the window; this knowledge is used in the recognition
of serial episodes. In the algorithm utilizing minimal occurrences, we take
advantage of the fact that we know where subepisodes of candidates have
occurred.

The recent work on sequence data in databases (see [78]) provides inter-
esting openings towards the use of database techniques in the processing of
queries on sequences. A problem similar to the computation of frequencies
occurs also in the area of active databases. There triggers can be specified
as composite events, somewhat similar to episodes. In [28] it is shown how
finite automata can be constructed from composite events to recognize when
a trigger should be fired. This method is not practical for episodes since the
deterministic automata could be very large.

The methods for matching sets of episodes against a sequence have some
similarities to the algorithms used in string matching (e.g., [32]). In par-
ticular, recognizing serial episodes in a sequence can be seen as locating all
occurrences of subsequences, or matches of patterns with variable length
don’t care symbols, where the length of the occurrences is limited by the
window width. Learning from a set of sequences has received considerable
interest in the field of bicinformatics, where an interesting problem is the
discovery of patterns common to a set of related protein or amino acid se-
quences. The classes of patterns differ from ours; they can be, e.g., substrings
with fixed length don’t care symbols [46]. Closer to our patterns are those
considered in [87]. The described algorithm finds patterns that are similar
to serial episodes; however, the patterns have a given minimum length, and
the occurrences can be within a given edit distance. Recent results on the
pattern matching aspects of recognizing episodes can be found in [12].

The work most closely related to ours is perhaps [4]. There multiple
sequences are searched for patterns that are similar to the serial episodes with

Draft 69

some extra restrictions and an event taxonomy. More recently, the pattern
class has been extended with windowing, some extra time constraints, and an
event taxonomy [83].—For a survey on patterns in sequential data, see [56].

In stochastics, event sequence data is often called a marked point pro-
cess [48]. Tt should be noted that traditional methods for analyzing marked
point processes are ill suited for the cases where the number of event types
is large.

There are also some interesting similarities between the discovery of fre-
quent episodes and the work done on inductive logic programming, ILP (see,
e.g., [70]); a noticeable difference is caused by the sequentiality of the un-
derlying data model, and the emphasis on time-limited occurrences. Some
steps towards convergence have been published recently [14, 15, 60]. The
problem of looking for one occurrence of an episode can, in turn, be viewed
as a constraint satisfaction problem.

The class of patterns discovered can be easily modified in several direc-
tions. First, the methods can be used to analyze several sequences. If the
sequences are short and windowing is not meaningful, simpler database passes
are sufficient. If windowing is used there is actually a variety of choices for
the definition of frequency of an episode in a set of sequences. Second, other
windowing strategies could be used, e.g., considering only windows starting
every win’ time units for some win’, or windows starting from every event,
or for a serial episode with event types A and B, in this order, only windows
starting with an event of type A could be taken into account. The use of
minimal occurrences is actually an extension similar to this last idea. Third,
other patterns could be searched for, e.g., substrings with fixed length don’t
care symbols.

Perhaps the most important extensions to the framework are facilities for
rule querying and compilation, i.e., methods by which the user could specify
the episode class in high-level language and the definition would automat-
ically be compiled into a specialization of the algorithm that would take
advantage of the restrictions on the episode class. Other open problems
include the combination of episode techniques with intensity models.

70

5.

Minimal occurrences

Chapter 6

The knowledge discovery
process

The process of knowledge discovery aims at the discovery of useful and inter-
esting knowledge. In the alarm analysis, the task of finding frequent episodes
in the alarm data is only a part of the KDD process, although a central one.
In this chapter we discuss the KDD process in the context of this particu-
lar application. We also look at TASA, Telecommunication Alarm Sequence
Analyzer, a system for discovering knowledge from telecommunication net-
work alarm databases, and see how it supports the process.

6.1 A KDD framework

In the field of data mining or exploratory data analysis the goal is to dis-
cover previously unknown information. That is why it can be hard, or even
impossible, to specify beforehand, what is interesting. This is particularly
true with telecommunication alarms, because the networks are continuously
updated. We concentrate here on subjective interestingness, and describe one
way of trying to discover the most useful and interesting patterns. (Some
simple objective interestingness measures were briefly considered in Sec-
tion 2.5.)
A KDD process, at a coarse level, consists of the following phases:

1. Understanding the domain.

2. Collecting and cleaning data (selection, transformations etc.).
3. Discovery of patterns.

4. Presentation of the results.

5. Interpretation and utilization of the results.

71

72 6. KDD process

We follow these general steps, with two distinctive characteristics:

1. In the pattern discovery phase, we aim to find all potentially interesting
(= frequent) patterns according to rather loose riteria for frequency and
confidence.

2. In the presentation phase, the discovered patterns can be explored it-
eratively and interactively.

Our motivation for discovering a lot of rules at once is that network man-
agement experts’ requests for different viewpoints to the data can then be
responded very quickly: a new pattern discovery phase is not necessary, but
simply a new view to the already discovered patterns. By producing all rules
at once different views on the data can be created very efficiently in the
presentation phase. The idea is that the frequency and confidence thresholds
filter effectively non-interesting patterns, and produce only potentially inter-
esting ones. The decision of what is interesting is for the most part left to
the domain expert to explore.

‘We next discuss the data preparation, presentation, and utilization phases
of the KDD process.

6.2 Collecting and cleaning the data

The first step in the KDD process is collecting and cleaning the data. In
some domains this step can take up to 80 % of the total time needed. In
our application the information is already collected to the alarm log, and the
data is usually of high quality.

Some problems still remain. One is related to the fact that the time
stamps of the alarms are not reliable: there can be differences of up to 3-
5 minutes in the synchronization of the clocks. As our goal is to locate
regularities that are intimately connected to the temporal aspects of alarms,
such errors are problematic. Parallel episodes are reasonably robust with
respect to changes in the order of the alarms, but a more general solution
would be to use preliminary data analysis for locating which components of
the network are likely to have erroneous clocks.

Data transformations take a good deal of time: alarms need to be expor-
ted from a fault management database, the appropriate attributes have to
be selected, and the data needs to be saved in a form suitable for input for
TASA. Selection of relevant attributes is not such a trivial task as it might
seem at first. Searching for frequent episodes consisting of alarm types is in-
teresting, but there are other alternatives one should consider. For instance,
one can derive a new set of event types by concatenating the information
about the alarm type and the network element that sent the alarm. The
new events can then look something like 123/_KL1, meaning that element
EL1 sent an alarm of type 1234. Frequent episodes now show connections

Draft 73

between alarms from individual elements, e.g., that an alarm 1234 from EL1
is followed by an alarm 3333 from network element EL43. It is useful to try
several such variations of the data set, as they give different views to the
data and result in partially different findings.

We use the term alarm predicale to refer to the (properties of) alarms.
Episodes can be discovered in sequences of alarm predicates, where the pre-
dicate considered can express the type of the alarm, or some other (com-
binations) of properties. Association rules can be searched for in unordered
collections of alarms, if alarms are seen as rows and alarm predicates as items.
For episode rules, the type of the alarm and the sender of the alarm are the
most typical predicates. For association rules we consider also predicates
such as the priority of the alarm, the day of the week, whether the alarm
occurred during office hours or not, etc.

The task of acquiring the required background knowledge is in our case
fairly easy. The background knowledge consists mostly of information about
the network topology: how the network elements are connected and which
subelements they contain. Additionally, the types of the network elements
form an inheritance hierarchy that is useful in classifying and presenting
the rules. This information is readily available from the telecommunication
operators.

6.3 Presentation of results using templates

The presentation of discovered knowledge is a main part of this methodology.
In this phase the interesting patterns should be located in large collections of
potentially interesting patterns. But what is interesting? How to define it?
Many of the patterns discovered in the alarm data are trivial or uninteresting
for the network managers:

e A rule can correspond to prior knowledge or expectations. For
instance, we might know from the network implementation that if an
element sends an alarm A, it will also send an explanatory notice B.

¢ A rule can refer to uninteresting attributes or attribute com-
binations. If the user is trouble shooting a particular network element,
then rules about unrelated parts of the network are probably not useful.

e Rules can be redundant. Rules may contain alarms of different
abstraction levels but actually referring to the same fault.

For the most part, what is interesting depends on the case, and is highly
based on the user’s personal aims and perspective. Knowledge trivial to one
expert may not be trivial to another, but with proper tools each expert may
filter the rule collection based on his personal background knowledge, and to
correspond to his current needs.

74 6. KDD process

‘We now present methods for exploring large sets of association and epis-
ode rules. In TASA, the user can manipulate the set of patterns using selec-
tion and ranking operations, as well as more complex operations for including
or excluding certain classes of rules. TASA supports the following types of
operations:

1. Focusing: presentation only of a subset of rules, according to the tem-
plates the user specifies (see below).

2. Sorting or ranking of rules according to simple objective measures.

3. Clustering: grouping of rules into clusters of rules that have similar
effects in the analyzed data set.

In TASA, rules can be selected or rejected from the view by templates,
simple but powerful pattern expressions.

Definition 6.1 We define templates as regular expressions that describe, in
terms of alarm predicates, the form of rules that are to be shown or not shown.
More formally, a template is an expression Ay, ..., Ay = Agqq, ..., A, where
each A; is either an alarm predicate, the name of an alarm predicate collec-
tion, or an expression C+ or C'x, where C' is a collection name. Here C+ and
C's correspond to one or more and zero or more instances of the collection
C, respectively. A rule By,..., By = Bpyi,..., B, matches a template if
the rule can be considered to be an instance of the pattern.

With templates, the user can explicitly specify both what is interesting
and what is not. To be interesting, a rule has to match a selective template.
If a rule, however, matches a rejective template, it is considered uninteresting.
To be presented to the user, a rule must be considered interesting i.e. match
one of the selective templates—and it must not be uninteresting—i.e. not
match with any of the unselective templates. O

Figure 6.1 shows the user interface to templates as implemented in TASA.
Templates are specified using separate fields for the rule left-hand and right-
hand sides. In addition to templates, additional bounds can be set, e.g., for
frequency, confidence, and number of alarms in one rule. We next describe
some illustrative scenarios that utilizing these ideas.

Example 6.2 Focus can be set to, e.g., day-time alarms by selecting only
association rules that contain the predicate “office hours = yes”. Or, episode
rules containing alarms from separate subnetworks can be obtained by using
templates that reject all rules where the senders are in the same subnetwork.

The template concept can be combined with thresholds for rule frequency,
confidence, and significance (see Section 2.5). The user may state restrictions
such as “rule frequency must be between 5 % and 30 %”, “rule confidence
must be at least 80 %”, and “rule significance must be over 0.95”. In this

Draft 75

4 E pisode Rules of rulesel2 [LEI=]

2970_F1650 + Part @ ?_{
IF 2570_31650
716171650 THEN 690 31843
WATH jof p0) 075 (34)
°¢ 05 Select nes .
= IF 2570 31650
° ITHEN 7161 31650
2 WITH [[100 (575)
2 2 Seznles | IF 2970 31650
] Save ocaly | [THEN 690 33387
WITH o] 107 040 (2/3)
IF 590 31649
= ITHEN 2970 37650
e WITH 707 0] 100 (22)
IF freq
o IF 590 31649
IF t=ms . !
[IrEN teme s [THEN 7761 31650
< WITH 0] [Lo (2/2)
IF 7161 31650
o ITHEN 2970 37650

wath o o) 050 (42)

tege

Clear IF 7161 31650 =

Figure 6.1: Rule Viewing window of TASA: template specification panel on
the left, selected rules on the right.

case the user filters out very rare and reasonably frequent rules, and further
on selects only those that are both strong and significant.]

Example 6.3 As an example of how the system can be used for off-line
network surveillance, consider the following typical scenario. Assume the
network manager has used TASA to discover association rules for the current
month. First he might want to see what the alarms have been like during
the current week, say week 30, so he uses a template to select rules with the
predicate “week = 30” as the left-hand side.

The number of selected rules is still very large. The network manager
decides to restrict the rule right-hand side to only contain one predicate, and
he also sorts the rules by their confidences.

Looking at the selected rules, he sees the rule “if week = 30 then alarm
type = connection failure” with confidence 0.12, and he infers that an un-

76 6. KDD process

usually large fraction of alarms during the week has been of type connection
failure. To see in more detail what the alarms have been like, he refines the
template and selects rules with “week = 30 and alarm type = connection
failure” as the left-hand side.

Looking at the new set of selected rules, the network manager sees that a
lot of rules concern the network element KL 1. That reminds him of mainten-
ance undertaken in the beginning of the week that explains those rules. To
remove the rules, he applies a rejective template with the predicate “network
element = ELI”.

The resulting set of rules shows nothing special, but just to make sure the
network manager wants to compare the rules with the corresponding rules
from some previous week. He opens a copy of the window, and changes the
first template to “week = 29”. If there is anything special or interesting, the
viewing criteria can be refined or altered again. O

Clustering of rules aims at giving a larger picture of the behavior of
the alarm sequence. In the data there are often various explanations for
the occurrence of a particular alarm type, say path unavailable. Clustering
methods can be used to assign rules to groups so that two rules with the right-
hand side path unavailable belong to the same cluster if they often explain or
predict path unavailable in similar situations. This can be useful in pointing
out potentially related rules.

In addition to looking and manipulating the discovered knowledge, the
users want to be able to use several types of views into the data. They want
to see the discovered knowledge, but they also want to be able to see how
that knowledge is actually supported by the original data. TASA links rules,
alarms, and data together by hyperlinks.

Visualization of information is obviously an important part of KDD ap-
plications. For this the TASA system offers some simple facilities. As an
example, consider the confidence of a rule. It is only a crude measure of how
well the rule manages to predict the occurrence of the right-hand side, and
a more complete picture of the interaction between the left and right-hand
sides of a rule can be obtained by simply drawing a histogram showing the
distance from each occurrence of the left-hand side to the nearest occurrence
of the right-hand side. Such histograms are valuable guides for locating
possible periodic relationships between the left and right-hand sides, as is
demonstrated by Figure 6.2.

6.4 Experiences with TASA, episodes, and associ-
ations

Different versions of TASA have been in prototype use in four telecommunic-
ation companies since the beginning of 1995. TASA has been found useful

Draft T

Distance histogram

0 - 10 min, bar = 1 s, Total count = 1825

8
i
g
c
2
< | \h h h
: il illl .. il I
o] 50 100 150 200 250 300
0-300s
8
-
:
g
:
s
° il il b i I
300 350 400 450 500 550 600
300 - 600 s

Figure 6.2: Distance histogram

in, e.g., finding long-term, rather frequently occurring dependencies, creating
an overview of a short-term alarm sequence, and evaluating the alarm data
base consistency and correctness.

Unexpected dependencies have been found, e.g., between network ele-
ments which are not closely connected in the network topology. An example
of such a dependency is that when a remote device sends alarms, the fault
is reflected to another corner of the network through several devices, and
not always necessarily via the same routes and devices. So, just analyzing
the neighboring devices might not reveal any strong relationships. However,
when a larger region is analyzed, such a relationship can be detected. Be-
ginning from the first tests, discovered rules have been integrated into alarm
correlation systems.

On the other hand, many of the rules discovered by TASA are deemed
trivial by the network managers. Some of the rules correspond to the know-
ledge that the network managers have about the behavior of the network, and
some other rules reflect the assumed functioning of network devices. Luckily,
much of the trivial knowledge can be expressed and removed with templates.
Templates are also useful since the knowledge trivial to one expert may not
be trivial to another, and with templates each expert may filter the rule
collection based on his/her personal background knowledge.

The usability of discovery tools has an essential, often perhaps under-

78 6. KDD process

estimated role. The usability of an early version of TASA was tested in
the usability laboratory of the Helsinki University of Technology. The tests
contained, e.g., user tests taken by four fault management experts from tele-
communication companies. In the tests, TASA was generally acknowledged
as appealing. On the other hand, first-time users were unfamiliar with many
concepts from the knowledge discovery field. Despite these problems with
the terminology, the system as a whole got encouraging comments.

Overall, TASA has been considered useful. Episode rules are being used
as first drafts of correlation rules, whereas association rules are more typic-
ally used for creating short-term overviews in off-line network surveillance.
Telecommunication operators are integrating these methods to their alarm
analysis and surveillance systems.

6.5 Bibliographic notes

The problem of locating a small set of truly interesting information is a
generic problem in data mining (see, e.g., [74]): it is hard to know which
aspects of the discovered knowledge really interest the user. Kloesgen [53],
for instance, defines a number of criteria for interestingness, following the
ones presented in [25]: evidence (statistical significance), non-redundancy,
novelty (deviation from prior knowledge), simplicity (syntactical complexity
of a finding), and generality (the fraction of the population the finding refers
to).

The idea of discovering a large number of potentially interesting patterns
can be contrasted with numerous methods, e.g., in machine learning, which
are more focused and produce one or at most few patterns that match the
given problem specification. These methods usually require that the searched
or learned subject is quite carefully described in advance, and they leave any
other potentially interesting phenomena hidden. The advantage of these
systems is that the patterns they find are more expressive than the relatively
simple association and episode rules, and focusing the pattern discovery is
thus more important.

TASA uses association and episode rules, but the basic idea—iteration in
the pattern presentation phase—can be applied to any formalisms that have
some similar properties as association and episode rules:

e There is an algorithm that produces lots of potentially interesting pat-
terns.

e The time requirement for discovering all potentially interesting patterns
is not considerably longer than if the discovery was focused to a small
subset of the potentially interesting patterns.

e The desired focus is not known definitely in advance.

Draft 79

This approach which allows the user to set the focus, and where the
user has a total, explicit control over the resulting rule set, is in many ways
similar to the declarative language bias used by some ILP (Inductive Logic
Programming) systems, e.g., Claudien [76]. In ILP systems, however, the
focus (bias) is usually set before the discovery.

Templates were introduced in [52]. In the Explora system, Hoschka and
Kloesgen [41] already have used patterns similar to templates for defining
what is interesting, and their ideas have influenced the work on templates.
Their approach is based on few fixed statement types and a partial ordering
of attributes, whereas templates are closer to regular expressions.

Sometimes considerable amounts of rules remain, even when the user
has found the desired focus with the described methods. Automatic prun-
ing, ordering, and structuring methods should at this point be available for
invocation by the user, especially for removal of redundancy.

A method for pruning a set of strong association or episode rules by
removing redundancy has been presented in [85]. The method is based on
computing a rule cover. A rule cover is a subset of rules that has predictive
power equal to the original set of rules, in the sense that whenever a rule of
the original set mathces a row, then there is a rule in the cover that matches
the row.

An approximate order of interestingness could be assigned to the dis-
covered rules by giving weights to templates: positive weights to selective
templates and negative weights to rejective templates. The ranking of rules
would then correspond to the sum of weights of matched templates.

Clustering has been proposed as a method for structuring a set of associ-
ation or episode rules [85]. Theidea is to take rules with the same right-hand
side, and to group the rules so that rules in the same cluster tend to match
the same cases in the database. Clustering of rules has a remote connection
to clustering of database rows.

The approaches taken by other KDD systems include, e.g., the following.
Explora [41, 53] finds interesting instances of statistical patterns. In Explora,
the pattern discovery phase is focused by the user. The system selects and
presents the best patterns to the user, and, based on the results, the user can
change the focus and repeat the pattern discovery. The patterns discovered
by 49er [89] are contingency tables, equations, and logical equivalences. The
user can interactively change the focus, e.g., independent and dependent
variables, and require for a new pattern discovery. The Key Finding Reporter
(Kefir) [65, 75] discovers and explains deviations, and gives recommendations
for corrective actions. Applications of Kefir are tailored with a lot of domain
knowledge to be aware of the interestingness criteria, corrective actions, etc.,
of the domain. Given a database from the domain, a Kefir-based application
produces a report of the deviations without iteration.

80

6. KDD process

Chapter 7

Discovery of all frequent
patterns

In this part we consider a generalization of the problems of discovering all
frequent sets or all frequent episodes. The problem we look at is the fol-
lowing: given a set of patterns, a selection criterion, and a database, find
those patterns that satisfy the criterion in the database. In this chapter we
present a framework for this problem and give a generic levelwise algorithm
for solving it, e.g., in the case where the selection criterion is based on the
frequency of patterns. We then analyze the algorithm and the problem in
Chapter 8.

We start this chapter by describing the discovery task in Section 7.1. We
give an algorithm for this task in Section 7.2. In Section 7.3 we give examples
of the setting in various knowledge discovery tasks, and we show that, in-
stead of frequency, other criteria can be used for selecting rules. Finally,
in Section 7.4, we outline an extension of the setting and the algorithm for
discovery in several database states.

7.1 The discovery task

We start by defining the knowledge discovery setting we consider in this
chapter. Given a set of patterns, i.e., a class of expressions about databases,
and a predicate to evaluate whether a database satisfies a pattern, the task
is to determine which patterns are satisfied by a given database.

Definition 7.1 Assume that P is a set and ¢ is a predicate ¢ : P x
{r | ris a database} — {true, false}. Elements of P are called pailerns and
q is a selection criterion over P. Given a pattern ¢ in P and a database r,
we say that ¢ is selected if g(p,r) is true. Since the selection criterion is
often based on the frequency of the pattern, we use the term frequent as a

82 7. Discovery of frequent patterns

synonym for “selected”. Given a database r, the theory T(P,r,q) of r with
respect to P and ¢ is T(P,r,¢) = {¢ € P | ¢(¢,1) is true}. O

Example 7.2 The problem of finding all frequent item sets can be described
as a task of discovering frequent patterns in a straightforward way. Given a
set R, a binary database r over R, and a frequency threshold min_fr, the set
‘P of patterns consists of all item sets, i.e., P = {X \ X C R}, and for the
selection criterion we have ¢(¢, r) = true if and only if fr(p,7) > min_fr. O

Note that we do not specify any satisfaction relation for the patterns of P
in r: this task is taken care of by the selection criterion g. For some applica-
tions, “g(¢,r) is true” could mean that ¢ occurs often enough in r, that ¢ is
true or almost true in r, or that ¢ defines, in some way, an interesting prop-
erty or subgroup of r. Obviously, the task of determining the theory of r is
not tractable for arbitrary sets P and predicates ¢. If, for instance, P is infin-
ite and ¢(¢,) is true for infinitely many patterns, an explicit representation
of T(P,r,q) cannot be computed.

In the discovery tasks considered here the aim is to find all patterns that
are sclected by a relatively simple criterion such as exceeding a frequency
threshold—in order to efficiently identify a space of potentially interesting
patterns. Other criteria can then be used for further pruning and processing
of the patterns. Consider as an example the discovery of association rules:
first frequent sets are discovered, then all rules with sufficient frequency are
generated, and a confidence threshold is used to further prune the rules.

The task of discovering frequent sets has two noteworthy properties.
First, all frequent sets are needed for the generation of association rules.
It is not sufficient to know just the largest frequent sets, although they de-
termine the collection of all frequent sets. The second important property
is that the selection criterion, i.e., frequency, is monotone decreasing with
respect to expansion of the set. We consider only the situation where the
predicate ¢ is monotone with respect to a given partial order on the patterns.

Definition 7.3 Let P be a set of patterns, ¢ a selection criterion over P,
and =< a partial order on the patterns in P. If for all databases r and
patterns ¢, 0 € P we have that ¢(¢,r) and § < ¢ imply ¢(6,r), then <X is a
specialization relation on P with respect to ¢. If we have § < ¢, then ¢ is
said to be more special than 6 and 6 to be more general than ¢. If § < ¢
and not ¢ < 6 we write § < ¢. O

Example 7.4 The set inclusion relation C is a specialization relation for
frequent sets. For instance, if the set {4, B,C} is frequent, then its subset
{A,C'} must also be frequent.

In more general, given two item sets X, Y C R, the set X is more general,
X <Y, ifandonlyif X CY. Thatis, X <Y implies that if the more specific
set Y is frequent then the more general set X is frequent, too. m}

Draft 83

For practical purposes the specialization relation has to be computable,
i.e., given patterns ¢ and # in P, it must be possible to determine whether
¢ = 8. Typically, the specialization relation < is a restriction of the converse
of the semantic implication relation: if 8 < ¢, then ¢ implies 6. If the pre-
dicate ¢ is defined in terms of, e.g., statistical significance, then the semantic
implication relation is not a specialization relation with respect to ¢: a pat-
tern can be statistically significant even when a more general pattern is not.
Recall that the predicate ¢ is not meant to be the only way of identifying the
interesting patterns; a threshold for the statistical significance can be used
to further prune patterns found using g.

7.2 The generic levelwise algorithm

In this section we present an algorithm for the task of discovering all frequent
patterns in the case where there exists a computable specialization relation
between patterns. We use the following notation for the relative speciality
of patterns.

Definition 7.5 Given a specialization relation < on patterns in P, the level
of a pattern ¢ in P, denoted level(p), is 1 if there is no # in P for which
6 < ¢. Otherwise level(p) is 1+ L, where L is the maximum level of patterns
0 in P for which § < ¢. The collection of frequent patterns of level [is
denoted by T;(P.r,q) = {¢ € T(P.x,q) | level(p) = I}. m]

Algorithm 7.6, analogical to Algorithm 2.14, finds all frequent patterns.
It works in a levewise or breadth-first manner, starting with the set C; of the
most general patterns, and then generating and evaluating more and more
special candidate patterns. The algorithm prunes those patterns that cannot
be frequent given all the frequent patterns obtained in earlier iterations.

The algorithm is generic: details depending on the specific types of pat-
terns and data are left open, and instances of the algorithm must specify
these. The levelwise algorithm aims at minimizing the number of evaluations
of g on line 5. As with the frequent set discovery algorithm, the computation
to determine the candidate collection does not involve the database at all.

Theorem 7.7 Algorithm 7.6 works correctly.

Proof We show by induction on { that 7;(P,r, ¢) is computed correctly for
all {. For [= 1, the collection C; contains all patterns of level one (line 1),
and collection 7;(P,r, ¢) is then correctly computed (line 5).

For [> 1, assume the collections 7;(P, r, ¢) have been computed correctly
for all i < [. Note first that 7;(P,r,q) C C;. Namely, consider any pattern ¢
in T{(P,r, q): we have level(¢) = { and thus for all patterns § < ¢ we have
level(f) < I. Since T;(P,r,q) has been computed for each i < I, each § < ¢

84 7. Discovery of frequent patterns

Algorithm 7.6

Input: A database schema R, a database r over R, a finite set P of patterns, a
computable selection criterion ¢ over P, and a computable specialization relation <
on P.

Output: The set 7(P,r, ¢) of all frequent patterns.

Method:

1. compute C; :={g € P | level() = 1};
2. l=1
3. whileC # 0 do
4. // Database pass:
5. ompute 7i(Peag) = {p et |ale)
6. [:=1+1;
7. // Candidate generation:
8. compute C; := {p € P ‘ level(p) =1 and 0 € Tleuel(ﬁ)(Pvr: q) for all
€ P such that 0 < ¢};
9. for all { do output 7;(P,r,q);

is correctly in Tjeye19)(P, 1, ¢), and so @ is put into C; (line 8). The collection
Ti(P,r,q) is then computed correctly on line 5.

Finally note that for every ¢ € T(P,r,q) there is an iteration where
the variable [has value level(¢). By the definition of level, there are more
general patterns 6 < ¢ on every level less than level(y), and since < is a
specialization relation they are all frequent, so the ending condition C; = {§
is not true with < level(g). O

The input specification of the algorithm states that the set P is finite.
Actually, it does not always need to be finite: the algorithm works correctly
as long as the number of candidate patterns s finite. There are some desirable
properties for the specialization relation <. An efficient method for accessing
the more specific and more general patterns on neighboring levels is useful,
or otherwise finding the collection of valid candidates may be expensive.

7.3 Examples

We now look at the applicability of Algorithm 7.6 for some knowledge dis-
covery tasks. We consider three problems as tasks of discovering patterns
that are selected by a given predicate: the discovery of association rules and
frequent episodes, and the discovery of exact database rules.

7.3.1 Association rules

Recall that the task of discovering association rules can be split into two: the
discovery of frequent sets, and the generation of rules. We summarize below
the necessary specifications for discovering frequent sets with Algorithm 7.6.

Draft 85

EDF A BCEF C D BAD C EFC BEAECF A D

time

® @
&

a 8

Figure 7.1: An event sequence and two episodes.

Given are a set R, a binary database r over R, and a frequency
threshold min_fr. We want to find the frequent sets, so the set P of pat-
terns consists of all item sets: P = {X | X C R}. Our selection criterion ¢ is
based on the frequency of an item set, so that ¢ is true for aset X € P if and
only if fr(X,r) > min_fr. Obviously the set inclusion relation C is monotone
with respect to frequency, so it can be used as a specialization relation <.

With these specifications Algorithm 7.6 proceeds as Algorithm 2.14. Note
in particular that candidate generation on line 8 of Algorithm 7.6 gives a
result equivalent to the candidate collection of Definition 2.13.

7.3.2 Episodes

Consider the problem of recognizing frequent episodes in sequences of events.
Figure 7.1 depicts a sequence of events and two episodes that occur several
times in the sequence. Episode a contains two events, A and B, but does
not specify any order for them. Episode 3 contains additionally an event ',
and states that C' must occur after both A and B.

Recall from Chapter 4 that the task is to discover all episodes whose
frequency exceeds a given threshold min_fr. Given a window width win,
the frequency of a in a given event sequence s is defined as the fraction of
windows of length win on s that contain an instance of a.

The discovery of all frequent episodes can be solved with the levelwise
algorithm. The subepisode relation < is a specialization relation on episodes.
That is, for a = (V,<,g) and g = (V', <’, ¢') we have § < a, if and only
if (1) V! C V (after possible renaming of nodes), (2) for all v € V' we have
g'(v) = g(v), and (3) for all v, w € V' with v <"w also v < w. The relation
a < /3 holds for the episodes in Figure 7.1. In the case of arbitrary partial or-
ders, Algorithm 7.6 is more conservative than Algorithm 4.13. Algorithm 7.6
considers a totally ordered episode consisting of events A and B as candid-
ate only, if the trivially ordered episode consisting of A and B is frequent.
Algorithm 4.13, in turn, was specified to increase the size of episodes by one
in each iteration.

86 7. Discovery of frequent patterns

7.3.3 Exact database rules

Exact database rules [74] are a rule formalism that is somewhat more general
than association rules: numerical and categorical attributes are considered.
On the other hand, the confidence of exact rules must be 1; a small variation
gives strong rules which can have a confidence less than 1. Before introducing
exact database rules formally, we define the notion of a taxonomy on an
attribute.

Definition 7.8 Given an attribute A, a tazonomy on A is a set T'(A) such
that Dom(A) C T(A), where Dom(A) is the domain of A, and such that
there is a partial order is-a on 7'(A). We assume that is-a is reflexive and that
there is a special member any in the taxonomy such that for all a € T'(A)
we have a is-a any. O

Example 7.9 Consider an attribute department for which the domain
Dom(department) is {dept_1, dept_2, ..., depl_15}. Now a taxonomy
T'(department) could consist of Dom(department) U {managemeni_dept,
production_dept, sales_dept, any}, i.c., of names of departments and their
types. The partial order is-a could then classify each department to its type
by defining that depi_1 is-a management_dept, dept_2 is-a management_dept,
that for i = 3,...,11 depl_i is-a production_dept, and that for i = 12,...,15
depl_i is-a sales_dept. Additionally, for every dept in T'(department) we have
dept is-a dept and dept is-a any. O

Definition 7.10 Let r be a relation over a relation schema R. Assume tax-
onomies are given for the non-numerical attributes in R. A simple condition
on a row ! in 7 is either of the form a1 < {[4] < a3, where A € R is a
numerical attribute and a;, az € Dom(A), or of the form [A] is-a a, where
A € R is non-numerical and has a taxonomy T'(A), and a € T'(A).

An ezact database rule is now an expression of the form Cy = Cy, where
both Cy and C4 are simple conditions. The rule Cy = C3 holds in r if C5 is
true on every row ¢ of 7 that C is true on. O

Example 7.11 Assume a relation r represents employees. Consider only
attributes department, as in the previous example, and age, and assume that
the domain of age is {18, 19,...,65}. The exact database rule

t[depariment] is-a management_dept = 43 < [age] < 65

tells that employees in the management departments are at least 43 years
old. O

Given a relation 7 and taxonomies for non-numerical attributes, the col-
lection of exact database rules that hold in r is the theory 7(P,r,q), where
the set P of patterns consists of all possible exact rules ¢, and the predicate

Draft 87

q(,r) is true if and only if ¢ holds in r. Next we show what is a specializa-
tion relation for exact rules.

Theorem 7.12 The following relation < is a specialization relation with
respect to the set P of all possible exact database rules:

(C1 = C3) < (Cy = %) if and only if C] C Cy and Cy C CY,
where C is a partial order on simple conditions defined as follows:

(a1 < 1[A] < ag) C (by < [B] < by) if and only if
A = B and [by,by] C [ay, ay]

and

(t[A] is-a a) T (t[B] is-a b) if and only if A = B and b is-a a.

Proof Denote by M(C') the set of rows on which condition C'is true. By the
definition, the relation C on simple conditions has the following property: if
C' is true on a row ¢, then every Cy C C is true on ¢, i.e., M(Cy) C M(Cy),
and C is actually a specialization relation on simple conditions.

Assume the exact database rule C{ = C% holds, i.e., M(C{) € M(C3).
Consider now any more general rule (C; = C3) < (C = C3). From the
properties of C it follows that M(C;) C M(C}) and M(C}) C M(Cy).
Thus M(C7) € M(Cy), i.e., the rule (Cy = C5) holds.]

The proof shows that the specialization relation < is a restriction of the
converse of the semantic implication: for any two patterns ¢ and 6, if we
have ¢ < @ then @ implies ¢. Intuitively, the specialization relation means
here that once we have an exact database rule that holds, we know that a
modified rule where the left-hand side only matches a subset of rows must
hold as well, and that if the right-hand side matches a superset of rows, the
modified rule must also hold.

Algorithm 7.6 would start with those rules that are most likely to hold,
and then loosen the conditions on the left-hand sides while tightening the
conditions on the right-hand sides.

Example 7.13 Assume the relation r represents employees. Consider only
attributes department, as in the previous example, and age, and assume that
the domain of age is {18,19,...,65}.

The most general patterns considered by Algorithm 7.6 are such as

39 < t[age] < 39 = t[department] is-a any

and
t[department] is-a dept_T = 18 < t[age] < 65.

88 7. Discovery of frequent patterns

These and a number of other obvious rules hold. Later, when more mean-
ingful rules are dealt with, the specialization relation prunes rules from con-
sideration in the following way. If, for instance, the rule

t[department] is-a dept 2 = 18 < t[age] < 40
does not hold, then rules such as
t[department] is-a dept2 = 18 < l[age] < 39

and
t[department] is-a management_depl = 18 < t[age] < 40

cannot hold. O

Note that the task of discovering exact database rules cannot be split
into two phases like the discovery of association rules, where frequent sets,
i.e., the rule components, are discovered first. Namely, in the case of exact
rules there is no minimum threshold for the frequency of rules.

When strong, i.e., almost always correct rules are searched for, the “al-
most always correctness” needs to be carefully defined, or the partial order <
given above is not a specialization relation. The following example demon-
strates this.

Example 7.14 Consider the discovery of strong rules, and the use of a con-
fidence threshold min_conf, defined as with association rules, as a means for
determining whether a rule is strong or not. If the rule

t[department] is-a dept_7 = 40 < t[age] < 50
has a confidence close to but below the threshold min_conf, then the rule
t[department] is-a any = 40 < {[age] < 50

might actually be strong, e.g., if all employees in other departments than
dept_7 are between 40 and 50 years old. O

Algorithm 7.6 considers in each database pass a collection of candidate
rules, where all the rules are on the same level. The KID3 algorithm [74]
for discovering exact database rules, in turn, considers in one iteration all
rules with the same attribute on the left-hand side. KID3 does not directly
evaluate ¢ on all those rules; instead, it stores some summary information
from which rules that hold can be extracted. Both approaches have their
drawbacks. The space requirement of the summaries in KID3 is in the worst
case linear in the database size. Algorithm 7.6, in turn, does not take any
advantage of the fact that rules close to each other in the specialization
relation are similar, and could be evaluated efficiently together.

Draft 89

Almost always lots of redundant exact and strong rules hold. For exact
rules, for instance, giving the most specific rules that hold would be sufficient,
since the rest of the rules are implied by these. Recall, again, that the
purpose is to find the rules that hold, and then use other methods to select
the most useful ones—the specificity is certainly one criterion, but not the
only one [74].

7.4 Discovery in several database states

Knowledge discovery is sometimes criticized for analyzing just one database
state. The critics say that it does not give reliable information: it is often
impossible to know if a regularity exists in the analyzed database only by
chance, or if it is true in most database states. Next we describe how Al-
gorithm 7.6 can be adopted to discover those patterns that are selected by
the given criterion in most of the given database states. We define the global
selection criterion of a pattern ¢ to depend on the number of database states
where ¢ is selected.

Definition 7.15 Given a selection criterion ¢ over a set P of patterns and
a frequency threshold min_fr, the global selection criterion Q is a predicate

Q:P x {r|ris aset of databases} — {true, false},

such that for any set » = {ry,...,r,} of databases we have Q(¢, r) = true
if and only if |[{i | ¢(¢,r:)}| > min_fr-n. The theory T (P, r,Q) is called the
almost always true theory of r with respect to P, ¢, and min_fr.]

Note that any partial order < on P that is a specialization relation with
respect to ¢ is also a specialization relation with respect to Q. We have the
following theorem.

Theorem 7.16 Let P,q, and @ be as in Definition 7.15, and let < be a
specialization relation with respect to ¢. Then < is a specialization relation
also with respect to the global selection criterion Q.

Proof By definition the relation < is a specialization relation with respect
to @, if for all sets r of databases and all ¢, # € P we have that Q(¢,) and
6 < ¢ imply Q(6, 7). To sce that this is the case, consider a pattern ¢ for
which Q(¢, r) holds. For each r; in 7 for which ¢(¢,r;) holds, ¢(6,r;) must
hold for all more general patterns 6 < ¢, and thus Q(6, ») must hold. O

Since < is a specialization relation with respect to the global selection
criterion @, Algorithm 7.6 can be applied directly for knowledge discovery
from several database states; just use the global selection criterion @ instead
of g. The evaluation of) on r consists now of evaluating ¢ on the individual

90 7. Discovery of frequent patterns

database states r; € 7. It turns out that we can use here the specialization
relation < both locally and globally.

Consider Algorithm 7.6 running with a set » = {ry,...,r,} of database
states and the global selection criterion) as its inputs. Candidate patterns
@ in the algorithm will be such that all more general patterns than ¢ are
globally selected. Such patterns are then evaluated in each database state,
in order to find out if they are selected in by ¢ in sufficiently many database
states. However, it is possible that in some database state r; € » patterns
more general than ¢ are not selected by ¢, and correspondingly ¢ cannot be
selected by ¢ in r;. A key to a more efficient evaluation of the global selection
criterion is thus to generate candidates also locally in each database state,
and only to evaluate patterns that are candidates both globally and locally.

To be more specific, at level { the global candidate collection C; contains
those patterns that are potentially selected by @ in r. The local candidate
collections, denoted by Cf, contain for each database state r; those patterns
that are potentially selected by ¢ in r;. During the evaluation of @, for each
database state r; we evaluate the predicate ¢ on the intersection C; N Cf of
global and local candidates.

By using information about the local candidates we can further eliminate
evaluations of ¢. Namely, the global candidate collection C; may contain such
patterns that are not candidates in sufficiently many collections Cf. This can
be the situation for a pattern ¢ € C; when the more general patterns 6 < ¢
are selected too often in disjoint database states. Such useless evaluation of
candidates can be avoided by a simple check: a pattern ¢ € C; needs not to
be evaluated if |{i | Cf}| < min_fr-n. A similar check can be applied after
cach failed evaluation of ¢(¢,r;), in order to prune a candidate as soon as it
turns out that it cannot be globally selected.

In summary, using only information about the global selection criterion
of patterns we would at level / investigate the patterns in C; against each
database state r;. Looking at each database state r; locally would enable us
to investigate the patterns in C{. Combining local and global information,
we see that one has to investigate at most the patterns in ¢; N C}.

This method could be used to analyze, e.g., the same database over time,
in order to see what regularities hold in most of the database states, or to
analyze several similar databases, for instance to find out which association
rules hold in most of the stores of a supermarket chain.

Chapter 8

Complexity of finding frequent
patterns

We now analyze the complexity of finding all frequent patterns, and we also
derive results for the complexity of discovering all frequent sets. In Section 8.1
we introduce the concept of the border between frequent and non-frequent
patterns. This notion turns out to be useful in the analysis of the generic
algorithm in Section 8.2. Inspired by this, we give in Section 8.3 a guess-
and-correct algorithm for the task of finding all frequent patterns. We then
analyze the task in Section 8.4. In Section 8.5 we return to the concept of
border, and show that it has strong connections to transversals on hyper-
graphs.

8.1 The border

Consider the theory T(P,r, ¢) of some set P of patterns. The whole theory
can be specified by giving only the maximally specific patterns in 7(P, r, ¢):
every pattern more general than any of those is selected by ¢, and the rest
are not. The collection of maximally specific patterns in 7(P,r,¢q) and,
correspondingly, the collection of minimally specific (i.e., maximally general)
patterns not in T(P,r, ¢) are useful in the analysis of the generic algorithm
and the problem. For this purpose we introduce the notion of border.

Definition 8.1 Let P be a set of patterns, S a subset of P, and < a partial
order on P. Further, let S be closed downwards under the relation <, i.e.,
if o € Sandy < ¢, then v € S. The border Bd(S) of S consists of those
patterns ¢ such that all more general patterns than ¢ are in § and no pattern
more specific than ¢ is in S:

Bd(S) = {peP|forall y€ P such that y < ¢ we have y € S, and
for all # € P such that ¢ < § we have 6 ¢ S}.

92 8. Complexity

Those patterns ¢ in Bd(S) that are in S are called the positive border Bd*(S),
Bdt(S)={p € S |forall 6 € P such that ¢ < 6 we have 6 ¢ S},

and those patterns ¢ in Bd(S) that are not in S are the negative border
Bd=(S)

Bd=(8) = {p € P\ S | for all v € P such that y < ¢ we have y € §}.

O

In other words, the positive border consists of the most specific patterns
in &, the negative border consists of the most general patterns outside S,
and the border is the union of these two sets. Note that a set § that is
closed downwards can be described by giving just the positive or the negative
border. Consider, e.g., the negative border. No pattern 6 such that ¢ < 6
for some ¢ in the negative border is in &, while all other patterns are in S.

A theory T(P,r, g) is always closed downwards with respect to a special-
ization relation, and the concept of border can be applied on the set of all
frequent patterns.

Example 8.2 Consider the discovery of frequent sets with items R =
{A,...,F}. Assume the collection F of frequent sets is

{4}, {B},{C}, {F}, {4, B}, {4,C}, {4, F},{C, F},{4,C, F}}.

The negative border of this collection contains now sets that are not frequent,
but whose all subsets are frequent, i.e., minimal non-frequent sets. The
negative border is thus

Bd~(F) = {{D}.,{£},{B,C},{B, F}}.
The positive border, in turn, contains the maximal frequent sets, i.c.,
Bd*(F) ={{A, B},{A,C, F}}.
O

Example 8.3 Consider the discovery of frequent episodes in a sequence
over events A,...,D. Assume that arbitrary partial orders are allowed
in the episodes, and that the episodes in Figure 8.1 constitute the theory
F (s, win, min_fr) of frequent episodes in some given event sequence s.

There are only two maximally specific episodes, those presented in Fig-
ure 8.2. All other episodes in F(s, win, min_fr) are included in either of these
two that constitute the positive border Bd* (F(s, win, min_fr)). The negat-
ive border Bd~ (F (s, win, min_fr)) is depicted in Figure 8.3. It consists of the
maximally general episodes that are not frequent. O

8.2. COMPLEXITY OF THE GENERIC ALGORITHM 93

@ ®|®

@@@@

&

@® | &G | G0 | @O

@® | @00 | @®

® @ (2@

Figure 8.1: A collection F(s, win, min_fr) of frequent episodes.

@D | @06

Figure 8.2: The positive border Bd* (F (s, win, min_fr)).

@@@

Figure 8.3: The negative border Bd™ (F (s, win, min_fr)).

8.2 Complexity of the generic algorithm

Consider the complexity of discovering all frequent patterns, in terms of the
number of evaluations of the selection criterion ¢. The trivial method for find-
ing T(P,r,q) is to test all patterns of P, and hence use |P| evaluations of g.
Algorithm 7.6 evaluates only patterns in the result, i.e., frequent patterns,
and patterns in the negative border of the collection of frequent patterns.

Theorem 8.4 Let P,r, and ¢ be as in Algorithm 7.6. Algorithm 7.6 evalu-
ates the predicate ¢ exactly on the patterns in 7(P,r, q) U Bd~(T(P,r,q)).

94 8. Complexity

Proof First note that no pattern is evaluated more than once: each pattern
has a unique level and can therefore be at most in one collection C;. Recall
now line 8 of Algorithm 7.6, the specification of the candidate collection:

8. compute C; := {p € P | level(y) =1 and 0 € Trevet(o) (P, q) for all
6 € P such that 0 < ¢};

We show that (J;C; = T(P,r,q) U Bd~(T(P,r,q)). First note that every
pattern ¢ in C; is in T(P,r,q) U Bd~(T(P,r,q)). If ¢ is selected by g, it
is in T(P,r,q). If ¢ is not selected by g, it is in Bd™(T(P,r, q)), since all
patterns more general than ¢ are in 7(P,r, ¢), and ¢ itself is not.

Now note that every pattern ¢ in T(P,r,q) U Bd~(T(P,r,q)) is in
Clevel(p)- When | = level(), all more general patterns than ¢ have been
evaluated in earlier iterations since their levels are less than level(p). All
more general patterns § < ¢ are in T(P,r,) and thus in Trepes)(P,r,¢).
So when [= level(y), the pattern ¢ will be in Creyepy)-

Finally, it can be shown, as in the proof of Theorem 7.7, that C,¢y) is
constructed for each ¢ in 7(P,r, ¢)UBd~(T(P,r,q)).

What the candidate generation step of Algorithm 7.6 basically does is
to compute the negative border of frequent patterns found so far. Line 8
actually equals the following specification:

8. compute C; 1= Bd‘(UKI Ti(P,x,q)) \ UKZ Ci;

That is, in each iteration the candidate collection generated is exactly the
negative border of the patterns selected so far, minus patterns already found
not to be selected. We can now use the concept of negative border to restate
the complexity of the frequent set discovery algorithm in a compact form.

Corollary 8.5 Given a set R, a binary database r over R, and a fre-
quency threshold min_fr, Algorithm 2.14 evaluates the frequency of sets in
F(r, min_fr) U Bd~ (F(r, min_fr)).

Proof The claim follows directly from the fact that Algorithm 2.14 is an
instance of Algorithm 7.6 and from Theorem 8.4. O

Example 8.6 Consider the discovery of frequent sets in a random relation
over 20 attributes, where the probability that {[A] has value 1 is p for all
rows (and all attributes A. Table 8.1 presents the sizes of the theory and
its positive and negative borders in experiments with two random relations,
with p = 0.2 and p = 0.5, and with 1000 rows. In such relations the size of
the border seems to be roughly 2 to 4 times the number of frequent sets.
Bd(T(P,r,q)) can be small for a large theory T(P,r, ¢). An experiment
with frequent sets in a real database gave the following results. We discovered
all frequent sets in a course enrollment database where there is a row per
student, a column per each course offered, and a row has value 1 in a column

Draft 95

pmingr | _[T(P.r.q)] [B&(T(P.x)] B~ (T(P.r.q))
0.2 0.01 469 273 938
0.2 0.005 1291 834 3027
0.5 0.1 1335 1125 4627
0.5 0.05 5782 4432 11531

Table 8.1: Experimental results with random data sets.

minfr | [T(P.x.q)] [B&(T(P.x.q))| |Bd(T(P.x.q)]
0.08 96 35 201
0.06 270 61 271
0.04 1028 154 126
0.02 6875 328 759

Table 8.2: Experimental results with a real data set.

if the corresponding student took the corresponding course. There are 127
courses, and a student has taken 4.3 courses on average; the number of
students is 4734. Table 8.2 shows that the size of the border behaves nicely
with respect to the size of the theory. O

8.3 The guess-and-correct algorithm

Algorithm 7.6 starts by evaluating the selection predicate ¢ on the most
general sentences, and moves gradually to more specific sentences. As ¢
is assumed to be monotone with respect to the specialization relation, this
approach is safe in the sense that no statement satisfying ¢ will be overlooked.
However, the approach can be quite slow, if there are frequent patterns that
are far from the bottom of the specialization relation, i.e., if there are patterns
¢ that are selected by ¢, but which appear in the candidate set C; only for a
large 7. As every iteration of the algorithm requires an investigation of the
database, this means that such sentences will be discovered slowly.

An alternative is to start the process of finding 7 (P, r, ¢) from an initial
guess & C P, and then correcting the guess by looking at the database.
The guess can be obtained, e.g., from computing the set 7(P,r,¢), where
s C ris a sample of r. Algorithm 8.7 computes 7(P,r, ¢) as follows. To
begin with, the algorithm is given a guess § C P. The algorithm first
evaluates the sentences in the positive border Bd*(S) and removes from
S those that are not interesting. These evaluation and removal steps are
repeated until the positive border only contains sentences satisfying ¢, and

96 8. Complexity

Algorithm 8.7 The guess-and-correct algorithm for finding all potentially inter-
esting sentences with an initial guess S.

Input: A database r, a language P with specialization relation <, a selection pre-
dicate ¢, and an initial guess S C P for 7(P,r,q). We assume S is closed under
generalizations..

Output: The set 7(P,r,q)..

Method:
1. et =0
// correct 8§ downward:
2. C:= Bd*(S);
3. whileC#0do
4. C*:=C*"UC,
5. §:=8\{p€C|q(r,) is falsc};
6. C:=Bdt(S)\C*;
7. od;

// now 8 C T(P,r,q); expand § upwards:
8. C:=Bd(S)\C
9 while C # 0 do

10. C*=C"ug

11. 8:=8U{p€C]qlr,g) is true};
12. C:=Bd (S)\C*;

13. od;

14. output S;

thus we have § C T(P,r,q). The variable C* is used to avoid evaluating
sentences twice. Then the algorithm expands & upwards, like Algorithm 7.6:
it evaluates such sentences in the negative border Bd~(S) that have not
been evaluated yet, and adds those that satisfy ¢ to S. Again, the algorithm
repeats the evaluation and addition steps until there are no sentences to
evaluate. Finally, the outputis § = T(P,r, q).

The following results are straightforward.

Lemma 8.8 Algorithm 8.7 works correctly.
Theorem 8.9 Algorithm 8.7 uses at most

[(SAT)UBd(T)UBd* (SN T)|
evaluations of ¢, where 7 = T(P,r, q).

How to obtain good original guesses §7 One fairly widely applicable
method is sampling. Take a small sample s from r, compute 7 (P, r, ¢) and
use it as §. Applied to association rules this method produces extremely good
results. Basically, with a high probability one can discover the association
rules holding in a database using only a single pass through the database.

Another method for computing an initial approximation can be derived
from the Partition algorithm [77]. The idea is to divide r into small datasets

Draft 97

r; which can be handled in main memory, and to compute S; = 7(P,r;, q).
In the case of frequent sets, use as the guess § the union |J; §;. The guessis a
superset of 7(P,r;,), and executing the first half of Algorithm 8.7 suffices.

8.4 Problem complexity

Let us now analyze the complexity of the problem of discovering all frequent
patterns. Consider first the following verification problem: assume somebody
gives a set § C P and claims that § = 7(P,r,¢). How many evaluations of
q are necessary for verifying this claim? The following theorem shows that
the whole border Bd(S) must be inspected.

Theorem 8.10 Let P and & C P be sets of patterns, r a database, ¢ a
selection criterion, and < a specialization relation. If the database r is ac-
cessed only using the predicate ¢, then determining whether § = 7(P,r,q)
(1) requires in the worst case at least |Bd(S)| evaluations of ¢, and (2) can
be done in exactly |Bd(S)| evaluations of ¢.

Proof We show that it is sufficient and in the worst case necessary to
evaluate the border Bd(S). The claims follow then from this.

First assume that patterns in the border are evaluated. If and only if
every pattern in Bd*(S) and no pattern in Bd~(S) is selected by ¢, then
§ = T(P,r,q), by the definition of the border. If § and 7 (P,r,¢q) do not
agree on the border, then clearly S # T(P,r, ¢q).

Now assume that less than |Bd(S)| evaluations have been made, all con-
sistent with the claim & = T(P, r, ¢); then there is a pattern ¢ in the border
Bd(S) for which ¢ has not been evaluated. Now there is no way of knowing
whether ¢ is in T(P,r,q) or not. The evaluations made for other patterns
give no information about ¢: since they were consistent with & = 7(P,r, q)
and ¢ is in the border, all more general patterns § < ¢ are selected by the
definition of border, none of the more specific patterns is selected, and the
rest are irrelevant with respect to ¢. In other words, any set in the negat-
ive border can be swapped to the positive border, and vice versa, without
changing the truth of ¢ for any other set. O

Corollary 8.11 Let P be a set of patterns, r a database, ¢ a selection
criterion, and < a specialization relation. Any algorithm that computes
T(P,r,q) and accesses the data only with the predicate ¢ must evaluate ¢
on the patterns in Bd(T(P,r,q)).

Proof The claim follows directly from the proof of Theorem 8.10. O

Example 8.12 Continuing Example 8.2 consider the discovery of frequent
sets in a relation over attributes R = {4, ..., F}. Assume a sample or some

98 8. Complexity

person tells us that the collection of frequent sets is
8§ ={A}L{B}LACHA{F}{A, B} AA, CL A, F}LA{C F}L{A, G, F.

To verify whether the claim is true we have to evaluate, according to
Corollary 8.11, the border Bd(S). We thus have to evaluate Bd*(S) =
{{A,B},{A,C,F}} and Bd~(S) = {{D},{E},{B,C},{B, F}} to determ-
ine whether § is the collection of frequent sets. O

We have further corollaries about the complexity of discovery tasks.
Consider the discovery of frequent sets. Recall that Algorithm 2.14 eval-
uates also the frequency of the candidates that are not frequent, i.e., sets in
Bd~(F(r, min_fr)). The following corollary shows that in a limited but reas-
onable model of computation the evaluation of the non-frequent candidates
is inevitable.

Corollary 8.13 Given aset R, a binary database r over R, and a frequency
threshold min_fr, finding the collection F(r, min_fr) using only queries of the
form “Is X C R frequent in r” requires that sets in the negative border

Bd~(F(r, min_fr)) are evaluated.

Proof The claim follows directly from Corollary 8.11. O

Algorithm 2.14 actually evaluates the whole theory F (r, min_fr), not only
its border. For the discovery of association rules this is in general necessary,
since the exact frequencies are needed in the rule generation phase. Al-
gorithm 2.14 is thus optimal under the simplifying restriction that the only
way of controlling the algorithm is to use the information whether a set is
frequent or not.

The advantage of Corollary 8.11 is that the border Bd(S) can be small
even for large . The drawback is that it can be difficult to determine the
border. We return to this issue in Section 8.5 where we show a connection
between the problem of finding the border and the hypergraph transversal
problem.

8.5 Computing the border

We now return to the verification problem: given P, r, ¢, and a set S C P,
verify whether § = 7(P, r, ¢). By Corollary 8.11 the border Bd(S) must be
inspected. Given S, we can compute Bd*(S) without looking at the data
r at all: simply find the most specific patterns in §. The negative border
Bd~(S8) is also defined by §, and can be determined without looking at the
data, but finding the most general patterns in P\ & can be difficult. We now
show how minimal transversals of hypergraphs can be used to determine the
negative border.

Draft 99

Definition 8.14 Let R be a set. A collection # of subsets of R is a simple
hypergraph on R, if no element of H is empty and if X, Y € H and X C Y
imply X =Y. The elements of H are called the edges of the hypergraph,
and the elements of R are the vertices of the hypergraph. O

Definition 8.15 Given a simple hypergraph # on a set R, a transversal T’
of M is a subset of R intersecting all the edges of #: 1" is a transversal if and
only if TNX # 0 for all X € H. A minimal transversal of H is a transversal
7" such that no 1” C 7' is a transversal. We denote the collection of minimal
transversals of H by Tr(#). O

For our purposes, hypergraphs and transversals apply almost directly on
the pattern class of frequent sets. Let the items in R be the vertices and
the complements of the sets in the positive border be the edges of a simple
hypergraph #. So, for each set X in the positive border we have the set
R\ X as an edge in H. Consider now a set Y C R. If there is an edge
R\ X such that Y N (R\ X) =0, then Y C X, and Y is frequent. On the
other hand, if there is no such edge that the intersection is empty, then Y
cannot be frequent. That is, Y is not frequent if and only if Y is a transversal
of #. Minimal transversals are now the minimal non-frequent sets, i.c., the
negative border.

In general, for using hypergraphs and transversals to determine the negat-
ive border, we need to represent patterns in P as sets. Frequent sets are such
a representation themselves; next we give the requirements for the general
case.

Definition 8.16 Let P be a set of patterns, < a specialization relation, and
R asct. A function f:P — {X|X C R} is a sel represenlalion of P and X,
if f is bijective, f and its inverse are computable, and for all 8, € P we
have @ < ¢ if and only if f(6) C f(¢).

For notational convenience, given a collection § of sets, we write f(§) =

(/)| X € 8}, o

As was described above for frequent sets, minimal transversals of a suit-
ably constructed hypergraph constitute the negative border.

Definition 8.17 Let P and § C P be sets of patterns and let f be a set
representation of P. We denote by #(S) the simple hypergraph on R that
contains as edges the complements of sets f(¢) for ¢ € Bd*(S),i.c., H(S) =

{B\ f(¢) | ¢ € Bd*(S)}. o

Now #(8) is a hypergraph corresponding to the set representation of S,
and Tr(#(S)) is the set representation of the negative border. The inverse
function f~! maps the set representations of the negative border to the pat-
terns in the negative border. That is, the set f~1(77(#(S))) is the negative
border. Next we show this formally.

100 8. Complexity

Theorem 8.18 Let P and & C P be sets of patterns, and let f be a set
representation of P. Then f~!(7r(H(S))) = Bd~(S).

Proof We prove the claim in twosteps. First we show that X is a transversal

of #(8) if and only if f~1(X) ¢ S:

X is a transversal of #(S)

XNY #0forall Y € H(S)

X N (R\ f(¢)) # 0 for all ¢ € BdT(S)
X ¢ f(¢p) for all ¢ € Bd*(S)

F7HX) £ ¢ for all ¢ € Bd*(S)
0.

Next we show that 7r(#(S)) = f(Bd~(S)); the theorem then immedi-

ately follows.

teote

Tr(H(S))
= {X | X is a minimal transversal of #(S)}
= {X | X is a minimal set such that f~'(X) ¢ S}
= {X|fYX)¢Sand fFH(Y)eSforallY C X}
= {f(¢) |¢¢Sand fcSforall 6 < ¢}
= f(Bd(S)).

O

Thus for languages representable as sets, the notions of negative border
and the minimal transversals coincide.

Example 8.19 Continuing Example 8.12, the discovery of frequent sets in
a relation with attributes R = {4,..., F}, we now compute the set Bd~(S)
using the hypergraph formulation. For frequent sets we simply let f be the
identity function: f(X) = X. We are given the positive border Bd*(S) =
{{A, B},{A,C, F}}, so we have

H(S) = {R\ F(X) | X € Bd*(()8)} = {{C, D, &5, ¥}, {B, D, 12}}.
The minimal transversals of H(S) are {D}, {E}, {B,C}, and {B, F}, thus
Bd=(()8) = f~H(Tr(#(8))) = Tr(#(S)) = {{D}, {£}, {B,C},{B, F}}.

O

We showed in Section 8.4 that under some simplifying restrictions the
negative border must be evaluated when discovering all frequent patterns. In
this section we showed that for patterns representable as sets the notion of
negative border corresponds to the minimal transversals of a suitably defined
hypergraph. The advantage of this is that the wealth of material about

transversals (see, e.g., [7]) can be used, e.g., in the design of algorithms or
complexity analysis for specific knowledge discovery problems.

8.6. BIBLIOGRAPHIC NOTES 101

8.6 Bibliographic notes

Many of the concepts and ideas of this and the previous chapter are known
in different contexts. These chapters are, however, among the first attempts
to provide a unified viewpoint to several knowledge discovery tasks and a
generic algorithm for those tasks. Parts of the material of these chapters
have been published in [61].

Algorithm 7.6 is based on the breadth-first search strategy, and it uses
a specialization relation for safely pruning branches of the search tree, both
well known search methods. The idea of checking all more general patterns
when generating candidates has, however, been missed, e.g., in the original
algorithm for discovering frequent sets [1] and in the inference of inclusion
dependencies [49, 58]. In the area of machine learning, the version spaces
of Mitchell [68] are the first systematic use of specialization relations and
concepts similar to our border. Mitchell’s learning task is different from ours,
but conceptually Mitchell’s set .S of the most specific consistent patterns
is the same as our positive border. —A generic viewpoint to knowledge
discovery algorithms, similar to ours, has been expressed in [79].

There are several knowledge discovery settings that can be seen as the
discovery of all frequent patterns. We very briefly contrast the described
approach with two important systems, Explora and Claudien.

Explora [53] is a system for discovering patterns describing outstanding
subgroups of a given database. Explora employs specialization relations: it
organizes patterns into hierarchies and lets the user specify which are spe-
cialization relations with respect to the domain and the user’s interests. The
algorithm repeatedly evaluates patterns along paths between the most gen-
cral and the most specific patterns until the border is located. The special-
ization relations are used to prune from evaluation those patterns for which
the truth of selection criterion is already known.

Claudien [13] discovers minimally complete first order clausal theories
from databases; in our terms a minimally complete theory roughly corres-
ponds to the positive border. Claudien discovers the positive border by
finding those patterns that are not frequent, i.e., by a conversed strategy.
Due to the large number of patterns, in particular the number of patterns
in individual levels, the implementation of Claudien uses depth-first search
in order to save space. Therefore Claudien cannot take full advantage of
the specialization relation: it may generate and test candidate clauses that
cannot hold given all more general patterns.

In general, the depth-first search strategy may be useful if the collections
of frequent patterns on each level are very large, or if computing the selection
criterion from the database is cheap. Pratt [46], a system for the discovery
of patterns in protein sequences, is a good example of such an application.
Since the total size of the analyzed sequences is not large, Pratt can store
the data in main memory and even use index structures that are significantly

102 8. Complexity

larger than the original data. Evaluating the selection criterion is thus fast,
possibly even faster than evaluating whether a potential candidate is a valid
candidate or not.

Methods that use sampling in the discovery of frequent sets have been
given in [84].

The problem complexity of these settings has not received much atten-
tion. Some lower bounds for the problem of finding all frequent sets are
given in [2, 62]. The relevance of transversals to computing the theory of a
model has been known in the context of finding functional dependencies [59]
and several other specific problems [18]. The complexity of computing the
minimal transversals of a hypergraph has long been open; see [34, 67] for
recent results. It is, however, known that transversals can be computed in
time O(Izo(bg")), where 7 is the sum of the sizes of the edges of both the hy-
pergraph and its minimal transversals [26, 50]. The connection of the border
and transversals have been recently strengthened [33].

Chapter 9

Sampling large databases for
frequent sets

The size of the data collection has an essential role in data mining. Large
data sets are necessary for reliable results—unfortunately, however, the effi-
ciency of mining algorithms depends significantly on the database. The time
complexity of the frequent set discovery algorithm is linear with respect to
the number of rows in the database. However, the algorithm requires mul-
tiple passes over the database, and subsequently the database size is the most
influential factor in the execution time for large databases.

In this chapter we present algorithms that make only one or sometimes
two passes over the database. The idea is to pick a random sample from the
input database, use it to determine all sets that possibly are frequent in the
whole database, and then to verify the results with the rest of the database.
These algorithms thus produce a correct set of association rules in one full
pass over the database. In those rare cases where our sampling method does
not produce all frequent sets, the missing sets can be found in a second pass.
The concept of negative border turns out to be useful in this task.

We describe our sampling approach for discovering association rules in
Section 9.1. In Section 9.2 we analyze the goodness of the sampling method,
e.g., the relation of sample size to the accuracy of results. In Section 9.3
we give variations of algorithms and experimental results. The results show
that the methods reduce the disk activity considerably, making the approach
attractive especially for large databases. This chapter is based on [84].

9.1 Sampling in the discovery of frequent sets

An obvious way of reducing the database activity of knowledge discovery
is to use only a random sample of the database and to find approximate
regularities. In other words, one can trade off accuracy against efficiency.
This can be useful: samples small enough to be handled totally in main

104 9. Sampling

Algorithm 9.1

Input: A binary database r over a set R, a frequency threshold min_fr, a sample
size s_size, and a lowered frequency threshold low_fr < min_fr.

Output: The collection F(r, min_fr) of frequent sets and their frequencies, or its
subset and a failure report.

Method:

compute s := a random sample of size s_size from r;

// Find frequent sets in the sample:

compute § := F(s, low_fr) in main memory using Algorithm 2.14;

// Database pass:

compute R := {X € SUBI™(S) | fr(X,r) > min_fr} using Algorithm 2.22;
// Output:

for all X € R do output X and fr(X, r);

if R N Bd~(S) # @ then report that there possibly was a failure;

00 =T TV A Lo N

memory can give reasonably accurate results. Or, approximate results from
a sample can be used to set the focus for a more complete discovery phase.

It is often important to know the frequencies and confidences of associ-
ation rules exactly. In business applications, for example for large volumes
of supermarket sales data, even small differences can be significant. When
relying on results from sampling alone, one also takes the risk of losing valid
association rules altogether because their frequency in the sample is below
the threshold.

Using a random sample to get approximate results is fairly straightfor-
ward. Below we give bounds for sample sizes, given the desired accuracy of
the results. We show further that exact frequencies can be found efficiently,
by analyzing first a random sample and then the whole database as follows.
Use a random sample to locate a superset S of the collection of frequent sets.
A superset can be determined efficiently by applying Algorithm 2.14 on the
sample in main memory, and by using a lowered frequency threshold. Then
use § as the collection of candidates, and compute the exact frequencies
of the sets from the rest of the database. This approach, when successful,
requires only one full pass over the database, and two passes in the worst
case.

Algorithm 9.1 presents the principle: search for frequent sets in the
sample, but use a lower frequency threshold so that it is unlikely that frequent
sets are missed.

The concept of negative border is useful here. As was noted in the
previous chapter, the border has to be inspected when discovering fre-
quent sets. It is thus not sufficient to locate a superset S of F(r, min_fr)
using the sample and then to evaluate § in 7. Rather, the collection
F(r, min_fr)UBd~ (F(r, min_fr)) needs to be checked. Obviously S UBd~(S)
is a superset of this collection if S is a superset of F(r, min_fr), so we check
the union. Sometimes, however, it happens that we find out that not all

Draft 105

necessary sets have been evaluated.

Definition 9.2 There has been a failure in the sampling if all frequent sets
are not found in one pass, i.e., if there is a frequent set X in F(r, minfr)
that is not in SUBd™ (S). A miss is a frequent set Y in F(r, min_fr) that is
in Bd=(S). O

If there are no misses, then the sampling has been successful. Misses
themselves are not a problem: they are evaluated in the whole database,
and thus they are not actually missed by the algorithm. Misses, however,
indicate a potential failure. Namely, if there is a miss Y, then some superset
of Y might be frequent but not in S UBd~(S). A simple way to recognize a
potential failure is thus to check if there are any misses.

Theorem 9.3 Algorithm 9.1 works correctly.

Proof Clearly, on lines 5 and 7, a collection of frequent sets is computed
and output. We need to show that if no failure report is given, then all
frequent sets are found, and that if all frequent sets are not found, then a
failure report is, in turn, given.

If there is no failure report, i.e., if R and Bd~(S) are disjoint, then R C S,
and Bd=(R) € § UBd~(S). Thus the whole negative border Bd~(R) has
been evaluated, and all frequent sets are found. If all frequent sets are not
found, i.e., if there is a frequent set X that is not in S U Bd™(S), then there
exists a set Y in Bd~(S) such that Y C X and Y is frequent. This set Y is
thus in R N Bd~(S), and a failure is reported. O

Example 9.4 Assume that we have a binary database r with 10 million
rows over items A,..., F, and that we want to find the frequent sets with
the threshold 0.02. Algorithm 9.1 randomly picks a small fraction s of r, say
20 000 rows, and keeps this sample s in main memory. The algorithm can
now, without any further database activity, discover efficiently the sets that
are frequent in the sample.

To make it very probably that the collection of frequent sets in the
sample includes all sets that really are frequent in r, the frequency threshold
is lowered to, say, 0.015. So Algorithm 9.1 determines the collection § =
F(s,0.015) from the sampled 20 000 rows. Let the maximal sets of S, i.e.,
the positive border Bd*(S), be

{4, D}.{B, D}, {A, B,C},{A,C, F}.
Since the threshold was lowered, § is likely to be a superset of the collection

F(r,0.02) of frequent sets. In the pass over the rest of the database r, the
frequency of all sets in § and Bd~(S) is evaluated. That is, in addition to

106 9. Sampling

Algorithm 9.5

Input: A binary database r over a set R, a frequency threshold min_fr, a subset §
of F(r, min_fr), and a subset 8~ of Bd~ (¥ (r, min_fr)).

Output: The collection F(r, min_fr) of frequent sets and their frequencies.
Method:

1. repeat compute 8 := SU (Bd™(8) \ §7) until S does not grow;

2. compute R :={X €8 | fr(X,r) > min_fr};

3. forall X € R do output X and fr(X,r);

the sets that are frequent in the sample, we evaluate also those candidates
that were not frequent, i.e., the negative border

{E}.{B, F},{C, D},{D, F'}, {A, B, D}.
The goal is to discover the collection F(r,0.02). Let the sets
{4, B}, {4,C, F}.

and their subsets be the frequent sets. All frequent sets are in S, so they are
evaluated and their exact frequencies are known after the full database pass.
We also know that we have found all frequent sets since also sets

{D}{E},{B,C},{B, F},

i.e., sets in the negative border of F(r, 0.02), were evaluated and found to be
non-frequent.

Now assume a slightly different situation, where the set { B, F'} turns out
to be frequent in r, that is, {B, F'} is a miss. The set {A, B, F'} could be
frequent in 7, since all its subsets are. In this case Algorithm 9.1 reports that
there possibly is a failure. m}

The problem formulation is now the following: given a database r and
a frequency threshold min_fr, use a random sample s to determine a collec-
tion S of sets such that § contains with a high probability the collection of
frequent sets F (r, min_fr). For efficiency reasons, a secondary goal is that §
does not contain unnecessarily many other sets.

In the fraction of cases where a possible failure is reported, all frequent
sets can be found by making a second pass over the database. Algorithm 9.5
can be used to extend Algorithm 9.1 with a second pass in such a case.
The algorithm simply computes the collection of all sets that possibly could
be frequent. The parameter § is the collection of frequent sets found by
Algorithm 9.1, and S~ is the collection of non-frequent candidates of Al-
gorithm 9.1. The collection Bd™(S) can be located in a similar way as can-
didates are generated.

Draft 107

Theorem 9.6 Algorithm 9.5 works correctly.

Proof All sets computed and output on lines 2 and 3 are clearly frequent.
To see that all frequent sets are output, consider any frequent set X and
assume the contrary: X is not in § after line 1. Let Y C X be the smallest
subset of X that is not in §. Then all subsets of Y arein §, and Y must be in
the negative border Bd~(S). The only possible reason for Y being excluded
from § is that it is in S~. This is, however, a contradiction, since Y must
be frequent. Thus all frequent sets are output. O

The number of candidates in the second pass can, in principle, be too
large to fit in the main memory and to be handled in one database pass.
This can happen when the sample is very bad and gives inaccurate results.

9.2 Analysis of sampling

Let us now analyze the relation of sample size to the accuracy of results. We
first consider how accurate the frequencies computed from a random sample
are. As has been noted before, samples of reasonable size provide good
approximations for frequencies of sets [2, 62]. Related work on using a sample
for approximately verifying the truth of arbitrary sentences of relational tuple
calculus is considered in [51].

Definition 9.7 Given an item set X C R and a random sample s of a binary
database over R, the error e(X, s) is the difference of the frequencies:

e(X,) = |fr(X, s) - fr(X)],

where fr(X) is the frequency of X in the database from which s was drawn.
]

To analyze the error, we consider sampling with replacement. The reason
is that we want to avoid making other assumptions of the database size except
that it is large. For sampling with replacement the size of the database has
no effect on the analysis, so the results apply, in principle, on infinitely large
databases. Note also that for very large databases there is practically no
difference between sampling with and without replacement.

In the following we analyze the random variable |M (X, s)|, that is, the
number of rows in the sample s that contain X. The random variable has
binomial distribution B(|s|, fr(X)), i.e., the probability of |[M(X,s)| = ¢,
denoted Pr|M(X,s)|=¢], is

(BN oy

First consider the necessary size of a sample, given requirements on the
size of the error. The following theorem gives a lower bound for the size of

108 9. Sampling
[4 Sample size
0.01 | 0.01 27 000
0.01 | 0.001 38 000
0.01 | 0.0001 50 000
0.001 | 0.01 2 700 000
0.001 | 0.001 3800 000
0.001 | 0.0001 5 000 000

Table 9.1: Sufficient sample sizes, given ¢ and 9.

the sample, given an error bound & and a maximum probability ¢ for an error
that exceeds the bound.

Theorem 9.8 Given an item set X and a random sample s of size

1 2
|s] > —1In=
2e2 4

the probability that e(X, s) > ¢ is at most 4.

Proof The Chernoff bounds give the result Prje — np| > a] < 2¢=20°/7,
where @ is a random variable with binomial distribution B(n,p) [5]. For the
probability at hand we thus have

Prie(X,s) > & = Pr{fi(X,s) — fr(X)|-|s| > e |s|] < 272D/l < 5,
O

Table 9.1 gives values for the sufficient sample size |s|, for ¢ = 0.01,0.001
and 6 = 0.01,0.001, 0.0001. With the tolerable error £ around 0.01, samples
of a reasonable size suffice. For instance, if a chance of 0.0001 for an error
of more than 0.01 is acceptable, then a sample of size 50 000 is sufficient.
For many applications these parameter values are perfectly reasonable. In
such cases, approximate rules can be produced based on a sample, i.e., in
constant time independent of the size of ». With tighter error requirements
the sample sizes can be quite large.

The result above is for a given set X. The following corollary gives a
result for a more stringent case: given a collection § of sets, with probability
1 — A there is no set in § with error at least e.

Corollary 9.9 Given a collection S of sets and a random sample s of size

the probability that there is a set X € S such that e(X, s) > ¢ is at most A.

Draft 109

Proof By Theorem 9.8, the probability that e(X,s) > ¢ for a given set X

is at most ﬁ Since there are |S| such sets, the probability in question is at

most A. O

The Chernoff bound is not always very tight, and in practice the exact
probability from the binomial distribution or its normal approximation are
more useful.

Consider now the proposed approach to finding all frequent sets exactly.
The idea was to locate a superset of the collection of frequent sets by dis-
covering frequent sets in a sample with a lower threshold. Consider first the
following simple setting: take a sample as small as possible but such that it
is likely to contain all frequent sets at least once. What should the sample
size be?

Theorem 9.10 Given a set X with fr(X) > min_fr and a random sample s

of size
1

>——In—
Isl 2 min_fr 15

the probability that X does not occur in s is at most 4.

Proof We apply the following inequality: for every = > 0 and every real
number b we have (1+ %)“’ < €". The probability that a frequent set X does
not occur on a given row is at most 1 — min_fr. The probability that X does
not occur on any row is then at most (1— min,fr)"‘, which is further bounded
by the inequality by e~lslmin-fr < §,]

The sample size given by the theorem is small, but unfortunately the
approach is not very useful: a sample will include a lot of garbage, i.e., sets
that are not frequent nor in the border. For instance, a single row containing
20 items has over a million subsets, and all of them would then be checked
from the whole database. Obviously, to be useful the sample must be larger.
It is likely that best results are achieved when the sample is as large as can
conveniently be handled in the main memory.

We move on to the following problem. Assume we have a sample s and
a collection § = F (s, low_fr) of sets. What can we say about the probability
of a failure? We use the following simple approximation. Assuming that
the sets in Bd~(S) are independent, an upper bound for the probability of
a failure is the probability that at least one set in Bd~(S) turns out to be
frequent in 7.

This approximation tends to give too large probabilities. Namely, a set X
in Bd=(S) that is frequent in r, i.c., an X that is a miss, does not necessarily
indicate a failure at all. In general there is a failure only if the addition of X
to 8 would add sets to the negative border Bd~(S); often several additions
to S are needed before there are such new candidates. Note also that the
assumption that sets in Bd~(S) are independent is unrealistic.

110 9. Sampling

An interesting aspect is that this approximation can be computed on the
fly when processing the sample. Thus, if an approximated probability of a
failure needs to be set in advance, then the frequency threshold low_fr can be
adjusted at run time to fit the desired probability of a miss. A variation of
Theorem 9.8 gives the following result on how to set the lowered frequency
threshold so that misses are avoided with a high probability.

Theorem 9.11 Given a frequent set X, a random sample s, and a probab-
ility parameter &, the probability that X is a miss is at most é when

1 1
—1In—.
2|s| o

low_fr < min_fr—

Proof Using the Chernoff bounds again—this time for one-sided error—we
have
—2 1l 2
Prfr(X,s) < lowfr] < e (/ziatn gD/l =4
O

Consider now the number of sets checked in the second pass by Al-
gorithm 9.5, in the case of a potential failure. The collection § can, in
principle, grow a lot. Each independent miss can in the worst case generate
as many new candidates as there are frequent sets. Note, however, that if
the probability that any given set is a miss is at most &, then the probability
of { independent misses can be at most 7.

9.3 Experiments

We now describe the experiments we conducted to assess the practical feas-
ibility of the sampling method for finding frequent sets. In this section we
also present variants of the method and give experimental results.

Test organization We used three synthetic data sets from [3] in our tests.
These databases model supermarket basket data, and they have been used
as benchmarks for several association rule algorithms [2, 3, 40, 73, 77]. The
central properties of the data sets are the following. There are |R| = 1 000
items, and the average number 7' of items per row is 5, 10, or 20. The number
|r| of rows is approximately 100 000. The average size I of maximal frequent
sets, i.e., sets in the positive border, is 2, 4, or 6. Table 9.2 summarizes the
parameters for the data sets; see [3] for more details of the data generation.

We assume that the real data collections from which association rules
are discovered can be much larger than the test data sets. To make the
experiments fair we use sampling with replacement. This means that the

Draft 111

Data set name |R|| T |1 [r| | Size (MB)
T5.12.D100K 1000 51297233 24
T10.14.D100K || 1000 | 10 | 4 | 98 827 4.4
T20.16.D100K || 1 000 | 20 | 6 | 99 941 8.4

Table 9.2: Synthetic data set characteristics (I" = row size on average,

1 = size of sets in the positive border on average).

Frequency Sample size

threshold || 20 000 | 40 000 | 60 000 | 80 000
0.0025 || 0.0013 | 0.0017 | 0.0018 | 0.0019
0.0050 || 0.0034 | 0.0038 | 0.0040 | 0.0041
0.0075 || 0.0055 | 0.0061 | 0.0063 | 0.0065
0.0100 || 0.0077 | 0.0083 | 0.0086 | 0.0088
0.0150 || 0.0122 | 0.0130 | 0.0133 | 0.0135
0.0200 || 0.0167 | 0.0177 | 0.0181 | 0.0184

Table 9.3: Lowered frequency thresholds for § = 0.001.

real data collections could have been arbitrary large data sets such that
these data sets represent their distributional properties.

We considered sample sizes from 20 000 to 80 000. Samples of these
sizes are large enough to give good approximations and small enough to be
handled in main memory. Since our approach is probabilistic, we repeated
every experiment 100 times for each parameter combination. Altogether,
over 10 000 trials were run.

Number of misses and database activity We experimented with Al-
gorithm 9.1 with the above mentioned sample sizes 20 000 to 80 000. We
selected the lowered threshold so that the probability of missing any given fre-
quent set X is less than § = 0.001, i.e., given any set X with fr(X) > min_fr,
we have Prfr(X,s) < low_fr] < 0.001. The lowered threshold depends on the
frequency threshold and the sample size. The lowered threshold values are
given in Table 9.3; in the computations of the lowered thresholds we used the
exact probabilities obtained from the binomial distribution, not the Chernoff
bounds.

Figure 9.1 shows the number of database passes for the three differ-
ent types of algorithms: Algorithm 2.14, Partition, and the sampling Al-
gorithm 9.1. The Partition algorithm [77] was discussed already shortly in
Chapter 2. It is based on the idea of partitioning the database to several
parts, each small enough to be handled in main memory. The algorithm

112 9. Sampling
T5.12.100K
7 T T T
6 ~ Algorithm 2.14 — B
5 Partition =—
J Algorithm 9.1 —+— —
Number 4 [N
of passes g | i
2
1 * " " *
I I 1 I
0.02 0.015 0.01 0.0075 0.005 0.0025
Frequency threshold
T10.14.100K T20.16.100K
7 T T 7 T
6 - 6 - ~
5 / 4 5F A
Number 4 [4 4r b
of passes g | 4 3t
2 2
1 * * * 1 *
I I I I
0.02 0.015 0.01 0.0075 0.005 0.02 0.015 0.01
Frequency threshold Frequency threshold

Figure 9.1: The number of database passes made by frequent set algorithms.

almost always makes two passes over the database: in the first pass, it uses
a variant of Algorithm 2.14 to find frequent sets in each partition, and in
the second pass it checks in the whole database all sets that were frequent
in at least one partition. Each of the data points in the results shown for
Algorithm 9.1 is the average value over 100 trials.

Explaining the results is easy. Algorithm 2.14 makes L(-+1) passes over
the database, where L is the size of the largest frequent set. The Partition
algorithm makes two passes over the database whenever there are any fre-
quent sets. For Algorithm 9.1, the fraction of trials with misses is expected
to be larger than 6 = 0.001, depending on how many frequent sets have a
frequency relatively close to the threshold and are thus likely misses in a
sample. The algorithm has succeeded in finding all frequent sets in one pass
in almost all cases. The number of database passes made by Partition al-
gorithm is practically twice that of Algorithm 9.1, and the number of passes
of Algorithm 2.14 is up to six times that of Algorithm 9.1.

Draft 113

T5.12.D100K

Frequency Sample size
threshold || 20 000 | 40 000 | 60 000 | 80 000
0.0025 0 1 0 0
0.0050 0 1 0 1
0.0075 0 0 0 0
0.0100 0 0 0 0
0.0150 0 0 0 0
0.0200 0 0 0 0
T10.14.D100K
Frequency Sample size
threshold || 20 000 | 40 000 | 60 000 | 80 000
0.0050 0 2 1 1
0.0075 0 1 1 1
0.0100 1 0 1 1
0.0150 0 2 0 0
0.0200 0 0 0 0
T20.16.D100K
Frequency Sample size
threshold || 20 000 | 40 000 | 60 000 | 80 000
0.0100 0 0 0 0
0.0150 1 1 1 0
0.0200 0 1 0 2

Table 9.4: Number of trials with misses.

Table 9.4 shows the number of trials with misses for each data set, sample
size, and frequency threshold. In each set of 100 trials, there have been zero
to two trials with misses. The overall fraction of trials with misses was 0.0038.
We repeated the experiment with & = 0.01, i.e., so that the probability of
missing a given frequent set is at most 0.01. This experiment gave misses in
fraction 0.041 of all the trials. In both cases the fraction of trials with misses
was larger than 0, but of the same magnitude.

The actual amount of reduction in the database activity depends on the
database storage structures. For instance, if the database has 10 million rows,
a disk block contains on average 100 rows, and the sample size is 20 000, then
the sampling phase could read up to 20 % of the database. An alternative for
randomly drawing each row in separation is, of course, to draw whole blocks
of rows to the sample. Depending on how randomly the rows have been
assigned to the blocks, this method can give good or bad results. For the
design and analysis of sampling methods see, e.g, [72]. The related problem
of sampling for query estimation is considered in [35].

114 9. Sampling
Frequency Sample size
threshold 20 000 | 40000 | 60 000 | 80 000 || Algorithm 2.14
0.0050 || 382282 | 368 057 | 359 473 | 356 527 318 588
0.0075 || 290 311 | 259 015 | 248 594 | 237 595 188 024
0.0100 || 181 031 | 158 189 | 146 228 | 139 006 97 613
0.0150 52369 | 40512 | 36679 | 34200 20 701
0.0200 10 903 7098 5904 5135 3211

Table 9.5: Number of item sets considered for data set T10.14.D100K.

The reduction in database activity is achieved at the cost of consid-
ering some item sets that Algorithm 2.14 does not generate and check.
Table 9.5 shows the average number of sets considered for the data set
T10.14.D100K with different sample sizes and the number of candidate sets
of Algorithm 2.14. The largest absolute overhead occurs with low thresholds,
where the number of item sets considered has grown from 318 588 by 64 694
in the worst case. This growth is not significant for the total execution time
since the item sets are handled entirely in main memory. The relative over-
head is larger with higher thresholds, but since the absolute overheads are
small the effect is negligible. Table 9.5 indicates that larger samples cause
less overhead (with equally good results), but that for sample sizes from
20 000 to 80 000 the difference in the overhead is not significant.

To obtain a better picture of the relation of ¢ and the experimental
number of trials with misses, we conducted the following test. We took
100 samples (for each frequency threshold and sample size) and determined
the lowered frequency threshold that would have given misses in one out of
the hundred trials. Figure 9.2 presents these results (as points), together
with lines showing the lowered thresholds with & = 0.01 or 0.001, i.e., the
thresholds corresponding to miss probabilities of 0.01 and 0.001 for a given
frequent set. The frequency thresholds that give misses in fraction 0.01 of
cases approximate surprisingly closely the thresholds for 6 = 0.01. Experi-
ments with a larger scale of sample sizes give comparable results. There are
two explanations for the similarity of the values. One reason is that there
are not necessarily many potential misses, i.e., not many frequent sets with
frequency relatively close to the threshold. Another reason that contributes
to the similarity is that the sets are not independent.

In the case of a possible failure, Algorithm 9.5 generates iteratively all new
candidates and makes another pass over the database. In our experiments
the number of frequent sets missed when any were missed was one or two
for & = 0.001, and one to 16 for 6 = 0.01. The number of candidates checked
on the second pass was small compared to the total number of item sets
checked.

Draft 115

Frequency T5.12.100K
threshold T T T
hresho ool
0.0200 0.001 -

0.0150 - i

0.0100 - 7
0.0075 1~ I

0.0050 [_ =

0.0025 - : e
| 1 1 I

20000 40000 60000 80000
Sample size

Figure 9.2: Frequency thresholds giving misses in 0.01 cases (points) and
lowered thresholds with 6 = 0.01 and 0.001 (lines).

Approximate 1 — A success probability Setting the lowered threshold
for Algorithm 9.1 is not trivial: how to select it so that the probability of
a failure is low but there are not unnecessarily many sets to check? An
automatic way of setting the parameter would be desirable. Consider, for
instance, an interactive mining tool. It would be useful to know in advance
how long an operation will approximately take—or, in the case of mining
association rules, how many database passes there will be.

We now present two algorithms that find all frequent sets in approxim-
ately fraction 1 — A of the cases, where A is given by the user. Under the
assumption that sets in the negative border are independent, the algorithms
are actually guaranteed to find the correct sets at least in fraction 1 — A of the
cases. The first algorithm uses a simple greedy principle to find the optimal
lowered threshold under the independence assumption. The other algorithm
is not as optimal, but its central phase is almost identical to Algorithm 2.14
and it is therefore easy to incorporate into existing implementations. We
present experimental results with this latter algorithm.

The greedy Algorithm 9.12 starts with an empty set S, and it then de-
creases the probability of failure by adding the most probable misses to &
until the approximated probability of a potential failure is at most A.

Theorem 9.13 Algorithm 9.12 works correctly.

116 9. Sampling

Algorithm 9.12

Input: A binary database r, a frequency threshold min_fr, a sample size s_size,
and a miss probability A.

Output: The collection F(r, min_fr) of frequent sets and their frequencies at least
in fraction 1 — A of the cases (assuming that the frequencies of any two sets X,V
are independent whenever X ¢ Y and Y ¢ X), and a subset of F(r, min_fr) and a
failure report in the rest of the cases.

Method:

1. compute s := random sample of size s_size from r;

2. S:=10;

3. // Find frequent sets in the sample:

4. while the estimated probability of a miss is larger than A do

5. select, X € Bd~(S8) with the highest probability of being a miss;
6. S:=8SU{X};

7. // Database pass:

8. compute R :={X € SUBd™ (S jlfr(X, r) > min_fr};

9. forall X € R do output X and fr(X,r);

10. if R N Bd~(8) # 0 then report that there possibly was a failure;

Proof See the proof of Theorem 9.3 for the correctness of the output and
failure reports. From the assumption of independence of sets it follows, in
particular, that sets in Bd™(S) are independent. Then the probabilities can
be easily computed on lines 4 and 5, and the algorithm fails in less than
fraction A of cases. Note also that a single miss does not always indicate
a failure, and therefore the probability of a miss is an upper bound for the
probability of a failure. O

The assumption of independence of sets in the algorithm is unrealistic.
For this reason A in practice only approximates (an upper bound of) the
fraction of failures. Algorithm 9.14 is a simple variation of Algorithm 2.14.
It utilizes also the failure probability approximation described in Section 9.2:
it monitors the approximated probability of a miss and keeps the probability
small by lowering the frequency threshold low_fr, when necessary, for the rest
of the algorithm. When using Algorithm 2.14 for the discovery of frequent
sets in a sample with the dynamic adjustment of the lowered threshold, the
only modification concerns the phase where candidates are either added to
the collection of frequent sets or thrown away. Every time there is a candidate
X that is not frequent in the sample, compute the probability p that X is
frequent. If the total probability P of a miss increases too much (see below),
then lower the frequency threshold low_fr to the frequency of X in the sample
for the rest of the algorithm. Thus X is eventually considered frequent in
the sample, and so are all following candidate sets that would increase the
overall probability of a miss at least as much as X.

We use the following heuristic to decide whether the possibility of a miss
increases too much. Given a parameter 7 in [0, 1], the frequency threshold

Draft 117

Algorithm 9.14

Input: A binary database r over a set R, a sample size s_size, a frequency
threshold min_fr, a miss probability A, and v € [0, 1].

Output: The collection F (r, min_fr) of frequent sets and their frequencies at least
in fraction 1 — A of the cases (assuming that the frequencies of any two sets X,Y
are independent whenever X ¢ ¥ and Y ¢ X), and a subset of F(r, min_fr) and a
failure report in the rest of the cases.

Method:

1. compute s := random sample of size s_size from r;
2. P:=0;

3. Jr = min_fr;

4. // Find frequent sets in the sample:

5. Ci:={{A} | A€ R}

6. [:=1,

7. while ¢, # 0 do

8. Ri:=0;

9. for all X € (; do

10. if fr(X,s) < low_fr then

11. p := Pr[X is frequent in r];

12. if p/(A — P) > v then low_fr:= fr(X,s)
13. else P:=1—(1-P)(1-p);

14. if fr(X,s) > low_fr then Ry := Ry U{X};
15. l=141;

16. compute C; := C(Ri-1);

17. // Database pass:

18. compute R :={X € |J, & | f(X,r) > min_fr};

19. for all X € R do output X and fr(X,r);

20. if RN (U, (C\ Ri)) # 0 then report that there possibly was a [ailure;

is lowered if the probability p is larger than fraction v of the “remaining
error reserve” A — P. More complex heuristics for changing the frequency
threshold could be developed, e.g., by taking into account the number of
candidates on the level and whether the number of frequent sets per level is
growing or shrinking. The observations made from Figure 9.2 hint that the
lowered threshold can be set in the start-up to roughly correspond to the
desired probability of a miss, i.e., for A = 0.01 the lowered threshold could
be set as for & = 0.01.

Theorem 9.15 Algorithm 9.14 works correctly.

Proof See the proof of Theorem 9.3 for the correctness of the output and
failure reports. Consider the invariant that the variable P is the probability
that any of the sets in the negative border is a miss (under the assumption
that sets in the negative border are independent), and that 0 < P < A.
The invariant holds trivially in the beginning, where P is initialized to
zero and no sets have been considered yet. We now show that the invariant
continues to hold during the algorithm. On line 13, P is updated for each
set X in the negative border in the sample, i.e., for each potential miss, to

118 9. Sampling

T5.12.D100K

Frequency Sample size
‘ Threshold || 20 000 | 40 000 | 60 000 | 80 000
0.005 3 3 0 2
‘ 0.010 0 0 0 0

T10.14.D100K

Frequency Sample size
‘ threshold || 20 000 | 40 000 | 60 000 | 80 000
0.0075 1 4 2 1
‘ 0.0150 0 2 4 1

T20.16.D100K

Frequency Sample size
‘ threshold 20 000 | 40 000 | 60 000 | 80 000
0.01 2 1 1 1
‘ 0.02 1 3 1 3

Table 9.6: Number of trials with misses with A = 0.1.

correctly correspond to the total probability of a miss. Given non-negative
real numbers p and A — P such that p/(A - P) <y <1, we havep < A—P.
Thus the new valueof Pis 1 — (1- P)(1-p) <1-(1-P)(1-(A-P)) =
A+ (P — A)P, and this is further bounded by A by the invariant itself.
Thus the invariant continues to hold, and the probability of a miss when the
program exits is P < A. O

Remember, again, that a single miss does not necessarily indicate a fail-
ure, and thus P is an upper bound for the probability of a failure. Since sets
in the negative border are not necessarily independent, the upper bound is
only an approximation.

We tested Algorithm 9.14 with maximum miss probability A = 0.1 and
dynamic adjustment parameter v = 0.01 for two frequency thresholds for
cach data set. The number of trials with misses is shown in Table 9.6. The
number successfully remained below 100A = 10 in each set of experiments.
As Table 9.6 shows, the number of cases with misses was actually less than
half of 10. The reason is that with a small y the algorithm tends to be
conservative and keeps a lot of space for the probability of a miss in reserve.
This is useful when there can be very many candidates. The negligible trade-
off is that the algorithm may consider unnecessarily many sets as frequent in
the sample.

To summarize briefly, the experiments show that the proposed approach
works well in practice: all frequent sets can actually be found in almost one

Draft 119

pass over the database. For the efficiency of mining association rules in large
databases the reduction of disk /O is significant.

120

9. Sampling

Bibliography

(1

(3]

(6]

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules
between sets of items in large databases. In P. Buneman and S. Jajodia,
editors, Proceedings of ACM SIGMOD Conference on Management of
Data (SIGMOD’93), pages 207 216, Washington, D.C., USA, May
1993. ACM.

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo.
Fast discovery of association rules. In U. M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge
Discovery and Data Mining, pages 307 — 328. AAAT Press, Menlo Park,
CA, 1996.

R. Agrawal and R. Srikant. Fast algorithms for mining association rules
in large databases. In Proceedings of the Twentieth International Con-
ference on Very Large Data Bases (VLDB’94), pages 487 — 499, Sept.
1994.

R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of
the Eleventh International Conference on Data Engineering (ICDE’95),
pages 3 — 14, Taipei, Taiwan, Mar. 1995.

N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley Inc.,
New York, NY, 1992.

T. Anand. Opportunity explorer: Navigating large databases using
knowledge discovery templates. Journal of Intelligent Information Sys-
tems, (4):27 37, 1995.

C. Berge. Hypergraphs. Combinalorics of Finile Sels. North-Holland
Publishing Company, Amsterdam, 1989.

C. Bettini, X. S. Wang, and S. Jajodia. Testing complex temporal rela-
tionships involving multiple granularities and its application to data
mining. In Proceedings of the Fifteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database and Knowledgebase Sys-
tems (PODS’96), pages 68 — 78, Montreal, Canada, June 1996.

121

122

El

[10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

BIBLIOGRAPHY

A. T. Bouloutas, S. B. Calo, A. Finkel, and 1. Katzela. Distributed fault
identification in telecommunication networks. Journal of Network and
Systems Management, 3(3):295 - 312, 1995.

R. J. Brachman, T. Khabaza, W. Kloesgen, G. Piatetsky-Shapiro, and
E. Simoudis. Mining business databases. Communications of the ACM,
pages 42 48, Nov. 1996.

M. C. Burl, U. M. Fayyad, P. Perona, P. Smyth, and M. P. Burl. Auto-
mating the hunt for volcanoes on venus. In Proceedings of the Confer-
ence on Computer Vision and Pattern Recognilion, pages 302-309, Los
Alamitos, CA, USA, June 1994. IEEE Computer Society Press.

G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and J. Kérkkdinen.
Episode matching. In Proceedings of the 8th Annual Symposium on
Combinatorial Pattern Maltching (CPM '97), pages 12 27, Aarhus,
Denmark, June 1997.

L. De Raedt and M. Bruynooghe. A theory of clausal discovery. In Pro-
ceedings of the Thirteenth International Joint Conference on Artificial
Intelligence (IJCAI-93), pages 1058 — 1053, Chambéry, France, 1993.
Morgan Kaufmann.

L. Dehaspe and L. De Raedt. Mining association rules in multiple rela-
tions. In N. Lavra¢ and S. Dzeroski, editors, Proceedings of the 7th In-
ternational Workshop on Inductive Logic Programming, volume 1297 of
Lecture Notes in Artificial Intelligence, pages 125-132. Springer-Verlag,
1997.

L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substruc-
tures in chemical compounds. In Proceedings of the Fourth International
Conference on Knowledge Discovery and Data Mining (KDD’98), pages
30 - 36, New York, NY, Aug. 1998. AAAI Press.

P. J. Denning. The working set model of program behavior. Commu-
nicalions of the ACM, 11(5):323 — 333, 1968.

C. Dousson, P. Gaborit, and M. Ghallab. Situation recognition: Repres-
entation and algorithms. In Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence (IJCAI-93), pages 166 — 172,
Chambery, France, Aug. 1993.

T. Eiter and G. Gottlob. Identifying the minimal transversals of a hyper-
graph and related problems. SIAM Journal on Computing, 24(6):1278 -
1304, Dec. 1995.

BIBLIOGRAPHY 123

(19]

(22]

(23]

(24]

25]

(26]

(27]

(28]

J. Elder IV and D. Pregibon. A statistical perspective on knowledge dis-
covery in databases. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth,
and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data
Mining, pages 83 — 113. AAAI Press, Menlo Park, CA, 1996.

U. Fayyad, D. Haussler, and P. Stolorz. Mining scientific data. Com-
municalions of the ACM, pages 51 57, Nov. 1996.

U. M. Fayyad, S. G. Djorgovski, and N. Weir. Automating the analysis
and cataloging of sky surveys. In U. M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discov-
ery and Data Mining, pages 471 — 494. AAAI Press, Menlo Park, CA,
1996.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining
to knowledge discovery: An overview. In U. M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge
Discovery and Data Mining, pages 1 — 34. AAAI Press, Menlo Park, CA,
1996.

U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,
editors. Advances in Knowledge Discovery and Data Mining. AAAI
Press, Menlo Park, CA, 1996.

C. L. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19:17 — 37, 1982.

W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus. Knowledge
discovery in databases: An overview. In G. Piatetsky-Shapiro and W. J.
Frawley, editors, Knowledge Discovery in Dalabases, pages 1 —27. AAAL
Press, Menlo Park, CA, 1991.

M. Fredman and L. Khachiyan. On the complexity of dualization of
monotone disjunctive normal forms. Technical Report LCSR-TR-225,
Rutgers University, 1994.

T. Fukuda et al. Mining optimized association rules for numeric at-
tributes. In Proceedings of the Fifteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database and Knowledgebase Sys-
tems (PODS’96), 1996.

N. Gehani, H. Jagadish, and O. Shmueli. Composite event specifica-
tion in active databases. In Proceedings of the Fightteenth International
Conference on Very Large Dala Bases (VLDB’92), pages 327 — 338,
Vancouver, Canada, Aug. 1992.

124

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

BIBLIOGRAPHY

J. Goldman, P. Hong, C. Jeromnimon, G. Louit, J. Min, and P. Sen.
Integrated fault managementin interconnected networks. In B. Meandz-
ija and J. Westcott, editors, Integrated Network Management, I, pages
333 — 344. Elsevier, 1989.

R. M. Goodman, B. E. Ambrose, H. W. Latin, and C. T. Ulmer. NOAA

An expert system managing the telephone network. In Integrated
Network Management IV, pages 316 — 327. Chapman & Hall, London,
1995.

R. M. Goodman and H. Latin. Automated knowledge acquisition from
network management databases. In I. Krishnan and W. Zimmer, editors,
Integrated Network Management, II, pages 541 — 549. Elsevier Science
Publishers B.V (North-Holland), Amsterdam, The Netherlands, 1991.

R. Grossi and F. Luccio. Simple and efficient string matching with k
mismatches. Information Processing Letters, 33:113 — 120, 1989.

D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen. Data mining,
hypergraph transversals, and machine learning. In Proceedings of the
Sizteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Dalabase and Knowledgebase Systems (PODS’97), pages 209 216,
Tucson, Arizona, May 1997. ACM.

V. Gurvich and L. Khachiyan. On generating the irredundant con-
junctive and disjunctive normal forms of monotone boolean functions.
Technical Report LCSR-TR-251, Rutgers University, 1995.

P. J. Haas and A. N. Swami. Sequential sampling procedures for query
size estimation. In Proceedings of ACM SIGMOD Conference on Man-
agement of Data (SIGMOD’92), pages 341 — 350, San Diego, CA, June
1992.

T. Hagerup and C. Riib. A guided tour of Chernoff bounds. Information
Processing Letters, 33:305 — 308, 1989/90.

J. Han and Y. Fu. Discovery of multiple-level association rules from
large databases. In U. Dayal, P. M. D. Gray, and S. Nishio, editors,
Proceedings of the 21st International Conference on Very Large Data
Bases (VLDB’95), pages 420 — 431, Ziirich, Switzerland, Sept. 1995.
Morgan Kaufmann.

K. Hitdénen, M. Klemettinen, H. Mannila, P. Ronkainen, and H. Toi-
vonen. Knowledge discovery from telecommunication network alarm
databases. In S. Y. Su, editor, Proceedings of the 12th International
Conference on Data Engineering (ICDE’96), pages 115 — 122, New Or-
leans, Louisiana, USA, Feb. 1996. IEEE Computer Society Press.

BIBLIOGRAPHY 125

[39] K. Hitonen, M. Klemettinen, H. Mannila, P. Ronkainen, and H. Toivo-
nen. TASA: Telecommunication alarm sequence analyzer, or "How to
enjoy faults in your network”. In Proceedings of the 1996 IEEE Nelwork
Operations and Management Symposium (NOMS’96), pages 520 — 529,
Kyoto, Japan, Apr. 1996. IEEE.

[40] M. Holsheimer, M. Kersten, H. Mannila, and H. Toivonen. A perspect-
ive on databases and data mining. In U. M. Fayyad and R. Uthurusamy,
editors, Proceedings of the First International Conference on Know-
ledge Discovery and Data Mining (KDD’95), pages 150 — 155, Montreal,
Canada, Aug. 1995. AAAI Press.

[41] P. Hoschka and W. Kloesgen. A support system for interpreting statist-
ical data. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge
Discovery in Databases, pages 325 — 345. AAAI Press, Menlo Park, CA,
1991.

[42] M. Houtsma and A. Swami. Set-oriented mining of association rules.
Research Report RJ 9567, IBM Almaden Research Center, San Jose,
California, October 1993.

[43] T. Imielinski and H. Mannila. A database perspective on knowledge
discovery. Communications of the ACM, 39(11):58 — 64, Nov. 1996.

[44] G. Jakobson and M. Weissman. Real-time telecommunication network
management: Extending event correlation with temporal constraints. In
Integrated Nelwork Management IV, pages 290 — 301. Chapman & Hall,
London, 1995.

[45] G. Jakobson and M. D. Weissman. Alarm correlation. IEEE Network,
7(6):52 — 59, Nov. 1993.

[46] 1. Jonassen, J. F. Collins, and D. G. Higgins. Finding flexible patterns
in unaligned protein sequences. Protein Science, 4(8):1587 1595, 1995.

[47] J. F. Jordaan and M. E. Paterok. Event correlation in heterogenous
networks using OS] management framework. In H.-G. Hegering and
Y. Yemini, editors, Integrated Network Management, III, pages 683 —
695. Elsevier Science Publishers B.V (North-Holland), Amsterdam, The
Netherlands, 1993.

[48] J. D. Kalbfleisch and R. L. Prentice. The Statistical Analysis of Failure
Time Data. John Wiley Inc., New York, NY, 1980.

[49] M. Kantola, H. Mannila, K.-J. Rdihi, and H. Siirtola. Discovering func-
tional and inclusion dependencies in relational databases. International
Journal of Inlelligent Systems, 7(7):591 — 607, Sept. 1992.

126 BIBLIOGRAPHY

[50] R. Khardon. Translating between Horn representations and their char-
acteristic models. Journal of Artificial Intelligence Research, 3:349-372,
1995.

[51] J. Kivinen and H. Mannila. The power of sampling in knowledge discov-
ery. In Proceedings of the Thirteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Dalabase Systems (PODS’94), pages 77 —
85, Minneapolis, MN, USA, May 1994. ACM.

[52] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I.
Verkamo. Finding interesting rules from large sets of discovered asso-
ciation rules. In Proceedings of the Third International Conference on
Information and Knowledge Management (CIKM’94), pages 101 — 407,
Gaithersburg, MD, USA, Nov. 1994. ACM.

[53] W. Kloesgen. Efficient discovery of interesting statements in databases.
Journal of Inlelligent Information Systems, 4(1):53 - 69, 1995.

[54] A. Krogh, M. Brown, I. S. Mian, K. Sjclander, and D. Haussler. Hid-
den Markov models in computational biology: Applications to protein
modeling. Journal of Molecular Biology, 235:1501-1531, Feb. 1994.

[55] A. Krogh, I. S. Mian, and D. Haussler. A hidden Markov model that
finds genes in e. coli DNA. Nucleic Acids Research, 22:4768-4778, 1994.

[56] P. Laird. Identifying and using patterns in sequential data. In K. Jantke,
S. Kobayashi, E. Tomita, and T. Yokomori, editors, Algorithmic Learn-
ing Theory, 4th Inlernalional Workshop, pages 1 18, Berlin, 1993.
Springer-Verlag.

[57] D. W. Loveland. Finding critical sets. Journal of Algorithms, 8:362
371, 1987.

[58] H. Mannila and K.-J. Raihd. Design of Relational Databases. Addison-
Wesley Publishing Company, Wokingham, UK, 1992.

. Mannila and K.-J. Rdihd. Algorithms for inferring functional de-
59] H. Mannil d K.-J. Rdihd. Algorithms for inferring functional d
pendencies. Dala & Knowledge Engineering, 12(1):83 — 99, Feb. 1994.

[60] H. Mannila and H. Toivonen. Discovering generalized episodes using
minimal occurrences. In E. Simoudis, J. Han, and U. Fayyad, editors,
Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining (KDD’96), pages 146 — 151, Portland, Oregon,
USA, Aug. 1996. AAAT Press.

[61] H. Mannila and H. Toivonen. On an algorithm for finding all inter-
esting sentences. In Cybernetics and Systems, Volume II, The Thir-
teenth European Meeling on Cybernetics and Systems Research, pages

BIBLIOGRAPHY 127

973 — 978, Vienna, Austria, Apr. 1996. Austrian Society for Cybernetic
Studies.

[62] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for
discovering association rules. In U. M. Fayyad and R. Uthurusamy,
editors, Knowledge Discovery in Databases, Papers from the 1994 AAAI
Workshop (KDD’94), pages 181 — 192, Seattle, Washington, USA, July
1994. AAAT Press.

[63

H. Mannila, H. Toivonen, and A. I. Verkamo. Finding association rules
efficiently in sequential data. Technical Report C-1994-40, University
of Helsinki, Department of Computer Science, P.O. Box 26, FIN-00014
University of Helsinki, Finland, July 1994.

[64] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovering frequent epis-
odes in sequences. In U. M. Fayyad and R. Uthurusamy, editors, Pro-
ceedings of the First International Conference on Knowledge Discovery
and Data Mining (KDD’95), pages 210 — 215, Montreal, Canada, Aug.
1995. AAAI Press.

[65] C. J. Matheus, G. Piatetsky-Shapiro, and D. McNeill. Selecting and
reporting what is interesting. In U. M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discov-
ery and Data Mining, pages 495 — 515. AAAI Press, Menlo Park, CA,
1996.

[66] R. Milne, C. Nicol, M. Ghallab, L. Trave-Massuyes, K. Bousson,
C. Dousson, J. Quevedo, J. Aguilar, and A. Guasch. TIGER: Real-time
situation assessment of dynamic systems. Intelligent Systems Engineer-
ing, 3(3):103 — 124, 1994.

[67] N. Mishra and L. Pitt. On bounded-degree hypergraph transversal.
Manuscript, 1995.

[68] T. M. Mitchell. Generalization as search. Artificial Intelligence, 18:203 —
226, 1982.

[69] R. A. Morris, L. Khatib, and G. Ligozat. Generating scenarios from
specifications of repeating events. In Second International Workshop on
Temporal Representation and Reasoning (TIME-95), Melbourne Beach,
Florida, Apr. 1995.

[70] S. Muggleton. Inductive Logic Programming. Academic Press, London,
1992.

[71] Y. A Nygate. Event correlation using rule and object based techniques.
In Integrated Network Management IV, pages 278 — 289. Chapman &
Hall, London, 1995.

128 BIBLIOGRAPHY

[72] F. Olken and D. Rotem. Random sampling from B* trees. In Pro-
ceedings of the Fifteenth International Conference on Very Large Data
Bases (VLDB’89), pages 269 — 277, Amsterdam, Aug. 1989.

[73] J. S. Park, M.-S. Chen, and P. S. Yu. An effective hash-based algorithm
for mining association rules. In Proceedings of ACM SIGMOD Confer-
ence on Management of Data (SIGMOD’95), pages 175 — 186, San Jose,
California, May 1995.

[74] G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong
rules. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge
Discovery in Dalabases, pages 229 248. AAAI Press, Menlo Park, CA|
1991.

[75] G. Piatetsky-Shapiro and C. J. Matheus. The interestingness of devi-
ations. In U. M. Fayyad and R. Uthurusamy, editors, Knowledge Dis-
covery in Databases, Papers from the 1994 AAAI Workshop (KDD’94),
pages 25 — 36, Seattle, Washington, USA, July 1994. AAAI Press.

[76] L. D. Raedt and L. Dehaspe. Clausal discovery. Machine Learning,
26(2):99 146, 1997.

[77] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for
mining association rules in large databases. In Proceedings of the 21st
International Conference on Very Large Data Bases (VLDB’95), pages
432 — 444, Ziirich, Switzerland, Sept. 1995.

[78] P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: Design & imple-
mentation of a sequence database system. In Proceedings of the 22nd
International Conference on Very Large Data Bases (VLDB’96), pages
99 — 110, Mumbay, India, Sept. 1996.

[79] A. Siebes. Data surveying, foundations of an inductive query language.
In Proceedings of the First International Conference on Knowledge Dis-
covery and Data Mining (KDD’95), pages 269 — 274, Aug. 1995.

[80] P. Smyth and R. M. Goodman. An information theoretic approach to
rule induction from databases. IEEE Transactions on Knowledge and
Data Engineering, 4(4):301 - 316, Aug. 1992.

[81] R. Srikant and R. Agrawal. Mining generalized association rules. In
U. Dayal, P. M. D. Gray, and S. Nishio, editors, Proceedings of the 21st
International Conference on Very Large Data Bases (VLDB’95), pages
407 — 419, Ziirich, Switzerland, Sept. 1995. Morgan Kaufmann.

[82] R. Srikant and R. Agrawal. Mining quantitative association rules in
large relational tables. In Proceedings of ACM SIGMOD Conference on

BIBLIOGRAPHY 129 130 BIBLIOGRAPHY

Management of Data (SIGMOD’96), pages 1 — 12, Montreal, Canada,
June 1996.

[83] R. Srikant and R. Agrawal. Mining sequential patterns: General-
izations and performance improvements. In Advances in Database
Technology 5th International Conference on Extending Database Tech-
nology (EDBT’96), pages 3 17, Avignon, France, Mar. 1996.

[84] H. Toivonen. Sampling large databases for association rules. In T. M.
Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda, editors,
Proceedings of the 22nd International Conference on Very Large Data
Bases (VLDB’96), pages 134 — 145, Mumbay, India, Sept. 1996. Morgan
Kaufmann.

85

H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hatonen, and H. Man-
nila. Pruning and grouping of discovered association rules. In G. N.
Yves Kodratoff and C. Taylor, editors, Workshop Notes of the ECML-95
Workshop on Statistics, Machine Learning, and Knowledge Discovery in
Databases, pages 47 52, Heraklion, Crete, Greece, Apr. 1995. MLnet.

[86] J. W. Tukey. FEzploratory Data Analysis. Addison-Wesley Publishing
Company, Reading, MA, 1977.

[87] J. T.-L. Wang, G.-W. Chirn, T. Marr, B. Shapiro, D. Shasha, and
K. Zhang. Combinatorial pattern discovery for scientific data: Some
preliminary results. In Proceedings of ACM SIGMOD, pages 115 125,
Minneapolis, MN, May 1994.

[88] K. Yoda, T. Fukuda, and Y. Morimoto. Computing optimized rectilinear
regions for association rules. In D. Heckerman, H. Mannila, D. Pregibon,
and R. Uthurusamy, editors, Proceedings of the Third International Con-
ference on Knowledge Discovery and Data Mining (KDD’97), pages 96 —
103, Newport Beach, California, USA, Aug. 1997. AAAT Press.

[89] R. Zembowicz and J. M. Zytkow. From contingency tables to various
forms of knowledge in databases. In U. M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discov-
ery and Data Mining, pages 329 349. AAAI Press, Menlo Park, CA,
1996.

