Design and Implementation of a Soft Caching
Proxy

Jussi Kangasharju Young Gap Kwon Antonio Ortega
{kangasha,younggap,ortega }@sipi.usc.edu

Integrated Media Systems Center
Department of EE-Systems
University of Southern California
3740 McClintock Ave. #400
Los Angeles, CA 90089

Abstract

In this paper we address a set of modifications to classical proxy
caching algorithms which allow the implementation of a soft caching proxy
system. Changes to replacement algorithms are detailed and image size
and recoding issues are discussed. We also present our working soft
caching testbed based on the Squid proxy, detail the modifications we
have made and present the experiences obtained.

Keywords: web caching, image recoding

1 Introduction

The explosive growth in Internet traffic has made it critical to look for ways of
accommodating the increasing number of users while preventing excessive de-
lays, congestion and widespread blackouts. This has led to a great deal of effort
being devoted to studying web caching techniques [2]. While caching is useful
both at the server (for example some pages might be kept in RAM memory)
and the client (where recently accessed files are saved to disk), we concentrate
here on proxy based caching. In this environment clients can designate a host
to serve as a proxy for all or some of their requests. The proxy acts as a cache
by temporarily storing on local disks, or memory, objects which were requested
by the clients.

Current design efforts are based on the assumption that object integrity
has to be preserved, i.e. objects cannot be modified. Thus an object is either
present or not in the cache, but cannot be available in part. Here we propose
that caching proxies should be able to perform recoding of the images in the
cache so that lower resolution versions of the images can be stored and made

available to the clients. We call this strategy Soft Caching [8, 17], since we now
allow a lower resolution version of an image object to be stored; a soft decision
is made (how many bits to use for a certain image) instead of a hard one (is the
image left in the cache or not).

In our framework, specific caching strategies are derived for images and
other media objects, for which preserving the object integrity is not completely
necessary. While incomplete delivery of text data may render it useless, for
images 1t may be sufficient to provide the end user with a lower resolution
version of the image stored at the remote server, especially if this can be done
in significantly less time than it would take to download the full resolution
image. This is one of the reasons for the continuing popularity of progressive
image formats such as Progressive JPEG [10] nowadays, or pyramids [1] and
wavelets [12] in the near future.

When access occurs over a fast link progressive transmission may not of-
fer significant advantages, but over a slow link a progressive format allows a
usable, albeit reduced resolution, picture to be available even if the transfer is
terminated early. This allows users to stop the transfer when a sufficient quality
image has been downloaded. A study of such a multi-resolution imaging system
under simple assumptions can be found in [9, 7] and motivates the advantages
in terms of average access delay of using a progressive transmission.

If the proxy has a lower resolution version of the requested image but the
image quality is too low, the user can always request the original image from
the server by using the standard method of the browser for by-passing caches
(e.g. Shift-Reload in Netscape). Currently this means transferring all of the
original image from the server to the client, so the price to pay for the better
resolution is an increased download time.

As progressive image formats and transmission methods that make it possi-
ble to request partial objects, such as the range-request method of HT'TP/1.1 [5],
become more widespread, the reloading of the whole image can easily be avoided.
The benefits on the user-proxy link are still the same and even when the user
wants to see all of the image, only the bits that are needed to complete the
image need to be requested from the origin server, thus reducing the load on
the backbone.

Real-time distillation [3, 4] has been proposed to allow proxies to extract
(distill) a low resolution image to serve it to slow clients (e.g. clients connected
to the network via dial-up). Recently, a commercial implementation of the
real-time distillation framework [14] has come to the market.

While the distillation approach is similar in philosophy, soft caching ad-
dresses a more general set of problems. The recoding operation is similar to
distillation which gives a faster download time on a slow client-to-proxy link
thanks to the smaller size of objects. However, in our approach, recoding in the
cache is done both to satisfy the lower bandwidth requirements of the clients
and to allow more efficient memory usage. By using progressive formats we
can serve a range of image qualities to the clients, while the number of levels
of resolution to be kept in the cache will depend on image popularity and the
available memory.

This paper is organized as follows. Section 2 addresses the modifications to
existing systems that are required by soft caching. In section 3 we present our
soft caching testbed. Section 4 sets directions for future work. Finally, section 5
concludes the paper.

2 Soft Caching Algorithms

While most of the general principles of proxy caching are directly applicable to
soft caching, an efficient soft caching system must also consider the effects of
image recoding in its algorithms.

Given the advantages (minimization of average access time) of progressive
transmission [9, 7], our goal is to find simple, yet efficient ways to improve
existing caching algorithms to make them benefit from the advantages of soft
caching.

We will first discuss issues related to recoding and image size and then we
will present the modifications to existing cache replacement algorithms.

2.1 Recoding Levels

An important factor in a soft caching system is the number of recoding levels
or the number of different representation levels an object can have in the proxy.

Having many recoding levels reduces the potential benefits from soft caching
since an image can remain in the cache for a long time even though it will not be
used. Having fewer recoding levels would get rid of the unneeded images quicker
but could also reduce the quality of the useful images faster. Also, the smaller
the number of levels, the less we use CPU-time to recode the image during its
stay in the cache.

To get more insight into the number of levels needed, we took 800 unrecoded
JPEG-images and recoded them through all the 10 levels used by the Indepen-
dent JPEG Group’s library [6]. The images were mostly small photographic
images, resolution about 300x200 pixels and average size around 12 KB. Some
of the images were much larger (1500x1000, 400 KB or even larger) and a signif-
icant part of them were non-photographic graphical images such as buttons and
toolbars. Table 1 presents the savings obtained in going from a higher recoding
level to a lower one.

From the results in table 1 we clearly see that having 10 recoding levels
is an overkill. Going from level 8 to level 7 and on to level 6 does not offer
much new savings in file size and the degradation in visual quality is almost
non-perceptible. So a user who finds level 8 acceptable will also find level 6
acceptable with a very high probability. A similar argument holds for levels 4,
3 and 2.

For most photographic images the level where coding artifacts start to ap-
pear is level 5 or 6. Non-photographic images usually degrade faster, quality
becoming objectionable around level 7 and degrading completely at level 5. This

Level | Percentage from | Percentage from
previous level original image
Full 100 % 100 %
9 64.7 % 64.7 %
8 92.6 % 59.9 %
7 92.7 % 55.5 %
6 95.5 % 53.0 %
5 71.0 % 37.6 %
4 71.3 % 26.8 %
3 86.0 % 23.1%
2 85.4 % 19.7 %
1 55.2 % 10.9 %

Table 1: JPEG-image size at different recoding levels

is because JPEG has not been designed to compress such images. Figure 1 shows
the Lena-image at different recoding levels.

Full

Level 3 Level 1

Figure 1: Lena-image at different recoding levels

These findings indicate that a good number of recoding levels would be 4 or
5. These would be situated at the full level and approximately at levels 8, 6, 3
and possibly level 1. Although at the first level no details of the image can be
seen, it still gives an overall view of the contents of the image. In some situations,
such as browsing an image database, this might be enough information to make

the decision whether to load more or not.

2.2 Image Size

Since a significant part of the images consists of navigation buttons and other
such non-photographic images which do not take well to recoding, something
should be done about them.

A simple way is to look only at the image size and make decisions based on
that. Recoding an image of size 2 KB at full resolution to level 6 would save
us about 1 KB of disk space but would also use CPU-power doing that. It is
therefore not efficient to recode small images for two reasons:

1. They are likely to be non-photographical, i.e. recoding them is not useful

2. The savings in transmission time and disk space are negligible compared
to the CPU-time used.

Where to set the threshold of small image? Our sample of 800 images had
an average size of 12 KB and we have observed that most non-photographic
images tend to be under 5 KB in size. Also, photographic images that require
a small storage are likely to be small on screen, and therefore are useful with
high quality (e.g. thumbnail images). Therefore a threshold of around 10 — 15
KB would be a good choice. It would not waste time and effort on small images
but would still give all the benefits for larger images.

2.3 Replacement Strategy

Cache replacement strategies in the context of WWW proxies have been ex-
tensively studied [18, 11, 19]. The popular Least Recently Used (LRU) [16]
algorithm has been found to yield suboptimal performance and many better
algorithms have been proposed, although LRU still remains attractive due to
its simplicity. An algorithm that takes into account the number of references,
object size and download speed has been found to yield good and robust per-
formance [19].

The main difference between a soft and a hard caching system is the existence
of partial objects in the soft caching system. Initial simulations would seem to
indicate that a strategy that takes into account the fact that the image has been
recoded yields better performance (shorter average transmission time, higher
hit-rate) than a strategy which ignores the state of the object.

How to account for recoding in the replacement algorithm? In an algorithm
based on access times, such as LRU, we will need to adjust the object’s access
time or look also at the recoding time. Otherwise, an object that was chosen
for removal would get chosen again after recoding as it would still be the least
recently used.

A simple strategy would be to set the access time of an image which has
just been recoded to the current time, in this way we will increase its priority
in terms of the LRU algorithm. This tends to favor the lower resolutions too

much compared to their utility, since images that have been recoded several
times may potentially remain in the cache for a long period even if they have
been accessed just once. A better strategy would set the access time to the old
access time plus some fraction of the time elapsed between the last real access
and the recoding instant based on the current recoding level.

Instead of modifying the access time, we could use the time when the object
was recoded as a secondary key. We mark the time when an object is recoded
and when the same object is selected for eviction the next time, we check if it
has been accessed since i1t was recoded. If not, then it is released but if it has
been accessed, we recode it again and set the recoding time accordingly. This
is also known as the “second chance” algorithm [16].

For algorithms which are based on the size of the object and throw out the
largest ones, using the actual size of the object would favor recoded objects over
untouched ones. Since the quality of recoded images is inferior to that of the
unrecoded ones this is not desirable. We should therefore use in the algorithm
an estimated size which is calculated as the actual size plus a fraction of the
difference between the original and actual sizes.

2.4 Summary

No matter what strategy is used to choose the objects to be evicted, we must
decide whether the object should be released or recoded. The correct decision
depends on the current state of the object as well as on general parameters such
as number of recoding levels. This decision should carefully weigh the potential
benefits gained (shorter transmission time, smaller size) if the image is recoded
against the CPU-cost of doing so. If these benefits seem too small as is often the
case for very small images, then the image should be released from the cache
instead of wasting resources in recoding it.

Figure 2 depicts this decision based on image size and access frequency. We
could define small images as those smaller than 15 KB and frequently referenced
images as those that have been referenced at least twice.

=
o
=

|
. ;
g Release | Recode/Release
2 |
= I
=y |
@ |
Lol I
m ”””””””” r-TT T TS T T T T T T T T T
w I
wn 1
D |
S |
< Release ! Recode
l
Low |
I
Small . Large
Image Size

Figure 2: Release/recode-decision based on image size and access frequency

The decision whether to recode the image or release it in the top right quarter
of Figure 2 depends on the availability of progressive transmission. Assuming
that users are using browser caches, a frequently referenced object in a proxy
cache is referenced by different users who will possibly have very different opin-
ions about image quality. If we do not have progressive transmission, we should
recode the frequently referenced large images only a few times in order to min-
imize the additional waiting time due to the retrieval of the whole object when
the quality is not sufficient. With progressive transmission, however, we can
recode them more since no unnecessary bits need to be transmitted even when
the user requests a higher resolution.

After the object has been recoded we will need to update the changes (new
size, recoding time) into the internal data structures. When the object is re-
leased, no special procedures are needed.

All in all, the modifications needed to convert a classical proxy to a soft
caching proxy are small and limited mostly to the replacement algorithm. The
actual recoding can and should be done in a separate program which is called
by the proxy when recoding services are needed.

3 Programs

As our testbed for studying soft caching in practice, we have chosen the freely
available Squid proxy [15]. We are currently using version 1.1.20.

We use recoding only on JPEG-images and as the format for recoded images
we have chosen Progressive JPEG. It has the advantage of being supported by
the browser and the freely available Independent JPEG Group’s library [6] pro-
vides us with almost all the functionality we need to recode JPEGs to a coarser
representation. Some JPEG-images on the Web are already in the progressive
format, but most of them are sequential JPEGs. Therefore when the image is
recoded for the first time it must also be transformed from the sequential format
to the progressive format.

3.1 Modifications to Squid

We have implemented the main recoder as an external process (recoder daemon),
like the dnsserver-process of Squid. The recoders are run on the same machine
as the main proxy. It is possible to run multiple recoders. In this case, recoding
requests are given to the recoder with the smallest load.

We have chosen to do recoding in two situations. In both of the situations,
the recoding is performed on images that the LRU-algorithm has chosen for
removal.

One of them is in function storeGetSwapSpace where Squid cleans up a
large amount of space because the swap size has hit the high-water mark. In
this case, we recode a JPEG-image by removing two layers.

The other recoding situation is in function storeMaintainSwapSpace which
is called regularly to try to keep the swap size between the high- and low-water

marks. In this case we recode by removing only one layer.

In all cases, if the image was chosen for removal because its explicit expiration
time has passed, the image is released.

To make matters simpler, we recode only images that are on the disk, i.e.
the “hot” objects that Squid keeps in memory are not touched. Also, should it
happen so, that an image that has been handed to the recoder becomes “hot”
and gets swapped into memory then we simply discard the recoded result when
it is available.

The recoding function forwards the recoding request to the recoder daemon
which then handles the details of recoding.

Because the recoding is not instantaneous, we will need to estimate the
amount of disk space freed. Otherwise, Squid would keep on sending images to
the recoder, since the replacement algorithm tries to free enough space to make
the swap size go under a configured threshold.

As the estimate we have chosen 10% of the current image size, a value which
is rather conservative in most cases and therefore should guarantee that after
the recoding the swap size is below the configured maximum. Also it has the
added benefit of recoding a bit more images than necessary which increases the
probability of a user seeing a recoded image thus giving us more data on the
visual quality of recoded images.

After the image has been recoded, the above estimate is corrected to the
actual value of disk space freed. We also update the time when the image was
last referenced. We have chosen to update the reference time to current time,
i.e. make it look like the object was just accessed. This tends to keep the images
in the cache and thus increases the chances of a user seeing a recoded image. In
a production version this could be done in a more optimal way.

3.2 Experiences

We have been running our modified proxy in our lab and are thus far satisfied
with the results. The modifications are stable, reasonably fast and the users are
happy with the system.

Images where the recoding effects are clearly visible have occasionally been
encountered but mostly the image quality has been satisfactory. This may in
part be due to the equipment used, mostly Sun workstations with 8 bit graphics
cards. In this setup the dithering algorithm of Netscape actually hides some of
the recoding artifacts so that recoding cannot be seen before the last few levels.

With a 24 bit graphics card and a good monitor the recoding effects start to
appear after a couple of recodings and become clearly visible after five recodings
(at least to someone who knows what sort of artifacts to look for).

We have also tested how much recoding affects the performance of the proxy.
For this experiment we preloaded a trace of 65000 URLSs into a cache on our
local network and ran the same trace through our modified Squid and a normal
Squid using this preloaded cache as a parent. Using this setup we can easily see
the performance of the proxy since the network has been taken out of play.

The trace had 65000 URLs, 700 MB of data, 60 % hit-rate and JPEGs
represented 16 % of the bytes. The test proxies were quite small with 50 MB
swap and the high-water mark at 95 % and low-water mark at 75 %. This
setting makes it harder for the soft proxy to clear the space from the high-water
mark to the low mark, since recoding does not free up space as quickly as a
simple removal would. The requests were given at two speeds, 1 request per
second and 3 requests per second on the average.

The metrics used were the average service time per request and the speed at
which data was served in KB/sec as reported by the calamaris.pl analysis tool.
Table 2 shows the results at 1 request per second and using 2 recoder-processes
for soft proxy. Table 3 shows the results at 3 requests per second and using 1
and 4 recoders.

Service Time (sec) | KB/sec
Squid 0.10 43.93
Soft-2 0.09 46.54

Table 2: Results with 1 request/second, 2 recoders

Service Time (sec) | KB/sec
Squid 0.26 17.85
Soft-1 1.12 3.89
Soft-4 1.69 2.60

Table 3: Results with 3 requests/second, 1 and 4 recoders

From Table 2 we see that under a reasonable load the recoding process does
not affect the performance, but from Table 3 we see that as the proxy is placed
under an unreasonably high load, the processing time used by the recoders has
a big impact on the performance of the proxy. It should be noted that in the
second experiment the recoders are almost constantly running due to the proxy
parameters. Even the normal proxy suffers a considerable performance hit under
these extreme conditions.

Since recoded images are smaller than normal images, a soft caching proxy
can keep more objects than a normal proxy. Figure 3 shows the number of
objects in the two proxies during the experiment in table 2.

Figure 3 shows that the soft caching proxy (marked Soft-2) has sometimes
considerably more objects than the normal proxy. These objects are recoded
images, and figure 4 shows the distribution of the recoding levels during the
experiment.

7000

6000

Number of Objects in Caches

T

T

5000

4000} "

Images

3000 ! ”

2000 |- “ |

Soft-2
! --—- Squid

1000

1200

|
0 200 400 600 800 1000

Time / minutes

1400

Figure 3: Number of objects in two proxies

4 Future Work

Currently when a user requests a reload on a recoded image, the whole image
is transferred from the origin server. For normal JPEG-images this is the only
way of doing it but if the original image is in the progressive JPEG -format
then 1t would be enough to transfer only the missing bits. As Squid already
implements HT'TP/1.1-protocol, we can use it to study the advantages progres-
sive transmission in a real-life setup by implementing range-requests for objects
already in the progressive format.

When we have more experimental data on the visual quality of recoded
images we will formulate a probabilistic model of user behavior that we will
integrate into the replacement strategy. We will also do more detailed studies
on how to include recoding levels into the different existing replacement policies.
We also plan to study the implementation issues related to the optimal soft
caching replacement policy presented in [20].

We have made our modifications available as a patch to squid 1.1.20. The
patch is accessible through our project web page [13].

10

Images at Recoding Levels

2500 T T
1
2
3
2000+ 4
5
6
7
8
1500 - 9
F
3
&
E
1000 -
500
0

200 400 600 800 1000 1200
Time/ minutes

Figure 4: Distribution of recoded images

5 Conclusion

To accommodate soft caching, existing cache replacement algorithms have to
be modified to take into account the fact that only a part of the object may be
available. A decision whether to recode the object or release it must be made
based on cache parameters. Based on experimental data we have studied both
the number of recoding levels and image sizes and have found good values to be
used in a real soft caching system.

We have presented our working soft caching system based on the freely
available Squid proxy. We described the modifications necessary for achieving
the desired functionality and presented our experiences obtained in using the
modified proxy.

References

[1] P.J. Burt, E. H. Adelson, The laplacian pyramid as a compact image code,
IEEE Trans. on Commun., vol. 31, pp. 532-540, Apr. 1983.

11

[2] A. Chankhunthod, P. B. Danzig, C. Neerdals, M. F. Schwartz, K. J. Wor-
rell, A hierarchical internet object cache, in USENIX Tech. Conf., 1996.

[3] A. Fox, E. A. Brewer, Reducing www latency and bandwidth requirements
by real-time distillation, in Proc. Intl. WWW Conf., (Paris, France), May
1996.

[4] A. Fox, S. D. Gribble, E. A. Brewer, E. Amir , Adapting to network and
client variability via on-demand dynamic distillation, in Proc. Proc. Sev-
enth Intl. Conf. on Arch. Support for Prog. Lang. and Oper. Sys. (ASPLOS-
VII), (Cambridge, MA), Oct. 1996.

[5] Hypertext Transfer Protocol - HTTP/1.1 (RFC 2068).

[6] Independent JPEG Group’s Software.
<URL:ftp://ftp.uu.net/graphics/jpeg/>.

[7] A. Ortega, Optimization Techniques for Adaptive Quantization of Image
and Video under Delay Constraints. PhD thesis, Dept. of Electrical Engi-
neering, Columbia University, New York, NY, 1994.

[8] A. Ortega, F. Carignano, S. Ayer, M. Vetterli, Soft Caching: Web Cache
Management Techniques for Images, IEEE Signal Proc. Society Workshop
on Multimedia Signal Processing, (Princeton, NJ), June 1997.

[9] A. Ortega, Z. Zhang, M. Vetterli, A framework for optimization of a
multiresolution remote image retrieval system, in Infocom’94, (Toronto,

Canada), pp. 672-679, June 1994.

[10] W. Pennebaker, J. Mitchell, JPEG Still Image Data Compression Standard,
Van Nostrand Reinhold, 1994.

[11] P. Scheuermann, J. Shim, R. Vingralek, A case for delay-conscious caching
of web documents, in Proc. Intl. WWW Conf., (Santa Clara, CA), Apr.
1997.

[12] J. M. Shapiro, Embedded image coding using zerotrees of wavelet coeffi-
cients, IEEE Trans. on Signal Proc., vol. 41, pp. 3445-3462, Dec. 1993.

[13] Soft Caching Project Page.
<URL:http://sipi.usc.edu/ ortega/SoftCaching/>.

[14] Spyglass Prism.
<URL:http://www.spyglass.com/solutions/technologies/prism/>.

[15] Squid internet object cache. <URL:http://squid.nlanr.net/>.
6] A. S. Tanenbaum, Modern Operating Systems, Prentice Hall, 1992.

[17] C. Weidmann, M. Vetterli, A. Ortega, F. Carignano, Soft Caching: Image
Caching in a Rate-Distortion Framework, in Proc. of ICIP, (Santa Barbara,

CA), Oct. 1997.

12

[18] S. Williams, M. Abrams, G. Abdulla, S. Patel, R. Ribler, E. A. Fox, Re-
moval policies in network caches for world-wide web documents, in Proc.

of ACM SIGCOMM’96, (Stanford, CA), pp. 293-305, Aug. 1996.

[19] R. P. Wooster, M. Abrams, Proxy caching that estimates page load delays,
in Proc. Intl. WWW Conf., (Santa Clara, CA), Apr. 1997.

[20] X. Yang, K. Ramchandran, An optimal and efficient soft caching algorithm
for network image retrieval, in Proc. of ICIP, (Chicago, IL), Oct. 1998.

Vitae

Jussi Kangasharju was born in Helsinki, Finland, in 1972. He is pursuing the
M.S. degree in the Department of Computer Science at the Helsinki University of
Technology. Currently he is working as a visiting researcher at the Department
of Electrical Engineering-Systems at the University of Southern California, Los
Angeles.

His research interests include web caching, multimedia networking and In-
ternet protocols.

Young Gap Kwon was born in Seoul, Korea, in 1968. He received the
B.S. degree in Electrical Engineering from the Han-Yang University ,Korea, in
1993 , the M.S degree in the department Electrical Engineering from Electrical
Engineering-Systems at the university of Southern California, Los Angeles, in
1996, where he currently is pursuing the Ph.D. degree.

His research interests include natural and synthetic image compression, video
coding and web caching.

Antonio Ortega was born in Madrid, Spain, in 1965. He received the
Telecommunications Engineering degree from the Universidad Politecnica de
Madrid (UPM), Madrid, Spain in 1989 and the Ph.D. in Electrical Engineer-
ing from Columbia University, New York, NY in 1994. At Columbia he was
a graduate research assistant at the Center for Telecommunications Research
(1991-94) and was supported by a scholarship from the Fulbright commission
and the Ministry of Education of Spain.

Since September 1994 he has been an Assistant Professor in the Electrical
Engineering-Systems department at the University of Southern California. At
USC he is also a member of the Integrated Media Systems Center, an NSF
Engineering Research Center, and the Signal and Image Processing Institute.
In 1995 he received the NSF Faculty Early Career Development (CAREER)
award. In 1997 he received the USC School of Engineering Northrop-Grumman
Junior Research Award. He received the 1997 IEEE Communications Society
Leonard G. Abraham Prize Paper Award for a paper co-authored with Chi-Yuan
Hsu and Amy R. Reibman. He is an Associate Editor for the IEEE Transactions
on Image Processing and a member of the IEEE, ACM and SPIE.

His research interests are in the areas of image and video compression and
communications. They include topics such as joint source-channel coding for
robust video transmission, rate control and video transmission over packet wired

13

or wireless networks. He has over 60 publications in international conferences
and journals on these topics.

14

