
Experiences with MundoCore

Erwin Aitenbichler Jussi Kangasharju Max Mühlhäuser
Telecooperation Department

Darmstadt University of Technology, Germany
{erwin,jussi,max}@tk.informatik.tu-darmstadt.de

Abstract

Pervasive Computing environments require new com-
munication and programming paradigms. In this pa-
per we present our experiences from the implementation
of MundoCore, a pervasive communication middleware.
MundoCore’s service discovery allows us to discover all
available services in the nearby environment, as our ex-
perimental results demonstrate. MundoCore offers different
programming paradigms, such as DOOP and Publish/Sub-
scribe. We show how a simple room-control application can
be programmed with the different paradigms, and we high-
light the advantages of the Publish/Subscribe paradigm.

1 Introduction

Pervasive computing environments introduce new chal-
lenges for communication architectures. Highly dynamic
environments require efficient mechanisms for discovering
devices and services, as well as efficient methods for com-
munication between them. Such environments also require
support for the programmer, in the form of new program-
ming abstractions for the new communication paradigms.

Consider a meeting, where there are several people, each
with her own devices. Usually, the participants will need to
interact with each other or the environment (e.g., exchange
files, or print something to the local printer). The funda-
mental step to enable these interactions is the discovery of
all available devices and services in the area.

In this paper we present our experiences in implement-
ing MundoCore, a pervasive computing middleware. We
explain our distributed test architecture used to verify the
correct behavior of the middleware core and its services.
MundoCore features a reliable discovery of all nearby de-
vices and services, and provides the programmer with use-
ful programming abstractions, e.g., Publish/Subscribe. We
present an example of the implementation of a room-control
application, both as a traditional, RPC-based implementa-
tion (as many programmers would likely do!), and also as

a MundoCore Publish/Subscribe implementation which en-
ables a cleaner and more feature-rich implementation.

The paper is organized as follows. In Section 2 we give a
short introduction into our middleware, followed by a brief
description of Related Work in Section 3. In Section 4 we
describe our architecture to run distributed tests. Section 5
discusses the discovery problem and we evaluate discovery
in MundoCore. In Section 6 we report experiences with
users and conclude the paper in Section 7.

2 MundoCore

Based on a structured view of pervasive distributed sys-
tems – the Mundo [4] Reference Architecture – we have de-
rived requirements for a communication middleware. These
can be clustered into the three following blocks:

Adaptivity to networks and platforms: In an environ-
ment where networks will be formed spontaneously, hosts
must be able to configure themselves automatically and
adapt to changing conditions. For example, Bluetooth de-
vices often require the user to perform a pairing procedure
with manual interaction. This will not scale to thousands of
sensors and computing devices expected to be embedded in
smart environments. Furthermore, devices must be able to
operate in isolation and cannot rely on an infrastructure to
be present. Many pervasive computing devices have only
very limited resources in terms of memory and processing
power, hence it is vital that the middleware is modular and
has a small memory footprint.

Multi-paradigm: The middleware should also be exten-
sible in terms of programming abstractions, allowing pro-
grammers to choose the most appropriate abstraction for the
task at hand. (See Section 6 for details.)

QoS: Especially in wireless networks, many application
domains require end-to-end quality of service (QoS) guar-
antees. The fixed Internet today is mainly based on a best-
effort strategy for all kinds of applications, because network
bandwidth is available in excess. Wireless bandwidth is
likely to remain a scarce resource in the near future for the
following reasons. First, wireless bandwidth is growing at

1



a much slower speed than processor capacity. Second, high
bandwidth implies high energy consumption or short radio
range (i.e., small cells). Third, coverage and quality of wire-
less networks is highly heterogeneous.

3 Related Work

Reconfigurable middleware (e.g. [1,5,6,8]) can adapt its
behavior to different environments and application require-
ments. Such middleware has additional interfaces allowing
applications to change the strategies for concurrency, re-
quest demultiplexing, scheduling, marshaling and connec-
tion management. In addition, monitoring is supported to
detect when adaptation should take place. Most of these
systems are focused on powerful reconfiguration interfaces
rather than on a fine-grained modular structure suitable for
resource-poor devices. Furthermore, they do not address
spontaneous networking. Notable exceptions are modu-
lar middleware approaches that specifically target Pervasive
Computing applications, like BASE [1] and UIC [8].

JXTA [7] technology is a set of open protocols that en-
able any connected device on the network, ranging from cell
phones and wireless PDAs to PCs and servers, to commu-
nicate and collaborate in a P2P manner. However, JXTA
comes with its own programming abstractions, and current
implementations lack ORB and QoS support.

4 Testing distributed applications

Implementations of abstract data types and smaller units
of frameworks can be successfully verified with unit tests.
However, to verify the correct behavior of a distributed
computing middleware, it is also essential to run tests with
distributed applications. To conduct such tests, we have im-
plemented a distributed script interpreter. A typical setup
is shown in Figure 1. Script server processes are manu-
ally started on different hosts in the network. The script
servers and the master script interpreter are also based on
MundoCore. This enables them to automatically discover
each other on startup.

To run a test, the name of an XML script file is passed to
the master interpreter. When the master interpreter encoun-
ters a execRemote instruction, it starts a new process on
a remote script server and passes the text contained in the
tag to the standard input of the remote process. The stan-
dard output of the remote process is passed back from the
remote script server to the master interpreter and written to
a log file. The shell return codes indicate if processes were
successful running their sub-tests. The master interpreter
considers a test run as successful, if all started sub-processes
terminated with the return code 0.

If the test processes are also based on MundoCore, script
server and test processes form two independent connection

Figure 1. Scripting architecture

graphs, as shown in Figure 1. There are no direct network
links between these two different kinds of programs. It is
particularly important that test processes form their own,
independent overlay network from scratch when testing au-
tomatic node and service discovery.

5 Discovery

In this section, we consider the so-called discovery prob-
lem. By this we mean the problem of finding all the avail-
able devices and services in the nearby environment. Our
focus is on discovering all the nearby nodes in a reliable
manner which will allow us also to discover all the services
on those nodes. The node discovery problem is based on the
following assumptions:

• We consider spontaneous networks without any cen-
tralized service registries or caches.

• If devices share a physical network connection, then
all services offered by them should be discoverable.

• In case of wireless network connections with high
packet loss, discovery should have an all-or-nothing
semantic. Either a node is fully integrated into the
group, or it does not get any access to remote services.

When programming ubiquitous computing applications,
it is desirable to build on top of a middleware that provides
reliable discovery of other network nodes and services. Our
aim is to give certain guarantees to applications regarding
quality of service discovery. The middleware should com-
pensate for imperfect behavior of the network and operating
system layers. Discovery protocols often use UDP packets
sent via IP broadcast or multicast. Networks do not guar-
antee correct delivery of UDP packets - they might get lost.
Loopback network drivers of certain operating systems vir-
tually drop all broadcast packets. This makes it impossible
for local processes to discover each other, if no real network
connection is present.



The following discussion focuses more on the practical
applicability of existing frameworks rather than on theoreti-
cal properties of algorithms and protocols. MundoCore has
been specifically optimized to deal with the discovery prob-
lem outlined above.

5.1 Discovery in MundoCore

Discovery in MundoCore is based on three concepts.
First, a node joining the network announces its presence
with IP broadcast messages. Second, the rendezvous via
the primary port ensures that all local processes are able to
discover each other. Third, neighbor messages are used to
propagate information about new nodes in the network.

One MundoCore process is always listening on the pri-
mary port which is a well known TCP port defined in the
configuration file. All nodes that participate in the same
overlay network are configured with the same primary port
number. When a MundoCore process is started, it tries to
allocate the primary port. This will fail if another Mundo-
Core process is already running on the same machine. In
that case, the process allocates any free port for listening
and connects to the primary port on the local machine. If
the connection to the primary port breaks, this means that
the process that held the primary port has shut down. When
this happens, the current process tries to allocate the pri-
mary port. Thus, if at least one MundoCore process is run-
ning on a machine, a process will listen on the primary port.

This discovery scheme is reliable and was necessary, be-
cause of the following issues with broadcast discovery:

• The behavior of UDP broadcasts over loopback net-
work interfaces is undefined. Especially on Windows
platforms, UDP broadcasts are often not forwarded to
local processes. Thus, local processes cannot discover
each other in absence of a real network interface.

• Limited scope of broadcasts. Broadcasts are usually
used only for the local subnet or are often filtered out
by gateways and firewalls. In that case, a node can
explicitly connect to a remote MundoCore node if it
knows the hostname or IP-address. Because a Mundo-
Core process is always listening on the primary port, it
can discover all nodes running on the remote machine.

MundoCore implements the following features to cope
with the described problems:

Zero configuration: MundoCore features true zero-
configuration in cases where all processes share a network
connection. Port numbers are automatically assigned.

Reliable local discovery: Discovery of processes on the
local machine can entirely rely on reliable (TCP) connec-
tions in MundoCore. This enables discovery to work prop-
erly even when the loopback interface driver does not prop-
erly forward broadcast packets.

Figure 2. Performance comparison

Connections to hosts in other domains: Since Mundo-
Core guarantees that a process is listening on the primary
port if at least one process runs on a machine, it is possible
to connect to remote machines in other domains by know-
ing the hostname or IP address. Neighbor messages then
propagate information about this new link and can connect
processes across multiple domains.

Buffering: Correct semantics of the Publish/Subscribe
system at a higher layer is guaranteed even in presence of
network delays or delays caused by high system load. This
is implemented by means of buffering subscriptions and
messages for a certain period of time, which is given by
the maximum expected network delay plus some tolerance.

5.2 The Test Program

Each instance of the test program receives its number
(rank) and the total number of processes as parameters.
The program then advertises a communication endpoint us-
ing a name generated from its rank (“client1”...“client32”)
and listens for incoming messages. Next, the program at-
tempts to discover the endpoints of all other clients. Fi-
nally, it sends a message to each endpoint. On reception of
a message, this event is written to a log file together with
a timestamp. This shows how many communication end-
points could successfully be discovered and used. Further-
more, the timestamps offer a performance comparison.

The test program uses channel-based Publish/Subscribe.
Each instance subscribes to the channel with the same name
as its own and publishes a message to each other channel.

5.3 Performance Comparison

The tests were conducted on 4 machines running SuSE
Linux 9.1 connected via GBit-Ethernet. On each machine,
8 processes were started. This gives a total of 32 processes
and 992 discovery operations and message passes. Figure 2
shows a performance comparison of the Java and C++ ver-
sions of MundoCore. The graph shows time on the x-axis
and the number of successful message passes on the y-axis.



Because the peer-to-peer framework JXTA also features
automatic discovery and is available on the Web, we chose
to also run comparison tests with JXTA. Our first results in-
dicate, that the performance of MundoCore is considerably
better and JXTA is only able to discover about 80% of the
communication channels, i.e. pipes.

A major drawback of JXTA for Pervasive Computing ap-
plications is, that it lacks zero-configuration capabilities. It
is basically designed for running only a single process per
machine and brings up a GUI on the first start of each pro-
cess where the user has to manually assign port numbers, a
client name and create an administrator account.

6 Programming Abstractions

The two most relevant programming abstractions sup-
ported by MundoCore are Publish/Subscribe and distributed
object-oriented programming.

In the Publish/Subscribe paradigm, Subscribers express
their interest in an event and are notified of any event, gener-
ated by a publisher, which matches their registered interest.
An event is asynchronously propagated to all subscribers
that registered interest in that event. The strength of Pub-
lish/Subscribe is in the full decoupling in time, space and
synchronization between publishers and subscribers [2].

Content-based Publish/Subscribe is especially useful for
processing and distributing context information. It decou-
ples the sensors which provide information from higher-
level software which makes decisions about what to do with
the information. Sensors generate events which they then
publish on a channel. There can be one or more sensors
publishing on a single channel. The best solution for each
particular case depends on the details, such as how many
sensors are involved, where they are placed, etc. Content-
based filters allow services to define subscriptions that span
multiple sensors as sources while filtering for a certain as-
pect, e.g., “Report all sightings of badge X in any room”.

At the heart of distributed object computing middleware
are Object Request Brokers (ORBs), which eliminate many
tedious, error-prone, and non-portable aspects of develop-
ing and maintaining distributed applications using low-level
network programming mechanisms. In particular, ORBs
automate common network programming tasks such as ob-
ject location, object activation, parameter marshaling/de-
marshaling, socket and request demultiplexing, fault recov-
ery, and security. Thus, ORBs facilitate the development
of flexible distributed applications and reusable services in
heterogeneous distributed environments. [6]

6.1 Experiences with Users

We have observed that programmers starting to use
MundoCore first try to solve problems with the program-

Figure 3. Room control applet

ming abstractions they are used to from using other frame-
works. In most cases, they make use of RPC-based designs,
where the Publish/Subscribe paradigm would be better. In
the following, we describe two different implementations of
a room-control application. The first design was made by a
MundoCore “newbie” based on RPC. The second design
shows a better solution based on Publish/Subscribe.

6.2 Room Control

Our meeting room is equipped with several wall displays
and projectors. A number of computers are used to drive the
displays and host application services. Our demo applica-
tions typically use an overlapping subset of devices in the
room. Our aim is that we want to be able to start a certain
demo with a single click. All involved devices should be
automatically configured. To control devices in the room,
services to control smart power plugs, projectors, and com-
puters have been developed.

6.3 RPC-based Control Panel

The control panel application discovers the available de-
vice control services. For each discovered device, a visual
component is displayed (Figure 3). The application allows
to change device settings, like turning devices on and off.
The first version of this program was a straightforward im-
plementation based on RPC.

At program startup, the control panel application discov-
ers available services. It then calls methods of the respec-
tive service to get the current state and updates the visual
controls accordingly. When the user changes a setting, a
method is called on the service. Because multiple control
panel applications might be running, each program periodi-
cally polls the service to get the current state.

This implementation has two major drawbacks. First, the
method calls to change settings on devices are blocking and
report if the operation was successful in the return value.
Some method calls can take between 3 and 20 seconds. For
example, to turn a plug on a smart power plug on or off
takes about 3 seconds. This is because the power plug is
controlled via an embedded web server and the MundoCore



service has to build HTTP requests and parse HTML pages
during interaction with the switch. These blocking method
calls also lead to a blocking behavior of the user interface.

Second, this implementation uses polling to reflect
changes made by other clients. A better way to make these
updates would be to use Remote Listeners. However, in
this case the service implementations would have to do the
necessary Listener bookkeeping by themselves. The next
section shows how this program can be implemented in a
better way using the event-based paradigm.

6.4 Event-based Control Panel

Like the RPC-based application, the available device
control services are first discovered. Then, a channel name
is obtained from the service with an RPC call. Each ser-
vice has a separate channel that it shares with all its clients.
This channel serves as a back-channel that is used to deliver
events from the service to its clients.

Clients send requests to a service by means of one-way
RPC calls. Once a service receives such a request, it im-
mediately emits a confirm message, indicating that it has
started to perform the requested action. To emit this mes-
sage, the service makes an one-way call to a client-side Stub
which then generates the message and publishes it to the
common back-channel. This reply message may also con-
tain the estimated time it will take to complete the action.
When the action is finished, the service emits a done mes-
sage, indicating that the action has been performed.

The control panel clients listen for messages on the back-
channel and use a server-side Stub for demultiplexing and
dispatching. If a confirm message is received, the client
produces a visual feedback showing the user that an action
was started. For example, power buttons change their colors
to dark green indicating that they are about to be turned on.
If the client receives a done message, it updates the display
to reflect the new state. For example, power buttons change
their colors to light green.

By using Publish/Subscribe together with Stubs, we do
not lose type-safety when switching to an event-based pro-
gramming paradigm. The client-side and server-side Stubs
are automatically generated by a proprietary precompiler.

7 Conclusion and Outlook

In this paper we described the distributed test archi-
tecture we are using to verify the correct behavior of our
MundoCore middleware and applications built on top of it.
Simple tests can be directly programmed in an XML-based
scripting language. More complex tests are natively pro-
grammed in Java or C++ and the script interpreter is used to
distribute, start and monitor the test processes.

However, there are still many open questions in the area
of testing, monitoring, and debugging of distributed appli-
cations. Debugging of applications that just make use of
synchronized RPC is not difficult, because the processes are
tightly coupled and their program flows are synchronized.
When communication processes are decoupled in time and
space, as in pervasive computing, debugging requires ad-
ditional tools. This issue has already been investigated in
parallel computing, but debugging tools for parallel sys-
tems are tailored for communication libraries like MPI [3]
and cannot be directly applied to Pervasive Computing. The
most annoying question in debugging event-based applica-
tions is: “Why did I NOT receive event X?”.

We have also described a typical discovery problem and
argued that middleware should provide guarantees to ap-
plications regarding the quality of service discovery. We
showed that MundoCore provides reliable discovery and
compared the performance of the Java and C++ implemen-
tations. We are planning to apply these tests also to other
communication frameworks in our future work.

We further discussed our experiences on what program-
ming abstractions are used by programmers in MundoCore.
We found that RPC is often used in places, where the event-
based paradigm would be better. To date, event-based pro-
gramming is widely used in GUI toolkits and media pro-
cessing libraries. We think that tutorials, code samples,
and design patterns have to be provided with MundoCore to
make programmers aware of the advantages of event-based
programming in communications.

References

[1] C. Becker, G. Schiele, H. Gubbels, and K. Rothermel. BASE:
A Micro-Broker-Based Middleware for Pervasive Comput-
ing. In Proc. of IEEE PerCom’03, pages 443–451, 2003.

[2] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The
Many Faces of Publish/Subscribe. ACM Computing Surveys,
35(2):114–131, June 2003.

[3] M. Forum. The Message Passing Interface Standard.
http://www-unix.mcs.anl.gov/mpi/.

[4] A. Hartl, et al. Engineering Multimedia-Aware Personal-
ized Ubiquitous Services. In IEEE Symposium on Multimedia
Software Engineering, pages 344–351, 2002.

[5] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek. Mobile Com-
puting with the Rover Toolkit. IEEE Transactions on Com-
puters, 46(3):337–352, 1997.

[6] F. Kon, et al. Monitoring, Security, and Dynamic Configura-
tion with the dynamic TAO Reflective ORB. In Middleware
2000, 2000.

[7] Sun Microsystems. JXTA.
http://java.sun.com/othertech/jxta/index.jsp.

[8] M. Roman, F. Kon, and R. Campbell. Reflective Middleware:
From Your Desk to Your Hand. IEEE Distributed Systems
Online Journal, 2001.


