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Abstract

A fundamental paradigm in P2P is that of a large
community of intermittently-connected nodes that co-
operate to share files. Because nodes are intermittently
connected, the P2P community must replicate and re-
place files as a function of their popularity to achieve
satisfactory performance. We develop a suite of dis-
tributed, adaptive algorithms for replicating and replac-
ing content in a P2P community. We do this for struc-
tured P2P communities, in which a distributed hash
table (DHT) overlay is available for locating the node
responsible for a key. In particular, we develop the
Top-K MFR replication and replacement algorithm,
which can be layered on top of a DHT overlay, and
in addition adaptively converges to a nearly-optimal
replication profile. Furthermore, we evaluate the file
transfer load caused by the adaptive algorithms on each
peer, and present two approaches for achieving a better
load balance. Our evaluation shows that with our two
algorithms, an arbitrary load distribution is possible,
hence allowing each peer to serve requests at the rate it
wishes.

1 Introduction

One of the most popular uses of the Internet to-
day is P2P file sharing of multimedia content. Popular
P2P file sharing systems, such as eDonkey, Gnutella2,
and FastTrack, support millions of simultaneous users,
and provide sharing of a variety of file types, including
large multimedia files such as MP3s (typically in 3-6
Mbyte range) and increasingly more and more videos
(ranging from 5 Mbytes to multiple Gigabytes) [1, 2].
Today, P2P file sharing is the dominant traffic type in
the Internet, exceeding that of all other applications,
including the Web [3].

The file sharing systems Gnutella and FastTrack

are often referred to as “unstructured” P2P systems
because (i) the nodes are not organized into highly-
structured overlays, and (ii) content is (essentially)
randomly assigned to nodes. Because content is ran-
domly assigned to nodes, such P2P systems must use a
limited-scope search for finding content. Furthermore,
such systems do not attempt to replicate content in a
manner that is beneficial to the system.

In contrast to the “unstructured” P2P systems,
structured P2P systems, such as CAN [8], Chord [9],
Pastry [7], and Tapestry [12], use distributed hash table
(DHT) substrates, which organize nodes into highly-
structured overlay networks and which deterministi-
cally assign keys to nodes. A DHT overlay can serve
as a platform for a variety of P2P applications, includ-
ing persistent file storage [4], multicast [5], and Web
caching [6]. DHT overlays are also compelling plat-
forms for P2P file sharing of multimedia content, since
they can provide efficient file location procedures.

In this paper, we address the problem of content
management in DHT-based P2P file-sharing commu-
nities. The content management problem consists of
deciding how many copies of each object should be
stored in the community and on which nodes in the
community should those copies be placed. Our focus is
in on the sharing of large audio and video files in well-
connected communities, such as campuses. We assume
the nodes in the community are part of a DHT-based
overlay network. Throughout, we make the natural as-
sumption that intra-community file transfers occur at
relatively fast rates as compared with file transfers into
the community.

The essence of our problem is to adaptively manage
content in a P2P community to minimize the average
download delay, which we define as the time from when
a node makes a query for a file until the node receives
the file in its entirety. Because the file transfer delay
is typically orders of magnitude larger than lookup de-
lays, and because intra-community file transfers occur
at relatively fast rates, our problem is, for all practical



purposes, equivalent to adaptively managing content
to maximize intra-community hit rates.

The main challenge in the content management
problem lies in designing an algorithm that is simple,
decentralized, adaptive, and converges to the optimal
content placement. The problem of designing such a
content management algorithm consists of three im-
portant issues: replication, file replacement, and load
balancing. Because nodes connect to and disconnect
from the community, content needs to be replicated in
the community to provide satisfactory hit rates. Nat-
urally, popular content needs more replicas than un-
popular content. At the same time, content should not
be excessively replicated, wasting bandwidth and stor-
age resources. Each participating node has a limited
amount of storage that it can offer to the community.
When this storage fills at some node, the node needs to
determine which files it should keep and which it should
evict. Because some files are more popular than others,
nodes storing these files can encounter a much higher
load than nodes storing less popular content. Load bal-
ancing mechanisms are needed to ensure that the load
is balanced as evenly as possible across all the nodes.

The principal contribution of this paper is a series
of algorithms for dynamically replicating and replac-
ing files in a P2P community. These algorithms make
no a priori assumptions about file request probabili-
ties or about nodal up probabilities. They are there-
fore appropriate for when file request probabilities are
changing over time and new files are being introduced
in the system daily. The algorithms are simple, adap-
tive and fully distributed. They can ride on top of
any of the DHT overlays (e.g., [7–9, 12]). We devise
an algorithm, called Top-K Most Frequently Requested
Replication Algorithm (Top-K MFR), which through
simulation analysis is shown to give remarkably good
performance—nearly optimal for all tested scenarios.

A second important contribution of this paper is
an evaluation of the load balancing properties of our
adaptive algorithms. As our evaluation shows, the load
caused by the basic algorithms can be heavily concen-
trated on a few nodes, we develop two additional load
balancing mechanisms: fragmentation and overflow ap-
proach. The fragmentation approach allows us to per-
form a general load balancing, thus making the load
uniform across all the peers. The overflow approach al-
lows individual peers to deviate from this “fair share”
if they do not have enough resources. Our evaluation
shows that the two mechanisms together allow us to
reach a well-balanced load with little adverse effects.

This paper is organized as follows. Section 2 re-
views related work. Section 3 discusses structured P2P
communities. In Section 4 we propose and analyze

distributed content management algorithms, including
Top-K Replication Algorithm and Top-K Most Fre-
quently Requested Replication Algorithm. In Section 5
we evaluate the load balancing properties of our algo-
rithms and propose two algorithms for balancing the
load. In Section 6 we conclude and discuss future di-
rections.

2 Related Work

A P2P community can also be viewed as a dis-
tributed P2P cache for caching large multimedia files.
Squirrel [6] is a recent proposal and implementation
of a distributed, serverless, P2P Web caching system.
Squirrel, which is built on top of the Pastry [7] DHT
overlay, has been carefully designed to serve as an alter-
native for a traditional Web proxy cache. While such
detailed protocol design and implementation issues are
clearly important, the work [6] has not focused on the
fundamental issues of replication and file replacement
in a P2P community. Furthermore, the focus of [6] is
on Web objects, whereas the focus of this paper is on
large multimedia files, which account for the majority
of the traffic in today’s file sharing systems.

FarSite [15] (see also [16, 17]) is a P2P file system
with the strong persistence and availability of a tra-
ditional file system. The FarSite filesystem uses the
same number of replicas – three – for each file. In con-
trast with a file system, the goal of a P2P community
is not to provide strong file persistence, but instead,
maximal content availability. Thus, in a P2P commu-
nity, the number of replicas of a file depends on the
popularity of the file.

Lv et al [10] and Cohen and Shenker [11] studied op-
timal replication in an unstructured peer-to-peer net-
work in order to reduce random search times. Our
work differs in that we are replicating content in struc-
tured, DHT-based networks, and we take intermittent
connectivity explicitly into account. Furthermore, we
replicate to decrease average file transfer time rather
than to decrease the random search time in an unstruc-
tured P2P system.

3 Structured Communities

As an example of a P2P file-sharing community, con-
sider a university campus network. The peers in a
campus are typically interconnected with a high-speed
LAN, and the high-speed LAN is connected to the
global Internet via a lower-speed access link. Currently,
the peers within a campus do not organize themselves
as a P2P community: the peers in the campus inde-
pendently retrieve the same popular music and video



content from peers outside the campus, clogging the
access links and wasting peer storage. The university
campus could make more efficient use of its resources
(WAN bandwidth and peer storage) if the peers were
organized in a P2P community. As a P2P community,
the peers in the campus would collectively maintain a
managed number of copies of files, and would attempt
to retrieve files internally before retrieving them from
outside the campus.

A second example of a P2P file-sharing community
is a content-distribution booster, for example, for the
distribution of video training content in a large cor-
poration. The videos are permanently archived in a
small number of servers, which collectively do not have
enough aggregate server and/or transmission capacity
to serve all the users in the corporation. By organiz-
ing all the corporate nodes into a P2P community,
the P2P community serves as a front-end surrogate
for video distribution. Popular videos would often be
downloaded (or streamed) from other corporate peers,
thereby relieving the burden on the archival servers.

3.1 DHT Overlays

We assume that each community is built on a DHT
overlay. Each node has a persistent identifier, which
is assigned when the node initially subscribes to the
application (assigned by the DHT). We assume that
each node has access to a DHT substrate which has
a function call that takes as input a file identifier j
and determines an ordered list of the up nodes. The
substrate then returns, for a given value of K, the first
K nodes on the list, i1, i2, . . . , iK . The node i1 is said
to be the current first place winner for file j; the node
i2 is said to be the current second-place winner for file
j, and so on. Any current DHT substrate, like CAN,
Chord, Pastry, or Tapestry, already provides the first-
place winners and can easily be extended to provide
the top K winners.

4 Adaptive Algorithms for Content

Management in P2P Communities

As discussed in Section 1, a P2P community is
a large community of intermittently-connected nodes
that cooperate to share content. The nodes in the com-
munity could be workstations, desktop PCs, portable
PCs, etc.Each participating node allocates some shared
storage to the P2P community. (The nodes also have
private storage, which is not accessible by the other
nodes in the community.) We suppose that the files
in a node’s shared storage are not lost when a node
disconnects.

As mentioned above, a natural performance measure
is average delay, where delay is defined as the delay to
locate and to download a file. Because our focus is
on large files, the delay is dominated by the download-
ing component. Because intra-community file transfers
occur at relatively fast rates, the downloading delay is
directly correlated to the probability of finding the file
within the community, that is, the intra-community
hit probability. Henceforth, our optimization criterion
is to maximize the hit probability1.

4.1 Optimal Replication Algorithms

In our previous work [18], we have developed an
analytical optimization theory for replication in P2P
communities. This replication theory allows us to de-
termine the optimal hit-rates and replica profiles both
for complete-file replication as well as for segmented-
file replication in which erasure codes are used to pro-
vide redundancy. For the general case with erasures,
we have derived an upper bound on the performance
of all adaptive schemes. For complete-file replication,
we have shown that an explicit logarithmic assignment
rule is optimal.

This optimization theory allows us to benchmark
our adaptive algorithms. As mentioned in [18], the
optimization problem is NP-complete, but in the case
where the peer up probabilities are homogeneous, the
problem can be solved with dynamic programming.
Hence, in the following we will concentrate on this case,
since it allows us to benchmark our adaptive algorithms
and evaluate how close to the optimal policy they are.

4.2 Top-K Replication Algorithm

We now begin to address the following fundamental
problem in structured P2P systems: How can we adap-
tively add and remove replicas, in a distributed manner
and as a function of evolving demand, to maximize the
hit probability?

Our approach is to couple the file location provided
by the DHT overlay with on-the-fly replication and re-
placement. The basic idea is as follows. When there
is a request for a file j, the community uses the DHT
overlay to search for a replica in the community; if the
community does not find a replica, a new replica of j is
obtained and stored in the current first-place node for
j and a replica of another file is (possibly) evicted from
the node. This simple idea is at the core of our adap-
tive algorithms. However, we shall see that a naive ap-
plication of the idea gives unsatisfactory performance,

1The algorithms developed in this paper are easily modified
also for byte hit performance.



but that a collection of subtle, yet critical, refinements
provide near-optimal performance.

We begin with a simple, intuitive adaptive algo-
rithm. Suppose X is a node that wants file j. X will
obtain j as follows:

Basic Replication Algorithm

1. X uses the overlay to determine i1, the current
first-place winner for j.

2. X asks i1 for j. If i1 doesn’t have j (a “miss”
event), i1 retrieves j from outside the community
and puts a copy in its shared storage. If i1 needs
to evict a file to make room for j, i1 uses the LRU
replacement policy.

3. i1 sends j to X (either for streaming or for down-
loading into X ’s private storage). Note that X
does not put j in its shared storage unless X = i1.

One obvious problem of the Basic Replication Algo-
rithm is that a request can be a “miss” even when the
file is cached in some up node in the community. In-
deed, suppose file j is cached at the first-place winner
and then, just prior to a request for file j, a new node
comes up which becomes the new first-place winner for
j. Then the Basic Replication Algorithm will retrieve
file j from the outside even though it is cached in the
community. Suppose that j is cached at its first-place
winner and prior to the next request, a new node comes
up and becomes the new first-place winner. The Basic
Replication Algorithm would then retrieve j from the
outside. To mitigate this problem, we modify the Ba-
sic Replication Algorithm as follows. In Step 2, when
i1 doesn’t have j, i1 determines i2, . . . , iK and pings
each of these K − 1 nodes to see if any of them have
j. If so, i1 retrieves j from of them and puts a copy
in its shared storage. Otherwise, i1 retrieves j from
the outside. We refer to this modified algorithm as the
Top-K Replication Algorithm.

Observe that the Top-K Replication Algorithm
replicates content without any a priori knowledge of
file request patterns or node up probabilities, and is
fully distributed. Although it is still possible that there
will be a miss when the desired file is in some up node
in the community, we will show that if K is appro-
priately chosen, the probability of a miss is negligibly
small. In the Top-K Replication algorithm, if i1 finds
file j in any of the nodes i2, . . . , iK , it is better for i1 to
copy j instead of simply storing a pointer to it. This
is because i1, as the first place winner, will receive all
requests for j until it goes down (or a new first place
winner emerges). If i1 only has a pointer to the node
with j and that node goes down, file j may be lost to

the community. If there are several nodes which have a
copy of the object, then i1 could defer the copying un-
til only a small number of copies remain, however, this
would mean increased ping traffic since i1 would have
to ping all the other winners for every single request.

To determine the hit performance of our adaptive
algorithms, we have run simulation experiments with
100 nodes and 10,000 files. Studies in caching and P2P
have consistently confirmed that request probabilities
follow a Zipf distribution [13,14]. Our simulations also
use a Zipf distribution with parameters .8 and 1.2 [14].

In the simulation experiments reported here, all file
sizes are of the same size. (We also did extensive ex-
periments with heterogeneous file sizes and obtained
similar results.) Because all files are of the same size,
the byte hit probability is equal to the hit probability.
In the simulation experiments reported here, each node
contributes the same amount of shared storage to the
community. (We also did extensive experiments with
heterogeneous storage, and obtained similar results.)
Our experiments run from 5 files per node to 30 files
per node2.

As mentioned in Section 4.1, the theoretical opti-
mal replication policy and corresponding upper bound
are feasible to calculate only when the node up prob-
abilities are homogeneous, i.e., all nodes behave the
same way. Up probability denotes the probability that
a node is up at a given time; it is also the fraction of
time that a node is up in the long run. Our simulations
are discrete-event simulations and the up probabilities
determine the time intervals during which the nodes
are up or down. Even though we use homogeneous up
probabilities, each node behaves individually, but the
long-run fraction of time a node is up is the same for
all nodes.

Figure 1 shows four graphs, one for each of the com-
binations of Zipf parameter and up probabilities. Each
graph plots hit probabilities as a function of node stor-
age. The top curve in each of these figures is an up-
per bound obtained from the techniques in [18]. Each
figure has a curve for K = 1 (Basic Replication Al-
gorithm) and K = 5 (Top-K Replication Algorithm
with K = 5). The bottom curve is the hit probability
for when the nodes do not cooperate. For the non-
cooperative policy, each node again uses LRU cache
replacement and uses the same amount of local storage
as they would contribute to the community. The fig-
ure also includes curves for the MFR algorithm, which
will be discussed shortly. We make the following ob-
servations. First, as we would intuitively expect, the

2Note that we are considering large files, such as DVD videos,
and a node with even 100 GB of storage would not be able to
store many such videos.



hit probability increases if we increase the node stor-
age capacity, Zipf parameter, or the nodal up prob-
ability. Second, the adaptive algorithm with K = 1
performs significantly better than the non-cooperative
algorithm, but significantly worse than the theoretical
optimal. Third, using a K value greater than 1 im-
proves the hit probability, especially when nodes are
frequently down. Further increasing K beyond K = 5
gives insignificant improvement.

Examining the number of replicas for each file pro-
vides important insight. Figure 2 shows, as a func-
tion of file popularity from most popular to least pop-
ular, the number of replicas per file for the theoreti-
cal optimal and for the Basic Replication Algorithm
with K = 1. For the adaptive algorithm, the number
of replicas per file is changing over time; the graphs
therefore report the average values. The theoretical
optimal number of replicas per file is obtained with the
techniques in [18].The difference in how the theoreti-
cal optimal and the adaptive algorithm replicate files
is striking. The optimal scheme replicates the more
popular files much more aggressively than the adap-
tive algorithm. Furthermore, the optimal scheme does
not store the less popular files, whereas the adaptive
algorithm provides temporary caching to the less pop-
ular files.

4.3 Top-K Most Frequently Requested
Replication Algorithm

The Top-K Replication algorithm is simple and in-
tuitive, but its performance is significantly below the
theoretical optimal. We can make the following two
observations. LRU replacement policy lets unpopular
files linger in nodes. When an unpopular file is re-
quested, it gets stored in one of the nodes and remains
there until it is evicted by LRU. Intuitively, if we do
not store the less popular files, the popular files will
grab the vacated space and there will be more repli-
cas of the popular files. Searching more than one node
(that is, the top-K procedure) is needed to find files in
the aggregate storage.

Based on these observations, we will now devise a
new adaptive algorithm that has near optimal perfor-
mance. To this end, we introduce the Most Frequently
Requested (MFR) replication and replacement policy:

MFR retrieval and replacement policy

In the MFR policy each node i maintains a table
for all files for which it has received a request. For a
file j in the table, the node maintains an estimate of
λj(i), the local request rate for the file. In the sim-
plest form, λj(i) is the number of requests node i has
seen for file j divided by the amount of time node i

has been up. In practice, we would likely weigh recent
requests more heavily in the online calculation of λj(i).
Also, note that ideally the table would contain an en-
try for all objects for which i has received a request;
in practice the size of this table could be easily limited
to, say, a few thousand most frequently requested ob-
jects without any impact on performance (recall that
because of the large size of objects we are considering,
a node would typically only be able to store a very
small number of objects). Each node i stores the files
with the highest λj(i) values, packing in as many files
as possible. As we show in [18], objects with different
sizes should be ordered according to λj(i)/bj , where bj

is the size of object j.
When node i receives a request (from any other

node) for file j, it updates λj(i) and checks if it cur-
rently has j in its storage. If i doesn’t have j and MFR
says it should3, then i retrieves j from the outside, puts
j in its storage, and possibly evicts one or more files
from its storage according to MFR4.

Now that we have defined the retrieval and replace-
ment policy, we need to define the ping dynamics. We
want the ping dynamics to influence the rates so that
the numbers of replicas across all nodes become nearly
optimal. One approach might be for the requesting
node X to ping the top-K winners in parallel, and then
retrieve the file from any node that has the file. Each of
the pings could be considered a request, and the nodes
could update their request rates and manage their stor-
age with MFR accordingly. But it turns out that this
approach does not give better performance than Top-K
Replication Algorithm.

It turns out that the correct approach is for X to se-
quentially request j from the top-K winners, and stop
the sequential requests once j is found. Sequential re-
quests influence the locally-calculated request rates in
a manner such that the global replication is nearly op-
timal. In particular the value of λj(i) at any node i
will be reduced (or “thinned”) by hits at “upstream”
higher-placed nodes for j. We now summarize the al-
gorithm. Suppose X wants file j. Initialize k = 1.

Top-K MFR Algorithm

While k ≤ K and X has not obtained j:

1. X uses overlay to determine i, the kth place winner
for j.

2. X requests j from i. Then, node i updates λj(i). If
node i already has j, node i sends j to X ; stop. If

3If node i has storage for n objects, then i would store the n

objects with the highest λj(i).
4Node i could retrieve j from the outside, or it could ping the

remaining internal winners for the file. (Such pings do not count
as requests for j.)
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Figure 1. Hit probability as function of node storage capacity

node i does not have j but it should (according to
MFR), i gets j, stores j and evicts files if necessary.
Node i sends j to X .

3. k = k + 1

If after K iterations, X still does not have j, X gets
j from the outside directly (but does not put j in its
shared storage). Note that asking the top-K winners
sequentially will increase the delay of locating the ob-
ject (or determining that it is not available). However,
since the objects are large, the download delay domi-
nates the total delay experienced by the user and the
delay to locate the object is only a fraction of the total
delay. In addition, downloads within the community
typically happen at a much faster rate than from out-
side the community; hence, it pays off to ask the K
winners within the community, even sequentially. In
practice it is likely that the delay caused by contact-
ing K peers in the community would be negligible and
completely unnoticeable by the user.

Figure 3 shows, as a function of file popularity, the
number of replicas per file for the theoretical optimal
and for Top-K MFR Algorithm with K = 5. We see
that, in contrast with Basic and Top-K Replication

Algorithms, the number of replicas given by the MFR
algorithm is very close to the optimal. In fact for most
files, the number of replicas given by the Top-5 MFR
algorithm is equal to the optimal; a small fraction of
files are off by one replica from the optimal. Figure 1
compares the hit rate of MFR (with K = 1 and K = 5)
with the Basic and Top-K Replication Algorithms and
with the optimal hit rate. We see that the MFR al-
gorithms give hit rates that are very close to optimal
over the entire parameter space considered. Again, we
have observed similar results with heterogeneous file
sizes, nodal storage capacities, and nodal up probabili-
ties, and with smaller and larger Zipf parameters. The
small differences between MFR and optimal replica-
tion/replacement are due to imperfect load-balancing
in the DHT overlay and to sub-optimal packing of non-
constant-size files into the nodes’ storage. In conclu-
sion, the Top-K MFR algorithm is a fully-distributed,
adaptive content management algorithm that is, for all
practical purposes, optimal for DHT-based file sharing
systems.
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Figure 2. Number of replicas per file with 10 files of per-node storage capacity, Basic Replication
Algorithm with LRU replacement policy

5 Hot Spots

Up until this point our focus has been on manag-
ing content to maximize the probability of having a hit
in the community. However, consider the case when a
very popular object j has a first-place winner i that
is almost always up. In this case, the adaptive algo-
rithms will only create one copy of object j, which will
be permanently stored on peer i. If the demand for this
object is very high, then peer i will become overloaded
with file transfers. In this section we present two algo-
rithms for solving the hot-spot problem and evaluate
their performance.

5.1 Fragmentation Approach

In what we call the fragmentation approach, we
break each file into several fragments or chunks which
are given unique names and stored individually in the
DHT. In order to retrieve the file, a peer must retrieve
all the fragments. We do not consider erasures in our

evaluation, that is, we simply fragment a file into K
chunks and each chunk must be retrieved (either from
inside or outside the community). Because the frag-
ments of a popular file are likely to stored on differ-
ent peers and the fragments are much smaller than the
original file, the file transfer load on the nodes becomes
more balanced.

We evaluated the fragmentation approach using the
same method as in Section 4. In addition to the param-
eters defined there, we varied the number of fragments
from 1 to 80 per file5. Figure 4 shows the 90-percentile
of the per-peer load as a function of the up probability
for the two Zipf parameters. The y-axis represents the
load relative to the “fair share” of each peer. We calcu-
lated the fair share by assuming that each peer would
handle the same amount of traffic and compared the
actual loads to this value. A value of 2 indicates that
90% of the peers in the experiment had to serve more

5Typical fragment size is 256 KB, hence our range of frag-
ments covers a fair range of file sizes. Furthermore, as the re-
sults show, increasing the number of chunks can only improve
the balance.
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(a) Zipf parameter .8, from left to right node up probabilities .2 and .9.
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(b) Zipf parameter 1.2, from left to right node up probabilities .2 and .9.

Figure 3. Number of replicas per file with 10 files of per-node storage capacity and MFR replacement
policy with K = 5

than twice the number of files than their fair share was.

As a first observation, we can see that for Zipf 1.2
and 1 fragment (i.e., experiments in Section 4), the
load is severely unbalanced. However, as we increase
the number of fragments, the load balances itself quite
well, and even for Zipf 1.2 remains below 1.3.

Comparing figures 4(a) and 4(b), we see that with
Zipf 0.8, all the load curves increase monotonically with
the up probability. This is intuitive, since the more
peers are up in general, the more of the load they have
to handle. The load for Zipf 1.2 peaks earlier, at an
up probability of around 0.65–0.7. The results in Fig-
ure 4 are calculated after several long experiment runs
and we observed the same behavior for all larger Zipf-
parameter values.

We believe that the explanation for this is as fol-
lows. With higher Zipf-parameter values, the popular
files receive a large number of requests. This implies
that any peer, who is among the first few winners for
a popular object, is going to get a large number of
requests. Furthermore, up probabilities in the range

of 0.5–0.8 imply that peers are typically up, but not
enough to make the first-place winner get almost all
of the requests. In other words, the load of the most
popular objects is spread over several peers, which, in
turn, raises the 90-percentile of the load. The load of
the most heavily loaded peer typically increases mono-
tonically with the up probability, as can be expected
(not shown in the figure).

In summary, the fragmentation approach is very effi-
cient in balancing the load among the peers. The more
fragments there are, the better the load is balanced.

5.2 Overflow Approach

In our second approach, namely the overflow ap-
proach, individual peers can refuse to serve a request
which causes the request to be sent to the next winner,
or to the outside, as appropriate. Because peers are in-
dependent, an individual peer can use the overflow ap-
proach to lower its load by an arbitrary amount, hence
guaranteeing that a peer does not have to serve more
requests than it is capable. This guarantee allows us
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Figure 4. 90-percentile of per-peer load for
fragmentation approach

to state that the overflow approach (with or without
the fragmentation approach) can deliver us any load
distribution.

When a peer refuses to serve a request, another peer
has to serve it, or the file has to be retrieved from the
outside. Therefore, when a peer is using the overflow
approach, the load on other peers increases and/or the
hit-rate goes down. We now evaluate the effects of the
overflow approach according to these two metrics.

Pure Overflow Approach

In the pure overflow approach, we consider complete
files, i.e., files with only 1 fragment. We performed the
same experiments as in Section 5.1 and measured how
much the load increases on each peer. We then calcu-
lated the average of the increases in load and report it
in the figures.

We randomly determined a fraction of the peers and
each of these peers would then refuse a given percent-
age of the requests it receives. We varied the two per-
centages and report the values for 10 and 50% of the
peers refusing either 10 or 90% of the requests.

Figure 5(a) shows the increased load per peer as a
function of the up probability for the 4 combinations
and Zipf-parameter 0.8.The y-axis reports the addi-
tional load as a percentage of the old load that peers
have to handle on average as a direct result of the re-
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Figure 5. Increased load due to overflow ap-
proach for Zipf = 0.8

fusals. As we can see, when a small number of peers is
refusing a small number of requests, the overall effect
on the load is negligible, on the order of 1%. In the
worst case, half of the peers refusing 90% of the re-
quests, the additional load on the other peers is about
5–6%.

In summary, the overflow approach can be used to
reduce load, but for complete files this can imply an
increase of load by 6% when nodes have high up prob-
abilities.

Overflow and Fragmentation

We now turn to evaluating the overflow approach in
the case where files are fragmented. We use the same
parameters as in the above evaluation and Figure 5(b)
shows the results for the case of 30 fragments per file.
As the first observation, we can clearly see that the ad-
ditional load is less than 0.5% in all the cases. This is
because the fragments are relatively small (compared
to the case of complete files shown in Figure 5(a)) and
the additional load from the fragments is better dis-
tributed over the peers, since all fragments are individ-
ually stored on the peers.

Effect of Overflow on Hit-Rate

As mentioned above, the overflow approach in-
creases load on other peers, but can also decrease the
overall hit-rate of the community, if large enough num-

9



ber of peers is refusing a large amount of traffic.

We evaluated the decrease in hit-rate in the above
cases using the same storage sizes as in Section 4.

We observed that the refusals to serve traffic have
the same effect when we would reduce the amount of
storage in the nodes. In other words, if 50% nodes are
refusing 90% of the traffic, the community has roughly
the same hit-rate as a community which serves all the
traffic, but has only 55% of the storage of the com-
munity refusing traffic. The explanation behind this
is intuitive. If a peer refuses to serve a request, the
request gets passed to the next-place winner for the
object, who will then see a higher request rate for that
object. This increases the priority of that object in
the MFR algorithm and might kick a less requested
object out of the storage. This effect propagates along
all the nodes and causes the least requested objects to
be completely evicted from the community, thus effec-
tively reducing the amount of storage provided by the
community.

6 Conclusions

P2P file sharing is an enormously popular Inter-
net application and accounts for the majority of to-
day’s Internet traffic. Although today the popular file
sharing applications are “unstructured” designs, struc-
tured, DHT-designs will potentially improve search and
download performance.

One of the features of structured, DHT-based P2P
file sharing is that the application has significant con-
trol on where and how many replicas are generated.
The contribution of this paper is threefold. First, we
have proposed a suite of adaptive algorithms for repli-
cating and replacing files as a function of evolving file
popularity. In particular, we proposed the Top-K MFR
algorithm, which is a fully-distributed, adaptive, near-
optimal content management algorithm for DHT-based
file sharing systems. Second, we have introduced an
optimization methodology for benchmarking the per-
formance of adaptive management algorithms. The
methodology directly applies to networks whose nodes
have homogeneous up probabilities, and can be ex-
tended to heterogeneous environments. The methodol-
ogy applies to designs that use erasures. Third, we have
evaluated the load balancing properties of our replica-
tion algorithms and found that the basic algorithms re-
sult in a highly unbalanced load. We have proposed two
load balancing algorithms, fragmentation and overflow
approach, and have shown that they are very effective
at balancing the load among the nodes.
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