IMPLEMENTATION OF OPTIMIZED
CACHE REPLENISHMENT ALGORITHMS
IN A SOFT CACHING SYSTEM

J. Kangasharju, Y. Kwon, A. Ortega X. Yang; K. Ramchandran
Integrated Media Systems Center University of Illinois
University of Southern California Urbana-Champaign, IL

Los Angeles, CA

Abstract - In this paper we address practical issues which arise in
the implementation of optimized cache replenishment algorithms within
a “soft” caching framework.

We study the algorithms that have been proposed for optimized soft
caching and simulate them using actual proxy traces. Our objective is to
determine what compromises have to be made in order to approximate
the desired optimal performance while maintaining a complexity level
sufficiently low to enable a real-time implementation.

INTRODUCTION

With the popularity of the Internet and various web browsing applica-
tions, an increasing amount of image data is transmitted over the network.
Proxy caches, or intermediate network nodes in which frequently used data
are stored, emerge as an efficient solution to reduce network traffic. In a typ-
ical server-proxy-client scenario, the client makes requests through a proxy
which retrieves the image from the server, delivers it to the client and caches
a copy.

A question naturally arises as to how to efficiently allocate the proxy
cache memory to achieve a minimum expected delay time. This so-called
web caching problem has recently attracted a lot of research [4,8].

The key difference between image-specific caching and conventional caching
is as follows. Conventional cache management are “hard” because objects are
either present in the cache or not, but cannot be partially available. Soft
caching, however, is more flexible, in that variable amounts of cache memory
can be assigned to each image. Therefore assuming that a progressive image
format is used, a low resolution version of the original image can be kept in
the cache. The main advantage of this approach is that, in many cases, the
user will not need to download the full resolution image from the server.

In this work we study the implementation issues that arise in a soft caching
scenario [1-3,7,9]. In [7], two soft caching scenarios are distinguished, namely,

*Currently with HP Labs, Palo Alto, CA

(1) hard access, in which the user always requires the entire image, and (ii)
soft access, in which she can possibly choose to view the image at a cer-
tain resolution level. Obviously, soft-access-soft-caching represents the most
realistic scenario, and is the focus of the current research.

In [9] efficient low-complexity algorithms to optimize the management of
a soft cache are proposed. It is proved that the soft-access problem can
be converted into a hard-access problem by breaking image resolution levels
into separate subimages. Such a conversion is shown to maintain resolution-
consistency in cache loading, 1.e., the lower resolution version will always be
loaded prior to the enhancement layers for higher resolutions.

In this paper we review the optimization algorithm of [9] and study the
issues involved in implementing it in a real time system.

MAIN DERIVATION
Hard Access

Let us start with the simpler case of hard access. We consider a set of N
images, and assume a known access probability {Pi}z':l,N to them. Image
¢ has size R; and is initially stored at a server of bandwidth Bs,. A proxy
cache of size C' and transmission rate B¢ is used as intermediate storage.
Usually B¢ >> Bg,. The problem is how to assign cache memory to the
images so that the average access delay is minimized. The following reviews
the algorithm of [9] and the reader is referred to [9] for details.

Suppose image ¢ is assigned r¢, bits, for which 0 < r¢, < R;. Hard access
will always request the entire image of R; bits. The total delay for accessing
image ¢ will then be

(L'(’PCl) = Bal.rcl + Bgll.(Ri — T’Cl) (1)

The expected delay time to retrieve all the images is therefore Zf\il Pidi(re,).

To minimize this, we imagine that the cache is filled at infinitesimal steps.
If we allocate a very small amount of € bits to image ¢, we achieve a delay
reduction of PZ-(BEI1 — Bgl)e. Obviously, to maximize this reduction we
should pick the image that has the largest PZ-(BEI1 — BZ'). Therefore, the
solution to the hard access problem is simply to compute a priority index
G = Pi(Bgll — BEI) for each image, sort the tmages from large to small on
;. Then, when it is necessary to remove images from the cache this can be
done following the order determined by the priority index.

Soft Access

Now, each image has a finite number of resolution levels. Resolution j of
image 7 has r;; bits (0 < 7;; < r; j41 < R;), and access probability P;;, with

> ;P =1 Suppose the cache holds r¢; bits for image 7, its total delay in
this case is,

Sire)= Y, Pyri;Bg'+ Y Pylre.Bz' + (rij—re)Bs)) (2)

Jjirij<rc; Jiri;>ro;

d;(rc,) is piecewise linear and convex [T7].

Consider the situation where each image has already been assigned r; bits,
in the range of resolution j, i.e., r;; < r; < 15541, and the cache has some
vacancy. If we allocate € bits to image ¢, the reduction in average delay is:

6i(ri) —di(ri +¢) = (Z Pu)(Bs! — Bg')e (3)

The first term in (3) is the probability that these ¢ bits in image 7 will get
accessed. Obviously, we should give these € bits to the image with the largest
(Zle Pil)(Bgll - Bg*l)~

The above analysis reveals a close tie between soft access and hard access:
they are both solved using some priority indices. In fact, if we conceptu-
ally break image 7 into several subimages, let a subimage I;; represent the
difference between resolution levels j and j — 1 of image ¢, and update the
accessing probabilities accordingly, then the soft access problem is converted
into a hard access problem.

In [9], it is shown that resolution consistency is maintained in cache allo-
cation. In other words, subimage I;; is always loaded into the cache prior to

Tijr-

DESIGN AND IMPLEMENTATION

Under the above conversion rule, every soft access problem is in fact a hard
access problem with a larger set of images. In this section we explain how
the access mechanism in our testbed can be formalized and a specific priority
index assigned to each image.

Access type

Even though the soft access scenario is more appealing, all modern browsers
implement only hard access. In order to have an access mechanism closer to
soft access, the semantics of hard access need to be relaxed.

In our experiments we have the following access mechanism: the client
requests an image within a page and receives the image available in the cache
(which could be at a lower resolution) thus requiring time Bal -re,. If the
user is not satisfied with the image resolution a full reload is requested so
that the image is downloaded in its entirety from the server. Thus the time
required when such a “miss” occurs is Bgll - R; where R; 1s the size of the
i-th image.

The optimized algorithm requires the access probabilities for each of the
subimages. Under hard access these are not available and they will need to
be approximated. Our approximation technique will be detailed later on.

Simple LRU-based algorithm

Cache replacement strategies have been extensively studied in the context
of normal (i.e. hard) web caching [4, 8], with LRU [8] being one of the most
popular approaches. In a LRU environment the basic idea is to remove the
image (regardless of size, server bandwidth and other considerations) which
was accessed the least recently.

While LRU is an attractive strategy given its simplicity, 1t is not always
easy to implement an LRU strategy in a soft cache. In a soft cache, the
image with the lowest priority will be recoded, instead of being removed,.
Now, consider the image with oldest access time. This image will be then
recoded, but if the same algorithm (i.e. finding the LRU image) is used
again, it 1s likely that this image will remain the LRU. Thus, if the recoding
level is not considered as part of the removal decision the result will be that
images are recoded repeatedly until the lowest resolution is reached and they
are removed.

Therefore the access time of the recoded images needs to be adjusted as a
function of the recoding level. For this we use the following formula in which
the new access time is

remaining_recoding levels

new = old + (current time — old) (4)

max_recoding_level

The new access time for an image that has been recoded only a few times
(remaining_recoding levels is large) is close to the current time, which in-
creases its priority in the LRU algorithm. A heavily recoded image is probably
not very useful and i1ts new access time is set closer to its old access time.
This does not increase its priority very much and therefore it will be removed
(or recoded again) sooner.

Optimized sorting based algorithm

Let us now consider a practical implementation based on the optimal re-
placement criterion. The priority indices are defined as

Bij = Pij(Bs] — BZ') (5)
Because exact values for the three parameters, F;;, Bg, and B¢ are not
available, they will be estimated in the following ways.
All the clients are assumed to be connected over similar links. Therefore
the client bandwidth, B¢, is constant and does not need to be estimated.
The bandwidth to server iz, Bg,, is estimated from the size of image
and the time it took to retrieve it from the server, averaged over subsequent

retrievals of image 7. This is an imperfect estimator, since using all images
from server i would yield a better estimate, albeit still not necessarily correct.
This, however, would require a dedicated data structure for each server and
would be far costlier in terms of memory. The Squid proxy used as the basis
for our testbed [6] expresses the image size in bytes and the duration of the
request in milliseconds giving as the natural unit of bandwidth bytes per
millisecond.

The main problem is estimating the values of F;;. These can be estimated
by the number of times the object has been referenced, but because of hard
access, we do not have accesses to anything but the last resolution. Therefore
all the lower resolutions share this same reference count. This would reduce
the replacement algorithm into a hard replacement algorithm. Also because
the reference count is reset to 0 every time the object is released from the
cache, the estimate 1s somewhat inaccurate. For a better estimate, it would
be necessary to keep the reference counts of every object ever seen by the
cache, but this is completely infeasible in practice.

When an image is sent to the recoder, we simulate soft accesses by increas-
ing the reference count of the next highest level. The average bandwidths in
the experiments were around 4.5 bytes per millisecond and the soft accesses
were simulated by adding 0.1 to the reference count. The effect from this
is that the lower resolutions have a higher priority index and do not get re-
coded right away. It should be noted that for normal objects, only a single
priority index is calculated, but such objects are not recoded, instead they
are removed from the cache.

SIMULATIONS

We conducted simulations using a trace from our own Squid-proxy at our
lab. This trace contained almost 150000 URLs and 1.4 gigabytes of data.
Recoding was performed only on JPEG-images which represented 16 % of
the bytes. The different replacement algorithms were run over different cache
sizes.

Figure 1 shows the average download time of an object when using one
of four different replacement policies. LRU means a standard LRU, LRU-
SOFT refers to LRU with the access time modification (4), OPT-HARD is the
optimal replacement policy without the simulated soft access, i.e. working as
a hard replacement policy, and OPT-SOFT is the same policy with simulated
soft access, i.e. recoding images and increasing their reference counts.

The results show that even with the sub-optimal estimators, the optimal
replacement policy has the shortest average download time. Also the simple
modification to LRU yields a shorter download time than stock LRU. As
cache size increases, any cache can hold all of the cacheable traffic, thereby
the gains disappear.

More results are available on our web site [5] and more will be made avail-
able as they are generated. This web site also contains a patch for the Squid

Download Time
0.74 T T T

+——+ LRU

6—=o LRU-SOFT]
v--—v OPT-HARD
0721 #— — % OPT-SOFT| {

Download time as percentage of maximum

L L L L L
0.05 0.1 0.15 0.2 0.25
Relative Cache Size

Figure 1: Relative gain in download time

proxy to make 1t operate as a soft cache.

References

(1]

(2]

J. Kangasharju, Y. Kwon, and A. Ortega. Design and implementation of a soft
caching proxy. In 3rd WWW Caching Workshop, Manchester, UK, June 1998.

A. Ortega, F. Carignano, S. Ayer, and M. Vetterli. Soft caching: Web cache
management for images. In IEEFE Signal Processing Society Workshop on Mul-
timedia, Princeton, NJ, June. 1997.

A. Ortega, Z. Zhang, and M. Vetterli. A framework for the optimization of a
multiresolution remote image retrieval system. In Proc. of Infocom, Toronto,
June. 1994.

J. Shim P. Scheuermann and R. Vingrale. A case for delay-conscious caching of

web documents. In Proc. Intl. WWW Conf, Santa Clara, CA, Apr. 1997.
Soft Caching Project Page. http://sipi.usc.edu/ ortega/softcaching/.
Squid Home Page. http://squid.nlanr.net/squid/.

C. Weidmann, M. Vetterli, A. Ortega, and F. Carignano. Soft caching: Image
caching in a rate-distortion framework. In Proc. of ICIP, Santa Babara,CA,
Oct. 1997.

R. P. Wooster and M. Abrams. Proxy caching that estimates page load delays.
In Proc. Intl. WWW Conf, Santa Clara, CA, Apr. 1997.

X. Yang and K. Ramchandran. An optimal and efficient soft caching algorithm
for network image retrieval. In Proc. of ICIP, Chicago, 1L, Oct. 1998.

