
Bit Zipper Rendezvous
Optimal Data Placement for General P2P Queries

Wesley W. Terpstra, Stefan Behnel,
Ludger Fiege, Jussi Kangasharju, and Alejandro Buchmann

Darmstadt University of Technology (TUD),
Department of Computer Science,

D-64283 Darmstadt, Germany,
{terpstra,behnel,fiege}@gkec.tu-darmstadt.de,

jussi@tk.informatik.tu-darmstadt.de, buchmann@informatik.tu-darmstadt.de

Abstract. In many distributed applications, pairs of predicates and
data have to be evaluated locally. This includes publish-subscribe, key-
word search for documents, and selection queries on tuples. We will
present the Bit Zipper Rendezvous as a peer-to-peer based solution to
these problems. Though not as efficient as value-based partitioning ap-
proaches, the Bit Zipper’s generality complements them. Where flooding
to N nodes used to be the fall-back, the Bit Zipper is a replacement
needing only O(

√
N). Finally, for the all-pairs variant of these problems,

we will show the optimality of our approach.

1 Introduction

Recently, peer-to-peer (P2P) applications have emerged as an important new
class of applications. They provide many attractive properties, such as self-
organization and healing, robustness, load balancing, and scalability. These prop-
erties make the P2P approach appealing for large distributed applications. P2P
systems have been used or proposed for a number of applications such as key-
word search for documents, file storage, and publish-subscribe. Now, if we take
a broader view on these applications, we can see that many of them contain the
rendezvous problem.

The rendezvous problem is where several parameters involved in an opera-
tion need to be present at the same computer for evaluation. These parameters
typically come in pairs and their evaluation takes place at some node in the P2P
system. As for the above examples, keywords are searched for in documents and
notifications are tested against subscriptions.

We claim that a good data placement strategy can address the rendezvous
problem in the above applications. Data placement strategies are rules which
decide where to place parameter data on the participating nodes.

Partitioning parameters by their value is a very efficient rule used for data
placement. These partitioning strategies place each parameter in exactly one
partition; this is the root of their efficiency. For evaluation to be possible, pairs

must have their component parameters placed in the same partition. When all
required evaluations can be performed, a partitioning strategy is correct. Unfor-
tunately, one cannot always correctly partition by parameter value.

When an efficient, correct parameter partition cannot be found, another
strategy must be used. Flooding is the traditional last resort. Naively, flooding
applications place all parameters of one type on every participant. This assures
a rendezvous with the locally stored parameters of the other type and allows
evaluation of all pairs. However, it implies that participating nodes have linear
load in the flooded parameter.

In this paper, we present a general-purpose solution with sub-linear load. It
is specifically designed to address those situations where potentially all of the
pairs of parameters might need to be evaluated. We also show that for rendezvous
problems which require all pairs to be evaluated, our strategy is optimal.

The next section provides an overview of the rendezvous problem by pre-
senting concrete examples of applications, and it overviews distributed hash
tables (DHTs) as a rendezvous approach. Section 3 presents our general purpose
approach, the Bit Zipper Rendezvous data placement strategy, followed by sec-
tions 4 and 5 which show its optimality for some important types of applications.
We then discuss the implications of our research and prior art in section 6.

2 The Rendezvous Problem

When moved onto a peer-to-peer platform, a number of important applications
can benefit from the P2P characteristics mentioned above. The central ren-
dezvous problem is described and exemplified below, and DHTs are introduced
as means to implement a rendezvous strategy.

2.1 The Essential Problem

Stated generally, nodes in the rendezvous problem play three roles. In one role,
nodes inject queries; in the other, they inject data. The final role is that of an
intermediate router. To execute queries, the queries must either be shipped to
the data, as in classic database queries, or the data must be shipped to the
queries, as in filter and sensor networks. The new option offered by peer-to-peer
systems is that the data and queries can both be shipped to nodes playing the
third role—a rendezvous point where data and queries meet.

The rest of the paper interprets operations and data homogeneously; only
a single application-specific operation is assumed to be executed on pairs of
data from the first two roles. The two roles are distinguished according to their
anticipated dynamism in the peer-to-peer network. The more dynamic parameter
is designated right and the lesser is left.

The principal rendezvous problem is then to intelligently place data items at
nodes; this involves choosing rendezvous nodes, and routing to them.

2.2 Linear Scan

When evaluating database queries, data is matched against queries shipped to
the database server. It is sometimes necessary to do a linear scan of a table, e.g.,
if no index is available. If the data is not located on a central database server,
but distributed and replicated in a peer-to-peer system, all involved nodes have
to execute the query, which effectively precludes partitioning.

In terms of the rendezvous problem, the tables typically comprise long-lived
and rather slowly changing data, and thus are denoted by the left parameter.
Queries are instantaneously and frequently injected into the system and thus
constitute the right parameter.

2.3 Publish-Subscribe

Publish-subscribe is an interest-oriented communication model [5]. Nodes trans-
mit—or publish—information which is to be received—or consumed—by others.
Consumers receive information that matches an expression they have specified;
this expression is called a subscription. Thus, the recipient group is self-selecting
by virtue of their interests.

In a distributed publish-subscribe network, subscriptions are left parameters
located at some nodes. Right parameters are notifications that are forwarded to
consumers in case of matching subscriptions. Clearly, the notifications must be
selected by subscriptions and thus rendezvous.

Subscriptions and notifications may sometimes be successfully partitioned.
For instance, subscriptions to types of information exploit a categorization of
published data. However, there are many cases where such partitioning fails.

2.4 Distributed Keyword Search

Keyword search involves searching for documents by specifying words they must
contain. Here it is assumed that the documents are rarely modified compared
to the frequency of the queries. The left parameters are the relatively static
documents and the right parameter are the keyword queries.

This problem is easily solved by a centralized system using inverted-indexes,
but for P2P systems it remains unsolved. After shipping queries to rendezvous
nodes, one might copy the publish-subscribe idea and store these queries to get
notified about new documents in the future.

2.5 Rendezvous in Distributed Hash Tables

A popular means of addressing the rendezvous problem is distributed hash tables
(DHTs) [4, 10, 14, 16, 18, 22]. DHTs form an abstraction to overlay networks that
provides a key-based routing scheme. The recipient of a message is determined
dynamically by a distributed routing algorithm. However, as opposed to tradi-
tional networking, both the delivery path and the destination node can change
over time. This easily accommodates topology changes.

By determining (hash-)keys from the parameter values, DHTs provide an
obvious lookup mechanism for rendezvous nodes. However, this is partitioning
by parameter value, which is not always possible. Nevertheless, DHTs do provide
a number of features that make them perfectly suitable as a substrate for our
data placement strategy.

DHT routing schemes are based on keys, K . Different DHTs use between
128 to 256 bits for their fixed length keys. For concreteness, we assume that
there are 160 bits: 1 to 160. If k ∈ K , then ki is defined to be the i-th bit of k.

Every participating node has one randomly chosen identifier, n ∈ K . N ⊆
K is the set of all node keys. N = |N | is the number of participating nodes.

The lookup mechanism is a distributed algorithm implementing the respon-
sibility function π : K → N . For each key k ∈ K , π returns the eventual
destination node n = π(k) of a message sent to k.

DHTs are defined with respect to some distance metric. They route a key, k,
progressively closer to π(k) by decreasing distance under their routing metric.
This implies that all nodes are responsible for their own key; π(n) = n. When
a Euclidean distance metric is used in a DHT, π−1(n) will be an interval. This
property of the responsibility function is required for our data placement strategy
to remain performant. Therefore, Kademlia [10] may not be used as substrates.

A message transported by a prefix routing protocol resolves a destination’s
key one bit at a time for as long as possible. Most DHTs do this either implicitly
or explicitly. Our data placement strategy is easy to implement and follows
normal routing paths only if a DHT has this property. Unfortunately, CAN [14]
does not. Tapestry is actually based on postfix routing, but the difference is
negligible for our purpose.

Summarizing, we can say that DHTs provide a way of distributing responsi-
bility for keys uniformly at random. The majority [4, 16, 18, 22] are based on a
Euclidean metric and prefix routing. These DHTs are perfect candidates for the
Bit Zipper Rendezvous.

3 Bit Zipper Rendezvous

The Bit Zipper approach partitions pairs of parameters and distributes them
randomly. It places each parameter in a large, but sub-linear number of these
partitions. This strategy is applicable even when there is no correct value-based
partitioning scheme for parameters separately.

The next subsection presents a method to assign every parameter to a number
of pair partitions. Building on a DHT, these parameters are mapped to nodes
in section 3.2 and routed in section 3.3.

3.1 Partitioning Pairs

Applications involving the rendezvous problem evaluate pairs of parameters.
For some applications, nearly all of the pairs might need to be evaluated. Simply

partitioning parameters separately can lead to the component parameters of a
pair being placed in separate partitions; this prevents evaluation.

However, partitioning pairs of left and right parameters does not prevent
evaluation since all pairs remain intact. Each parameter is involved in many pairs
and has to be placed in many pair partitions. These pair partitions are identified
by DHT keys. Thus, every parameter will be mapped to a large number of DHT
keys.

Parameters are assigned a randomly chosen seed key. Taking the seeds of two
parameters together, one will be able to determine the DHT key where their pair
is placed. Naturally, parameters must be placed at all such possible keys.

The placement follows a zipper-like bit pattern that gives the Bit Zipper its
name. It is illustrated in figure 1. The b part is an optimization that will be
explained in section 3.4. In this pattern, every even bit in a right parameter’s
seed, r, is held fixed; whereas, every odd bit in a left parameter’s seed, l, is fixed.
The key which equals the two seeds for all fixed bits, m, is the partition where
their pair is placed.

b

0
0

1 1

1
1

0
0
0 0

0
1

1
1
1

0
0
0 0

0
1 1

0
1

1
1

1

0

0
1

1

0
0

1
0
1

1

1
1

1

0
0

0
0
1 1

0
1

1
1

0 0
0
0

1
0
10

0
0

1

0

0 0

0

1

1

0

0
0 0 1 1 1
1 1

0
1

r
l
m

= fixed bit

Fig. 1. Partition key m for example seeds r and l

Given a seed, s, we must identify the partitions, m, of all possible pairs
involving s. Formally, we define the right and left rendezvous key sets, as

R(s) := {m ∈ K : ∀i ∈ [1, 160] : ((i ≡ 0) mod 2 or i ≤ b) =⇒ mi = si} (1)

L (s) := {m ∈ K : ∀i ∈ [1, 160] : ((i ≡ 1) mod 2 and i > b) =⇒ mi = si}(2)

Ignoring b, we mean here that R(s) is the set of all keys which share all the even
bits of the seed s and L (s) the set of all keys which share all the odd bits.

The correctness of this strategy follows from the fact that |R(r)∩L (l)| = 1;
that is, there is exactly one partition key for every pair of left and right seeds.
This is mathematically clear since the bit selecting predicates in the definitions
of R and L are logical inverses.

3.2 Mapping Partitions to Nodes

R(s) and L (s) define how to select partitions or rendezvous keys. To find the
actual rendezvous nodes, simply apply the DHT responsibility function, π. When
r ∈ K is the seed used for a right parameter, it is placed on the set of rendezvous
nodes π(R(r)). Similarly, a left parameter with seed l ∈ K is placed on the set
of rendezvous nodes π(L (l)).

When a new parameter is placed on a rendezvous node, the node pairs the
new parameter with all the parameters of the opposite type available on that
node. Those pairs that the node is actually responsible for are then evaluated.

Since there is one rendezvous key in common for all pairs (r, l),

∅ 6= R(r) ∩ L (l) =⇒ ∅ 6= π(R(r) ∩ L (l)) ⊆ π(R(r)) ∩ π(L (l))

there is at least one rendezvous node in common. Unfortunately, there may in fact
be several. Therefore, a rendezvous node, z, should check that it is responsible
for the rendezvous key (z ∈ π(R(r) ∩ L (l))) before operating on a pair of
parameters. This way, we ensure that a given pair is evaluated at most once.

3.3 Modified DHT Routing

Although the sets R(s) and L (s) contain an extremely large number of keys,
section 4 will argue that their mapping to rendezvous nodes is radically better
than flooding. Specifically, a right parameter is placed on expected 2

√
Nt−1

nodes and a left parameter is placed on expected 2
√

Nt nodes. The t is a tunable
constant related to b which trades off load in left parameters against load in left
parameters.

In order to build a P2P application, this data placement strategy must be
routed over a DHT. Rather than routing to each of the rendezvous keys sepa-
rately, routing is carried out to all of them simultaneously.

The algorithm is a relatively simple adjustment to prefix routing. Normally,
prefix routing DHTs resolve a bit at a time; this leads to a single routing path
from source to destination. In our data placement strategy, some of the target
key bits are fixed, but others are not. Whenever the predicate in equation 1 does
not specify bit equality, the DHT simply routes right parameters in both the
direction of a zero and of one. Similarly, the predicate in equation 2 is used for
routing left parameters.

This means that delivery will follow the normal routing paths used for the
rendezvous keys themselves. However, the shared intermediate nodes are only
contacted once. Since every second step doubles the number of reached nodes,
the interior nodes grow as two geometric series. By summing these series, the
total nodes involved in routing will be 6

√
Nt−1 for right parameters and 6

√
Nt

for left.

3.4 Balancing Non-Uniformity

In many applications, the left and right parameters will not be equal in dynamism
or size. It is easy to exploit their ratio to further optimize the placement by
dividing the nodes into groups. Left parameters are placed in each of these
groups; however, right parameters stay within the group that originated them.
This can heavily reduce the number of nodes impacted by the dynamism of the
right parameters.

As will be explained in section 4, the most heavily loaded node will have
expected 2R

√

N
t−1 right parameters and expected 2L

√

N
t left parameters placed on

it. The constant t is selected to make the trade-off as desired.

Coming back to the balance factor, b, as seen in figure 1, it is defined de-
pending on t as b = 2 log t. This balance factor is a global constant for the whole
system and fixes the number of groups as 2b = t2. For this reason, it should be
selected carefully to reflect the constraints of the application.

A node is in the group identified by the first b bits of its random node id.
As right parameters stay in the originating group, the first b bits of their seed
should match the origin node. Figure 1 and equations 1 and 2 use b in this way.

4 DHT Routing Bound

Although our data placement strategy selects many rendezvous keys, the actual
parameter load for each node is relatively small. By specifying only half of the
bits in the routing keys, 280 traditional DHT keys are addressed simultaneously.

However, we can show that only 2
√

N

2b nodes are responsible for these keys. The

most loaded node (indeed, every node) has expected 2R
√

N
t−1 right and expected

2L
√

N
t left parameters placed on it.

The correct calculation of the bottleneck complexity requires a rather tech-
nical proof. Though the result presented here is correct, it is a simplification
which does not consider the boundary cases. Argumentation similar to [13] would
be applied to calculate the expected number of parameters on the most loaded
node. This is extremely non-trivial, and requires additionally that L and R be
sufficiently large relative to b and N . Instead, this section will count the expected
replication of parameters.

It should be clear that a given parameter with a random seed is equally
likely to rendezvous at any node; we will discuss balancing later and assume
b = 0 initially.

First, we consider what bit interleaving does, and how the key sets L (s) and
R(s) are distributed within the key space K . The sets describe bit patterns of
keys with every second bit fixed. With each fixed bit, the possible number of keys
is reduced by half. Figure 2 illustrates the key segments selected by either a one
or a zero for the first five bit digits. These segments are covers of L (s) and R(s)

Regions selected by 1 bits

���������������������
���������������������

���������������� ������������ ������������ 	�	�		�	�	

�

�

�������
�

�
�
���
�
������������ ���� ���� ���

���
�� ����

��
���������������������������
���������������������

���������������������
 � � � � � � � � �

!�!�!!�!�!"�""�" #�##�#$�$$�$ %�%%�%&�&&�& '�'�''�'�'
(�(�((�(�(

)�))�)*
*
+�++�+,�,,�, --.. /�/

/�/
0�00�0 1122 3�3

3�3
4�44�4 5�5
5�5
6�66�6 7788

9�9�9�9�9�9�9�9�99�9�9�9�9�9�9�9�9:�:�:�:�:�:�:�::�:�:�:�:�:�:�: ;�;�;�;�;�;�;�;�;;�;�;�;�;�;�;�;�;
<�<�<�<�<�<�<�<<�<�<�<�<�<�<�<

=�=�=�==�=�=�==�=�=�=
>�>�>�>>�>�>�>>�>�>�>

?�?�?�?�??�?�?�?�??�?�?�?�?
@�@�@�@@�@�@�@@�@�@�@

A�A�AA�A�AB�B�BB�B�BC�C�CC�C�CD�D�DD�D�D
E�EE�EF
F
G�GG�GH�HH�H I�I
I�I
JJ K�K
K�K
L�LL�L M�M�MM�M�MN�N�NN�N�N

OOP
P
Q�QQ�QR�RR�R S�S�SS�S�ST�T�TT�T�T

UUV
V

W�WW�WX
X

Y�Y�Y�Y�Y�Y�Y�YY�Y�Y�Y�Y�Y�Y�YZ�Z�Z�Z�Z�Z�Z�ZZ�Z�Z�Z�Z�Z�Z�Z
[�[�[�[�[[�[�[�[�[[�[�[�[�[
\�\�\�\\�\�\�\\�\�\�\

]�]�]�]�]]�]�]�]�]]�]�]�]�]
^�^�^�^^�^�^�^^�^�^�^

��__�_�_`�`�``�`�`a�aa�ab�bb�b
c�cc�cd
d
e�ee�ef�ff�f g�g
g�g
hh iijj k�k�kk�k�kl�l�ll�l�l

m�mm�mn
n
o�oo�op�pp�p q�qq�qr�r

r�r
s�ss�st�tt�tu�uu�uv
v

1
2
3
4
5

w�w�w�w�w�w�w�w�w�w�w�w�w�w�w�w�ww�w�w�w�w�w�w�w�w�w�w�w�w�w�w�w�ww�w�w�w�w�w�w�w�w�w�w�w�w�w�w�w�w
x�x�x�x�x�x�x�x�x�x�x�x�x�x�x�xx�x�x�x�x�x�x�x�x�x�x�x�x�x�x�xx�x�x�x�x�x�x�x�x�x�x�x�x�x�x�x

y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�yy�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�yy�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y�y
z�z�z�z�z�z�z�z�z�z�z�z�z�z�z�zz�z�z�z�z�z�z�z�z�z�z�z�z�z�z�zz�z�z�z�z�z�z�z�z�z�z�z�z�z�z�zRegions selected by 0 bits

{�{�{�{�{{�{�{�{�{{�{�{�{�{
|�|�|�||�|�|�||�|�|�|

Fig. 2. Cutting up identifier space

and the rendezvous keys are exactly those that remain after intersecting all the
areas of even or odd bits, respectively. Stopping this intersection prematurely
at bit d = log N will give us a cover for the keys of sufficient granularity, as is
shown below. If this cover is then mapped to rendezvous nodes, it would in turn
be a cover for the rendezvous nodes, and thus a bound on the replication.

If the entire key space has area 1, at the d-th row, there are 2d = N segments
all of size 1

2d = 1

N
. Since each fixed bit eliminates half of the area, there are only

2
d

2 =
√

N segments which are in the rendezvous key cover.

Now the involved rendezvous nodes given by the DHT’s responsibility func-
tion must be counted. Recall from section 2.5 that our data placement strategy
requires the DHT to have a Euclidean metric. This implies that nodes are re-
sponsible for disjoint intervals, π−1(n) = [a, b), which partition the key space K .
Although they do not have exactly the same size, in expectation, they all have
size 1

N
. Considering a specific key covering segment, there are four ways a node’s

responsibility interval can overlap with it. These are illustrated in figure 3.

responsibility intervals

cover segment

ba

1

N

Case 2

Case 1

...

...

...

......

assigned to nodes
a b

...

...

...

Fig. 3. Responsibility intervals overlapping a rendezvous key cover segment

In the first case, the left responsibility endpoint a is in the segment. Since all
the segments have exactly the same size, the likelihood that it is in the considered
segment is 1

N
. Thus, we expect only one node (N 1

N
) to have a responsibility

interval with a left endpoint in the segment.

Now suppose the left responsibility endpoint is outside of the segment. The
only way the interval can overlap is if the right endpoint reaches to the start of
the segment. There can be at most one such responsibility interval, and therefore,
node.

Taking these two cases together, we can say that no more than two nodes
are expected to have a responsibility interval which intersects the segment. Since
there are

√
N segments, 2

√
N is the expected number of parameter replications

in the system.

These numbers have to be adapted if grouping is applied (cf. section 3.4).
Recall that the N nodes are conceptually broken into 2b groups of roughly N

2b

size. Left parameters are placed in all groups and require the aforemention load.
Right parameters stay within their group by virtue of the construction of R.
The above arguments still hold, only the considered key space for each group is
now 1

2b . So, the segmentation of the key space is stopped at d = log N − b and

every N is substituted by N

2b . Taken together with the tradeoff parameter, t, set
to ideally b = 2 log t, the load is as follows.

For right parameters, there are R parameters placed this way over N nodes.
Dividing the load evenly between nodes yields

2R

√

N

2b

N
=

2R√
N2b

=
2R√
N

t−1 per node.

The left parameters are replicated between all 2b groups, so the expression is

2L2b

√

N

2b

N
=

2L
√

2b

√
N

=
2L√
N

t per node.

5 Optimality Sketch

For applications which require that all pairs of right and left parameters be
operated upon, this data placement strategy is optimal. This includes linear
scans and difficult variants of publish-subscribe. We present here a brief and
informal sketch of our optimality.

Theorem 1. In any routing algorithm over N nodes which evaluates RL pairs

of right and left parameters, there exists a node which receives at least R
√

N
t−1

right and L
√

N
t left parameters for some t.

Proof. There are RL pairs of right and left parameters to be operated on. There-
fore, there exists a node which evaluates P = RL

N
pairs. Suppose this node has

X right parameters placed on it. Choose the balance factor t = R

X
√

N
. Then

X = R
√

N
t−1.

The node can only operate on the product of all the right and left parameters
placed on it. Therefore, there must be at least

P

X
=

RL

N

R
√

N
t−1

=
L√
N

t

many left parameters placed on this node.

6 Related Work

6.1 Distributed Keyword Search

There have been a number of proposals for implementing distributed keyword
search. The majority of them are based on inverted indices. An inverted index
stores a list of documents for every possible keyword. To execute a query, the
lists for involved keywords are intersected. The problem in a distributed network
is that transferring these lists means a high network overhead for potentially
uninteresting provisional results.

Gnawali [6] proposes a “Keyword-Set Search System” (KSS) that uses key-
word sets rather than single keywords. Their intention is to reduce the number
of lists that must be retrieved. On the other hand, keeping all pairs squares the
number of lists per document and thus the cost for updates. All triples cubes
the cost.

Reynolds and Vahdat [15] evaluated about 100,000 WWW queries during
a 10-day period and found that 71.5% of them consisted of two or more key-
words and about 40% contained three or more words. This puts the Gnawali [6]
approach in a bad light.

Li, Loo et al. [8] like Reynolds and Vahdat [15] also aim at fast distributed
list intersection. However, they start by comparing two partitioning techniques:
by document and by keyword. Keyword partitioning requires transmitting the
document lists, whereas document partitioning involves merely asking each par-
tition to execute the query. According to their analysis, keyword partitioning in
a DHT requires bandwidth that is about two orders of magnitude higher than
in document partitioning.

Gnutella [9] is a well known decentralized system using document partition-
ing. However, it uses flooding to query all the partitions. The next version of
Gnutella introduced ultra peers [9] to control the flooding, but this approach
only reduces the number of flooded nodes.

Harren et al. [7] propose to cut keywords into n-grams (fixed size substrings)
and to index these. Their approach allows substring search and reduces the im-
pact of typos. This will result in longer document lists, exacerbating the problem.

Like Gnutella, we propose to partition by document. However, instead of
flooding, we propose to use the Bit Zipper to place the document meta data on
2
√

N nodes, and have queries pass through only 6
√

N nodes. On each node, a
local inverted index could be used to execute the query, or one could use the
technique of Harren et al. for more generality. With a network of four million
users, we would require 1

166
-th of the bandwidth of Gnutella per node for an

exhaustive search while distributing the computational load randomly over all
nodes. If the work of Li, Loo et al. [8] is correct, this would place us over four
orders of magnitude beyond the reach of distributed inverted indexes.

6.2 Publish/Subscribe

Topic-based publish-subscribe (TBPS) partitions notifications into hierarchically
organized categories. This partitioning reduces the problem size immensely. Cur-

rent TBPS systems like Scribe [17] and Bayeux [23] try to distribute their mes-
sage load over large distributed systems. Coupled with the reduced problem size,
they become highly scalable.

Newsgroups show that TBPS scales quite well up to certain limits. However,
newsgroup cross-posting shows that there are cases where the artificial hierar-
chy is too restrictive, or simply not relevant. On the other hand, high volume
newsgroups have the problem of being too broad.

Pietzuch [12] and JMS [19] follow an approach that adds attribute filtering
to the topic based routing. This maintains the scalability attained from topic-
based problem size reduction. Furthermore, it addresses the issue of high volume
newsgroups by allowing filtering to be applied to reduce the noise. However,
overly restrictive topics and conflicting categorizations remain a problem.

Content-based pub-sub (CBPS), on the other hand, uses filters over the con-
tent of notifications as its primary routing policy. Therefore, it reduces the load
on subscribers by allowing them to specify their interests very precisely, without
the problem of conflicting categorization.

Rebeca [11] exemplifies pure CBPS, routed over a distributed broker tree.
The filters are used to determine whether or not to forward a notification. The
problem with Rebeca is that although clients are not heavily loaded, central
brokers often carry linear load.

Our previous approach [21] addresses this concern by eliminating the tree-
like structure and using conceptually many trees. Unfortunately, this approach
worked as attenuated broadcast. When perfect attenuation is too costly, this
degenerates to flooding.

Tam et al. [20] partition based on the content of notifications. This indexing
approach is commonly known from database systems. It combines high selectivity
with good performance. Unfortunately, for some subscriptions, there can be no
matching index. In databases, these queries would be solved by a linear scan.

As mentioned in section 5, the Bit Zipper is the optimal solution for linear
scans. Thus, our strategy provides an efficient fall-back mechanism which corre-
sponds to the database table itself. In this manner, all queries can be dealt with,
and the administrator can make index choices solely for performance gains.

7 Conclusion

In distributed rendezvous problems which frustrate partition by value, flood-
ing to all N nodes was the best known technique. Our general-purpose data
placement strategy can address these same problems with a cost of only O(

√
N)

messages. Furthermore, when these rendezvous problems exhibit all-pairs evalu-
ation, our strategy is asymptotically optimal. This includes important problems
such as distributed linear scan and general content-based publish-subscribe.

The Bit Zipper Rendezvous fits naturally on most distributed hash tables.
The additional routing cost in such a self-maintaining configuration is only a
small multiplicative factor. Through partitioning pairs of left and right param-

eters, it achieves randomized load distribution. Hence, the load distribution will
be asymptotically homogeneous.

For problem domains like publish-subscribe, where efficient parameter parti-
tioning techniques exist, our work is complementary. When there are no matching
indexes, our strategy provides a fall-back. This work paves the way for general
purpose systems like databases where unanticipated queries may be posed.

The question of whether distributed keyword search requires the same mes-
sage load remains open. However, since flooding (aka. partition by document [8])
was previously the fastest decentralized technique, our new result should in the-
ory perform radically better. An implementation will show whether our predic-
tions are correct.

8 Acknowledgements

This work was partially funded by the German National Science Foundation
(DFG) as part of the Graduate Colleges “Enabling Technologies for E-Com-
merce” and “System Integration for Ubiquitous Computing”.

References

1. The 2001 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM), San Diego, California, USA, 2001.

2. The 1st International Workshop on Peer-to-Peer Systems (IPTPS02), MIT Faculty
Club, Cambridge, MA, USA, Mar. 2002.

3. The 2nd International Workshop on Peer-to-Peer Systems (IPTPS03), Berkeley,
CA, USA, Feb. 2003.

4. K. Aberer. P-Grid: A Self-Organizing access structure for P2P information sys-
tems. In Proc. of the 6th Intl. Conference on Cooperative Information Systems
(CoopIS 2001), Trento, Italy, 2001.

5. P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces
of publish/subscribe. ACM Computing Surveys, 35(2):114–131, 2003.

6. O. D. Gnawali. A keyword set search system for Peer-to-Peer networks. Master’s
thesis, Massachusetts Institute of Technology, June 2002.

7. M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo, S. Shenker, and I. Stoica.
Complex queries in DHT-based Peer-to-Peer networks. In Proc. of the 1st Intl.
Workshop on Peer-to-Peer Systems (IPTPS02) [2].

8. J. Li, B. T. Loo, J. Hellerstein, F. Kaashoek, D. R. Karger, and R. Morris. On
the feasibility of Peer-to-Peer web indexing and search. In Proc. of the 2nd Intl.
Workshop on Peer-to-Peer Systems (IPTPS03) [3].

9. Q. Lv, S. Ratnasamy, and S. Shenker. Can heterogeneity make gnutella scalable?
In Proc. of the 1st Intl. Workshop on Peer-to-Peer Systems (IPTPS02) [2].

10. P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system
based on the XOR metric. In Proc. of the 1st Intl. Workshop on Peer-to-Peer
Systems (IPTPS02) [2].

11. G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD
thesis, Darmstadt University of Technology, Sept. 2002. http://elib.tu-
darmstadt.de/diss/000274/.

12. P. Pietzuch and J. Bacon. Hermes: A distributed event-based middleware archi-
tecture. In Proc. of the 1st Intl. Workshop on Distributed Event-Based Systems
(DEBS’02), Vienna, Austria, July 2002. IEEE Press.

13. M. Raab and A. Steger. Balls into Bins - a simple and tight analysis. In Proc. of
the 2nd Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM’98), volume 1518 of LNCS, Barcelona, Spain, Oct. 1998.

14. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content
addressable network. In Proc. of the 2001 ACM SIGCOMM Conference [1].

15. P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. Technical
report, Duke University, Sept. 2001.

16. A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale Peer-to-Peer systems. In Middleware 2001, volume 2218 of
LNCS, pages 329–?? Springer-Verlag, Berlin, Nov. 2001.

17. A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. SCRIBE: The de-
sign of a large-scale event notification infrastructure. In Proc. of the 3rd Intl.
COST264 Workshop on Networked Group Communication (NGC 2001), volume
2233 of LNCS, pages 30–43, London, UK, 2001. Springer-Verlag.

18. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A
scalable Peer-To-Peer lookup service for internet applications. In Proc. of the 2001
ACM SIGCOMM Conference [1], pages 149–160.

19. Sun Microsystems Inc. Java message service specification 1.1, 2002.
20. D. Tam, R. Azimi, and H.-A. Jacobsen. Building Content-Based Publish/Subscribe

systems with distributed hash tables. In Proc. of the 1st Intl. Workshop on
Databases, Information Systems, and P2P Computing (DBISP2P), Berlin, Ger-
many, Sept. 2003.

21. W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. Buchmann. A Peer-to-Peer
Approach to Content-Based Publish/Subscribe. In Proc. of the 2nd Intl. Workshop
on Distributed Event-Based Systems (DEBS’03), San Diego, CA, USA, June 2003.
ACM Press.

22. B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical report, Computer Science Di-
vision, U. C. Berkeley, Apr. 2001.

23. S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An archi-
tecture for scalable and fault-tolerant wide-area data dissemination. In The 11th
Intl. Workshop on Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV’01), June 2001.

