
Engineering Intuitive and Self-Explanatory Smart Products

Erwin Aitenbichler, Fernando Lyardet, Gerhard Austaller,
Jussi Kangasharju, Max Mühlhäuser

Telecooperation Group, Department of Computer Science
Darmstadt University of Technology, Germany

{erwin,fernando,gerhard,jussi,max}@tk.informatik.tu-darmstadt.de

ABSTRACT
One of the main challenges in ubiquitous computing is mak-
ing users interact with computing appliances in an easy and
natural manner. In this paper we discuss how to turn or-
dinary devices into Smart Products that are more intuitive
to use and are self-explanatory. We present a general archi-
tecture and a distributed runtime environment for building
such Smart Products and discuss a number of user inter-
action issues. As an example, we describe our smart coffee
machine and its validation through systematic user testing.

Categories and Subject Descriptors
C.3.h [Computer Systems]: Ubiquitous Computing; D.2.11
[Software Engineering]: Architectures; H.5.2 [Information
Systems]: User Interfaces

General Terms
Smart Products

Keywords
Smart Products, Ubiquitous Computing, User-centered de-
sign

1. INTRODUCTION
The vision of ubiquitous computing, as stated by Mark

Weiser, is that the computers become so commonplace and
so interwoven with our environment, that they practically
disappear and become invisible [15]. One of the main chal-
lenges in building ubiquitous computing applications is how
can the user interact with the invisible computer. The inter-
action should be easy and natural, yet allow for a sufficiently
rich set of actions to be taken.

A further challenge arises when the systems should be
usable by end users, that is, people who are not specialists
in interaction research. Such people, on the other hand,
expect easy and natural interaction and are not willing to
take additional steps to perform seemingly simple actions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07 March 11-15, 2007, Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

In this paper, we explore the challenge of building useful
and usable everyday applications, destined to be usable by
everyone. We present a platform that supports building
such smart products and as a practical application of our
research, we describe a smart coffee machine.

2. RELATED WORK
Research in smart appliances and environments has em-

phasized two major issues lately: i) activity detection, mainly
used as context for system adaptation and user interac-
tion [7]; ii) generic sentient computing infrastructures that
collect and provide information [2]. Many previously re-
ported systems and infrastructures are based on the instru-
mentation of consumer-oriented locations such as offices [3],
homes [4], and bathrooms [5]; they aim at detecting the ac-
tivities of occupants [4, 10] and the interplay between users
and mobile devices [12].

Several projects have explored the computerization of ev-
eryday objects, investigating the granularity of information
and the type of information that can be obtained. One
approach is the pervasive embedding of computing capabil-
ities as in Things That Think [14], the MediaCup [9], or the
InfoDoors [13], where simple objects gather and transmit
sensor data; the distributed infrastructure derives location
and other context information from these data for use by
applications. Another aspect that differentiate Smart Ob-
jects is the embedded knowledge they carry. This property
has also been explored in both business and consumer sce-
narios. A business example is asset tracking [8]: enhanced
sensing and perception provides for, e.g., autonomous mon-
itoring of the physical integrity of goods or detection of haz-
ardous physical proximity [6]. On the consumer side, for
instance, hard drives that can check their own health and
predict when they will fail, personal training assistants that
adjust the pace according to the user’s pulse, or smartphones
that can be voice controlled with expandable PDA features.
Another interesting example is the ABS system commonly
available in cars that integrates data from various sensors to
help the driver apply the breaks more effectively. The ABS
combines its knowledge about driving conditions and reacts
upon user’s pedal feedback, adjusting the actual breaks be-
havior to void skids. The user does not have to ever learn
about all the intricate relationships between the sensors and
their subsystems in order to take advantage of this advanced
functionality: just press a pedal.

Mr. Java, a project at MIT [11], has the closest rela-
tion to the coffee machine example reported here, at least
at first sight: both investigate household appliances with

connectivity and enhanced information processing capabili-
ties, and both integrate user identification and behavior cus-
tomization. The following three characteristics distinguish
our project from Mr. Java and the other references cited
above:

1. In contrast to the usual design - evaluate - publish
approach, we iterated over many design-evaluation cycles;
thereby, we leveraged the adaptivity of our smart products
platform, which we consider an outstanding feature; we con-
cluded that any particular social environment needs careful
customization in order to reach user satisfaction.

2. In addition to supporting simple event-action rules, we
emphasize complex tasks and procedures; we consider it a
major benefit if users can be guided through such procedures
as opposed to reading detested manuals - in addition, this
benefit helps vendors to leverage feature-rich appliances; in
the past, users often did not invest the necessary effort to
explore advanced features.

3. From our experiences, we distilled a general architec-
tural approach for turning an everyday item into a ubiqui-
tous appliance, in such a manner that average, non-technical
users find the device easy and natural to use. With the three
distinct characteristics above, the present paper clearly dif-
ferentiates from the yet another ubiquitous appliance cate-
gory.

3. SMART PRODUCTS ARCHITECTURE
Smart Products are real-world objects, devices or software

services bundled with knowledge about themselves, others,
and their embedding. This knowledge has been separated in
layers according to the level of abstraction they address: de-
vice capabilities, functionality, integrity, user services, and
connectivity. In Figure 1 we present a conceptual reference
architecture showing this separation of concerns to allow the
integration of different vendors providing their own tech-
nology. Such scenario is particularly critical at the device
level, since changes to embedded systems must be kept to
a minimum to keep their cost viable. Adopting a SOA ap-
proach allows devices to be extended in their functionality
and user adaptation capabilities with minimal embedded in-
frastructure requirements. Extensions to a Smart Product
may involve external hardware, software, or both.

Figure 1: Smart Product Conceptual Architecture

The first layer is the Smart Product Device Layer. In
embedded systems, this is where the runtime operating soft-
ware or firmware lies. The processing power available at this
level operates the actuators, sensors, I/O, and the user in-
terface (typically LCD displays, status LEDs and buttons).
The knowledge embedded in this layer defines a set of valid
events, states, and a set of Event-Condition-Action (ECA)

rules that govern the transitions between states. These rules
determine the functionality of the device, implement current
smart behavior, and ensure the operating conditions required
to preserve the hardware integrity and safe operation.

The second layer is the Smart Product Layer, which con-
sists of four main parts. First, the Controller that some-
times resides within the embedded device, coordinates pro-
cesses bridging the physical-world behavior and software-
based functionality. Second, the Embodiment that external-
izes the knowledge of what a device consists of, what are its
parts and their interrelationship. This knowledge also speci-
fies the processes controlling the functionality. For instance,
the process of making a coffee, or more complex, de-scaling
a coffee machine. The Embedding bridges the physical world
with software, enabling self-explanatory functionality. The
Embedding, in a sense, decorates the processes described by
the embodiment for adaptation using the information pro-
vided by the fourth constituent part: the User Model. The
User Model provides information regarding the user that op-
erates the device. Using other information sources and sen-
sors from the infrastructure, the User Model module can rec-
ognize a person and related data such as preferences. When
no external contextual information about the user is avail-
able, this module gathers the user input and compares it to
user expertise patterns to better match user level to device
functionality and assistance. The Embedding gathers the in-
formation from the User Model and determines the actual
steps and explanations required for a user to perform a task.

Finally, other services can further extend a smart prod-
uct functionality, for instance by subscription to the Smart
Product manufacturer or third-party providers.

4. RUNTIME ENVIRONMENT
We will now describe the software architecture of our

smart products runtime system (Figure 2).

Figure 2: Software Architecture

The common basis for our SOA architecture is our own
ubiquitous computing middleware MundoCore [1]. Mundo-
Core has a microkernel design, supports dynamic reconfigu-
ration, and provides a common set of APIs for different pro-
gramming languages (Java, C++, Python) on a wide range
of different devices. The middleware implements a peer-to-
peer publish/subscribe-system and an Object Request Bro-
ker which allows us to easily decouple services and spread
them on several different devices transparently. Many of the
services are of a general nature and they have also been used
in other projects. For example, the RFID reader service is a
Java-based service that interfaces with a reader device con-
nected to a computer’s USB port and emits an event each
time an RFID tag is moved close to the reader. The Speech
Engine service is written in C++ using Microsoft’s Speech
SDK and AT&T NaturalVoices. The Browser Service allows

to remote-control an Internet browser by means of remote
method calls (RMCs).

Finally, our smart coffee machine example presented here
requires some application-specific services. The Coffee Ma-
chine Service provides the hardware abstraction for the cof-
fee machine. It allows to control the machine by means
of RMCs and generates event notifications when the status
of the machine changes. The high-level application logic is
implemented as a workflow description. This allows us to
design the user interactions in a model-driven way. The use
of workflows and how the workflow engine is integrated with
other services in the system is described in Section 7.

5. THE SMART COFFEE MACHINE
The Saeco coffee maker is a normal off-the-shelf coffee

machine. When used out of the box, the user can choose
between three kinds of coffee namely espresso, small coffee,
and large coffee. There is a coffee bean container and a
water tank attached to the machine. If either is empty, a
small display on the machine prompts to refill them. The
display also prompts to empty the coffee grounds container
if it is full.

Our modifications allow us to control all the buttons re-
motely and determine the state of the machine (Figure 3).
With this state information and additional RFID readers, we
can detect user actions and automatically start processes or
proceed in a workflow.

Figure 3: Hardware components added to the coffee
machine

The hardware of the enhanced system consists of the cof-
fee machine, two RFID readers to identify cups, one reader
for reading the digital keys, and a PC running the control
software. Figure 4 shows the hardware architecture and the
individual components. The roles of the individual compo-
nents are as follows.

Figure 4: Hardware architecture

Coffee Machine: Because the machine does not come
with a data interface, we modified the front panel circuit

board and attached our own microcontroller to it. This al-
lows us to detect keypresses, simulate keypresses, check if
the water tank is empty and read the pump control signal.
The latter indicates that the machine is actually dispensing
fluid and gives a very accurate measure how much fluid has
run through the pump; one pulse on this signal corresponds
to 0.4 milliliters. The machine communicates with the rest
of the system via a Bluetooth module.

RFID reader at Coffee Machine: The antenna of this
reader is attached to the bottom of the coffee machine’s cup
holder surface. It is positioned such that the reader is able
to identify cups as soon as they are placed below the coffee
dispensing unit. The RFID tags are glued to the bottom of
the cups. This allows the system to start brewing coffee as
soon as a cup is put down.

RFID reader at Dishwasher: The second RFID reader
is placed next to the dishwasher. User can swipe cups over
this reader before they put them into the dishwasher.

Key reader: Our reader for the digital keys consists of
a SimonsVoss Smart Relais, a microcontroller, and a USB
interface. Like the electronic locks in our computer science
building, the relais can be triggered with the digital keys,
which are given to all employees and students. Every user
owns a key, and there is a one-to-one relationship between
users and keys, which makes these keys highly suitable for
identification purposes. In addition, the keys can already
serve as simple interaction devices. Because users are re-
quired to activate them explicitly by pressing a button, the
reception of a key ID can be directly used to trigger actions.

PC: The PC hosts most of the services and is hidden in
a cupboard. It gives users voice feedback via the speakers.
Users can view their favorite webpages on the monitor. The
monitor, keyboard, and mouse are optional and not required
to use the core functions of the system.

6. INTERACTION DESIGN
In the interaction design of a smart product, we distin-

guish between simple and complex interactions and support
them in two different ways.

Simple interactions are one-step functions that would be
normally triggered with a button. These interactions should
be natural to users. This should be even true if they use a
product for the first time. The product should behave as the
user intuitively expects. Such interactions are implemented
by monitoring the user’s actions with suitable sensors and
typically do not involve graphical or voice user interfaces.
An example for a simple interaction is that the user puts
her coffee mug under the coffee dispenser and automatically
gets her favorite coffee.

Complex interactions refer to multi-step procedures that
require the user to have product-specific knowledge. Such
interactions involve graphical or voice-based user interfaces
and the system guides the user during these interactions.
An example is de-scaling the coffee machine, which requires
the user to perform several manual steps.

As many interactions as possible should be designed as
simple interactions. To identify actions that are natural
to users and to verify that designed interactions are intu-
itive, user studies must be performed at multiple stages in
the product design. An important goal of our smart cof-
fee machine project was to evaluate how average users (i.e.,
non-technical people) could interact with ubiquitous appli-
cations and appliances in a natural and intuitive way. The

implementation has gone through several phases and in each
phase, we performed a user study in order to evaluate what
things needed to be changed and how did the users feel about
using the machine. In the following, we will present our ex-
periences to illustrate the lessons learned from our user tests.
Starting from the initial versions developed over 9 months
ago, the machine has been in daily use in our group. Our
group consists of 21 people. 5 people do not drink coffee
at all and were excluded from the test. The 5 authors only
participated in the first user test, therefore 11 users served
as main test subjects.

6.1 Initial Implementation
In the initial design we marked coffee cups with RFID

tags and when a user puts a coffee cup under the dispenser,
she would automatically get coffee. We have cups in many
different sizes, ranging from small espresso cups to large
coffee mugs. The cup database stores the RFID tag IDs
together with the type of coffee (espresso, small, or large)
and the cup size in milliliters.

After interviewing the users to get their subjective im-
pressions, we found out that users preferred the smart ma-
chine, because it requires no user attention to trigger the
machine or to control the amount of coffee you want. This
“un-attended nature” of the machine was cited as a benefit
by all users.

Since the coffee machine is controlled by a service, the
service also can log statistical data. In particular, the service
knows how much coffee beans are left and for how long they
will last. We programmed a notification service to send
emails to all the people using the kitchen when beans were
close to running out.

6.2 Error Conditions
In case of a problem such as running out of water, in addi-

tion to the standard error messages on the machine’s display,
the user also receives audio instructions on how to resolve
the problem (i.e., “User X, please refill water.”). After the
user has fixed the problem, the machine automatically re-
sumes the requested operation. All feedback from the sys-
tem is also over voice, delivered through a Text-to-Speech
engine.

With audio feedback, users changed their behavior when
handling error situations with the machine. The most com-
mon error situations are a full coffee grounds container and
the machine running out of water. We observed that in case
of lack of audio feedback, the users would complain that
the system was “broken”, instead of looking for the problem
themselves on the display as they did before. The machine
behaved exactly as before (i.e., it showed the error message),
but users did no longer read the error messages from the dis-
play of the machine. We concluded that this was the result
first of the expected consistency in the machine’s behavior,
and second, to the fact that although listening is slower than
reading, it requires less effort, what could make it a more
appealing modality for consumers.

6.3 Billing
Next, we wanted to add automatic billing to the system.

This requires to identify users by some means. The first
implementation was based on everyday observations on how
people handle the coffee machine and also by asking them
how they would like to operate it. Because most users have

their favorite coffee cup and mostly drink one kind of coffee,
our conclusion was that associating a cup to a user is an
administrative task that has to be done rarely and therefore
does not have to be very comfortable.

Based on this hypothesis, the initial implementation had
the following characteristics: Changing settings and associ-
ating cups to a user had to be done with a GUI application
running on a nearby computer. In addition, cups got leases.
This means that after 24 hours of not using the cup, the as-
sociation was deleted and the cup got freed. In other words,
you would have to associate the cup typically once a week.

Once a cup is associated, the user automatically gets her
preferred coffee when she puts the associated cup under the
coffee dispenser. In addition, the system automatically takes
care of accounting and the user can have his favorite web site
pop up on a nearby computer screen.

However, as we observed the initial users, we noticed that
some of our assumptions were wrong, and that users even
started to change their behavior in order to overcome some
limitations and problems.

Firstly, it turned out that human beings are not creatures
of habit but creatures of laziness. Instead of washing their
cups and reusing them, they put them into the dishwasher
and use clean cups. This conflicted with the assumption that
associating cups once a week is acceptable. Associations had
to be done much more often and users found it unacceptable
to use a GUI application. Although the GUI was enhanced
several times, it was simply not accepted.

Secondly, the introduction of a “date of expiry” for cups
was not convincing to the users. They wanted to be able
to explicitly de-associate the cup and get feedback that the
cup was free.

We addressed the concerns raised in the first test by mak-
ing the following modifications: To improve the association
process, we introduced a “one-click association”. Here, we
use our digital door keys to associate cups to users. Because
users were used to use the door key several times a day, there
was no need to teach the users how to use the digital key.
They just had to be told to press the key when asked by the
coffee machine, as if they were opening a door.

The explicit de-association was handled by mounting a
second RFID reader near the dishwasher. When people put
their cups in the dishwasher, they can swipe the cup over
the reader to break the association. More importantly, they
get voice feedback that the association has been broken.

With this implementation, almost all system interactions
could be done with tagged cups, the digital key and Text-
to-Speech instead of using the GUI-based application.

6.4 User Tests
After the modifications, we performed two formal user

tests, conducted by observing users using the coffee machine
as well as free-form interviews. The overall outcome was ex-
tremely encouraging. Most users preferred to use the auto-
mated machine in spite of the procedure being slightly more
complicated and the time to get coffee slightly longer. (Note
that it takes 15–25 seconds to get the coffee, depending on
the type of coffee, so an additional delay on the order of a
second or two is usually not significant.)

The second set of tests focused on the other aspects of the
coffee machine operation such as voice feedback, the associa-
tion, selection of an alternate coffee, and the subjective user
perception. The use of voice to provide feedback was highly

Figure 5: De-scaling process modeled in XPDL using XPEd

regarded as beneficial. However, many users (2/3) found
it difficult to understand the voice output in some cases.
We believe the reasons might be as follows: When a user
hears a particular message for the first time, she is probably
surprised by it and does not fully understand the message,
hence leaving the impression that the messages are hard to
understand. Sometimes the voice feedback comes when the
machine is busy performing the requested action, and the
machine is typically quite loud, hence the voice feedback is
hard to understand. To alleviate this problem we imple-
mented “subtitles”. All voice output is displayed as text on
the computer screen as well.

Another issue that arose was that users started to wonder
how to make a different coffee than the default one without
changing the default user settings. This situation happens
when a user wants, for example, an espresso instead of the
usual large coffee. Again, being able to change the setting
with only a GUI was not acceptable. To cater for people
wanting different coffees at different times, we implemented
an “override button”. Fortunately, there was an extra but-
ton on the coffee machine which did not have any function
and we used it as the override button. When a user presses
this button, she can choose the kind of coffee she wants in-
stead of getting the coffee programmed for the cup.

6.5 Results
First and foremost, our experience underlines the impor-

tance of user-centered design. Ubiquitous applications often
enter new and unexplored domains, hence it is hard or im-
possible to know beforehand how a system can best be used.
Not many features from our initial design survived through
the two user tests, even though the design seemed sound at
that time. In particular, using the digital key as user iden-
tification was a positive experience. The lesson here would
be that if users need to perform additional actions, they are
more readily accepted if they are based on other items which
they use in everyday life, even if the uses are different.

Second, only certain modalities may be mixed in a system
with a multi-modal user interface. In our case, this was
shown by users not checking the display of the machine. We
solved this by making all the output from the system to
come over audio. However, the users did not have problems
with different modalities on the input and output channels.
“Tactile” input and auditory output was not a problem to
the users.

Third, users do not trust automatism, at least in every
case. Even though a lease mechanism was implemented (and
thoroughly debugged!), users insisted on having an explicit

possibility to de-associate cups.

7. COMPLEX INTERACTIONS
In the following, we describe how our extensions to the

machine can be used to help guide the user through com-
plex procedures, in our case the cleaning (or de-scaling) of
the machine. The machine needs to be cleaned regularly,
since limestone builds up in the machine and it has to be
removed. The process is relatively cumbersome and com-
plicated, since it involves first filling the machine with the
cleaning liquid, running the liquid through the machine us-
ing a certain mechanism that includes pushing the right but-
tons and opening and closing the water tube at the right
time, waiting a relatively long time, and then finally flush-
ing the machine before it is ready to be used again. Most
people in our group are not aware how to do this process.

Our goal in implementing this task support is to show how
our modifications can help users in complex tasks. We chose
cleaning as the task, because it must be performed occa-
sionally even though the process is described in the manual,
most people never read the manual and even if they do read
it, they must use the manual as a support every time they
have to clean the machine. The cleaning process is also very
suitable for being supported, since parts of it can be done
automatically (controlled by the system) and parts of the
process require manual user interaction. Furthermore, there
are long waiting periods in the process. Our implementation
shows how the system supports the user by letting the user
know what to do next at any step. Any steps which can be
performed automatically are done by the system and only
when user intervention is required, does the machine ask the
user for help. Also, when a particular step of the process
will take a long time, the machine lets the user know this, so
that the user does not need to wait by the machine. We have
implemented a notification system which alerts the user via
an instant message when the long step has been completed.

Internally, we describe this process as a workflow descrip-
tion (Figure 5). We use the XML Process Definition Lan-
guage (XPDL) as data format, the JPEd graphical editor
to edit workflows, and the OpenEmcee Microflow Engine to
execute workflows. We have written a small Perl script to
translate XPDL descriptions into OpenEmcee’s proprietary
XML format.

In the described system, all communications between ser-
vices is based on MundoCore and uses channel-based pub-
lish/subscribe. We defined a generic activity and transition
class for the workflow engine that interfaces with this pub-
lish/subscribe system.

Following our reference architecture, the workflow descrip-
tions become part of the Embodiment Module and are ex-
ecuted by the Controller. In this particular example, the
Embedding Module performs only a simple adaptation of
the process by stating the user’s name provided by the User
Model.

7.1 Activities
XPDL permits to assign an arbitrary number of extended

attributes to activities and transitions in the workflow. The
attributes of an activity are used to describe the action that
should take place. An action can be a message send oper-
ation or a remote method call. Method calls build on the
dynamic invocation interface of MundoCore which allows
to call any method of any remote service. For example, to
output text via the Text-to-Speech engine, the following at-
tributes are used:

channel = ”tts”

interface = ”org.mundo.speech.synthesis.ITextToSpeech”

method = ”speak”

p0 = ”Please remove water tank”

The channel property specifies the name of the channel to
which the invocation request should be sent. The TTS ser-
vice is subscribed to the channel tts either locally or some-
where in the network. The message distribution is handled
by MundoCore and is fully transparent to the application.
(It should be noted that channels are not necessarily global
- MundoCore has zone and group concepts to limit the scope
of channels.)

7.2 Transitions
State transitions can be triggered by arbitrary Mundo-

Core events. For example, if the water tank becomes empty,
the Coffee Machine service publishes a notification of type
org.mundo.service.saeco.WaterEvent with the content empty =

true to the channel saeco.event.
MundoCore supports notification filtering based on XQuery

expressions. We use this mechanism to describe transition
conditions in the workflow. To execute a transition as soon
as the water tank is empty, the following extended attributes
are specified for the transition:

channel = ”saeco.event”

filter = ”for $o in $msg where

$o[class=’org.mundo.service.saeco.WaterEvent’] and

$o/empty=true()”

The transition is executed as soon as the first notification
matches this filter expression.

8. CONCLUSION
In this paper we have presented a general architecture and

distributed runtime environment for building Smart Prod-
ucts. Turning a device into a Smart Product only requires
minimal physical extensions to the device itself - basically
a simple communication interface, such as Bluetooth, to re-
trieve and set the device’s events and state. Through this
communication interface, the surrounding ubicomp environ-
ment is able to integrate the device, improving its function-
ality and usability.

Using a coffee machine as an example, we have shown how
to extend it into a Smart Product with additional function-
ality and adaptation capabilities using the proposed archi-
tecture. A major concern during this work has been the

impact on the people using the device. The different user
tests carried out provided valuable feedback and insights to
keep interaction simple and natural. The tests also pointed
out the requirement of a system support for guiding users
through complex procedures. This functionality has been
also developed and integrated in our reference architecture.

9. REFERENCES
[1] E. Aitenbichler. System Support for Ubiquitous

Computing. Shaker, 2006.

[2] E. Aarts. Ambient Intelligence: A Multimedia
Perspective. IEEE Multimedia, 11(1):12–19, Jan 2004.

[3] M. Addlesee, R. Curwen, S. Hodges, et al.
Implementing a Sentient Computing System. IEEE
Computer, 34(5):50–56, Aug 2001.

[4] B. Brumitt, B. Meyers, J. Krumm, et al. EasyLiving:
Technologies for Intelligent Environments. In Proc. of
HUC 2000, volume 1927 of LNCS, 12–27. Springer,
September 2000.

[5] J. Chen, A. H. Kam, J. Zhang, et al. Bathroom
Activity Monitoring Based on Sound. In Proc. of
Pervasive 2005, volume 3468 of LNCS, May 2005.

[6] C. Decker, M. Beigl, A. Krohn, et al. eSeal - A System
for Enhanced Electronic Assertion of Authenticity and
Integrity. In Proc. of Pervasive 2004, volume 3001 of
LNCS, 18–32. Springer, April 2004.

[7] A.K. Dey, D. Salber, and G.D. Abowd. A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications. HCI
Journal, 97–166, 2001.

[8] A. Fano and A. Gershman. The Future of Business
Services in the Age of Ubiquitous Computing. Comm of
the ACM, 45(12):83–87, December 2002.

[9] H.-W. Gellersen, M. Beigl, and H. Krull. The
MediaCup: Awareness Technology embedded in an
Everyday Object. In Proc. of HUC’99, volume 1707 of
LNCS, 308–310, 1999.

[10] MIT Project Oxygen. http://oxygen.lcs.mit.edu/.

[11] Mr. Java Project.
http://www.media.mit.edu/ci/projects/mrjava.html

[12] A. Schmidt, K. A. Aidoo, A. Takaluoma, et al.
Advanced Interaction in Context. In Proc. of HUC’99,
volume 1707 of LNCS, 12–27. Springer, September 1999.

[13] B. Shneiderman. Leonardo’s Laptop: Human Needs
and the New Computing Technologies. MIT Press,
October 2002.

[14] Things That Think. http://ttt.media.mit.edu/.

[15] M. Weiser. The Computer for the 21st Century.
Scientific American, 265:66–75, 1991.

