
Communication Abstractions in MundoCore

Erwin Aitenbichler, Jussi Kangasharju
Darmstadt University of Technology, Department of Computer Science, Telecooperation Group�

erwin,jussi � @tk.informatik.tu-darmstadt.de

Abstract

Ubiquitous computing with its many different devices,
operating system platforms and network technologies,
poses new challenges to communication middleware.
Mobile devices providing vastly different capabilities
need to integrate into heterogeneous environments. We
have identified a key set of requirements for ubiquitous
computing communication middleware which are mod-
ularity, small footprint, and ability to cope with han-
dovers. In this paper we present MundoCore which
provides a set of communication abstractions based on
Publish/Subscribe for ubiquitous computing scenarios.
We present the communication model of MundoCore
and discuss our implementation, along with our expe-
riences and observations from the implementation pro-
cess.

1 Introduction

Internet is currently enjoying great success as a means
for communication between people and between people
and computers. Popular Internet services include email,
the Web, and more recently mobile services, such as
WAP. Advances in mobile networking, as demonstrated
by GPRS and in the future UMTS, will bring a greater
need of communications.

However, the biggest foreseeable growth of com-
munication needs does not come from people-to-
people or people-to-computer communications, but
from computer-to-computer communications. Smart
appliances and future pervasive computing architec-
tures will mean billions and billions of devices, all with
communication capabilities and needs. In the future, a
large majority of traffic on the Internet will come from
devices talking to other devices.

In this paper we present communication abstractions
in MUNDO, our project on pervasive and ubiquitous

computing infrastructures which we present briefly in
Section 2. One of the main focus points of MUNDO
is efficient communications between different devices
that form different parts of the infrastructure. In this
paper we present the core communications component
of MUNDO which we call MundoCore. MundoCore is
responsible for handling all the basic communication
needs of all MUNDO entities and it provides all the com-
munication abstractions needed by the different entities.

A fundamental way in which nomadic computing
differs from desktop computing is the great variabil-
ity of network connectivity. Current applications treat
changes in bandwidth or latency as exceptions or errors,
but these conditions must be treated as the normal case
in nomadic environments. Network access takes place
from different locations with a number of different de-
vices by means of different network providers.

From our experiences in designing and implementing
parts of MUNDO and MundoCore, we have identified a
set of key requirements for pervasive computing com-
munication middleware. These requirements are:

� Modularity. The middleware must have a mini-
mal kernel and we need the ability to plug in ser-
vices on-demand, according to our current needs.
Pluggable services also offer us the possibility for
determining the service fidelity on-demand. By
service fidelity, we mean total quality of the ser-
vice obtained by combining several pluggable ser-
vice modules.

� Small footprint. Many pervasive computing de-
vices (e.g., the Talking Assistant [1]) have only
very limited resources in terms of memory and
processing power, hence it is vital that the middle-
ware has a small memory footprint. Being able to
plug in services on-demand helps us achieve this
goal.

� High mobility. The middleware must support

1



both horizontal and vertical handovers. Some de-
vices are likely to be mobile and they will need
efficient handovers. Currently, a handover often
results in a broken TCP connection which most ap-
plications cannot handle well.

� Heterogeneity. The middleware must support
many different hardware and operating system
platforms, starting with small sensors up to server
clusters.

From a software engineering point of view, abstract-
ing all the communications of MUNDO into Mundo-
Core provides us with several advantages. The main
advantage is that it allows us to separate the communi-
cation layer and services. In effect, using MundoCore
pulls out all communication related code from service
code, making it easier to write new services, since now
the service code does not need to handle as many ex-
ceptions, deal with broken connections, etc.

In the rest of the paper, we present how we have im-
plemented these requirements in MundoCore. In our
opinion, it is highly unlikely that a single platform will
dominate in the pervasive computing world. Hence, it
is vital that our implementation is also portable to dif-
ferent architectures and devices.

1.1 Related Work
Conventional middleware systems like CORBA are
usually very resource intensive. They are not suitable
for small devices like often found in pervasive comput-
ing and usually assume a mostly stable network envi-
ronment.

Modular middleware approaches that specifically tar-
get pervasive computing applications include UIC [9]
and BASE [2].

This paper is organized as follows. Section 2 gives an
overview of MUNDO. Section 3 presents MundoCore.
In Section 4 we discuss our experiences and observa-
tions learned from our implementation of MundoCore.

2 Mundo
In this section, we provide a very brief overview of the
MUNDO project. Figure 1 shows an overview of our
MUNDO architecture. A more complete description can
be found in [5]; below we will briefly present the differ-
ent entities in MUNDO.
ME (Minimal Entity)

Figure 1: Mundo vertical architecture

We consider ME devices as the representation of their
users in the digital world. The personal ME is the only
entity always involved in the user’s activities. Our de-
cision for one individually owned device rather than a
publicly available infrastructure comes from trust es-
tablishment. As an increasing amount of computer
based activities have (potential) legal impact and in-
volve privacy issues, it is vital that users can trust the
device carrying out such transactions.
US (Ubiquitous aSsociable object)

Minimalization pressure will not permit feature-rich
MEs in the near future. Hence, they must be able to
connect to local devices such as memory, processors,
displays, and network devices in an ad hoc manner. We
call this process association and we call such devices
ubiquitous associable objects (US). Through associa-
tion, the ME can personalize the US to suit the user’s
preferences and needs. For privacy reasons, any per-
sonalization of an US must become unavailable if it is
out of range of the user’s ME device.
IT (smart ITem)

There are also numerous smart items that do not sup-
port association that would turn them into an US. Vend-
ing machines, goods equipped with radio frequency
IDs, and landmarks with “what is” functionality are just
a few examples. We define such smart items as ITs. An
IT is any digital or real entity that has an identity and
can communicate with the ME. Communication may be
active or passive; memory and computation capabilities
are optional.
WE (Wireless group Environment)

We expect ad hoc networking to be restricted to an
area near to the user of a ME device, as connections
with remote services will involve a non-ad hoc network
infrastructure. The functionality of a WE is to bring to-

2



gether two or more personal environments consisting of
a ME and arbitrary US entities each. A WE makes con-
nections between the devices possible and also allows
for sharing and transferring hardware (e.g., US devices)
and software or data between WE users.
THEY (Telecooperative Hierarchical ovErlaY)

We regard overlay cells as the backbone infrastruc-
ture of MUNDO. These telecooperative hierarchical
overlay cells (THEY) connect users to the (non-local)
world, deliver services, and data to the user. THEY
support transparent data access, for example, frequently
used data may be cached on US devices. THEY offer
cooperation between different physical networks, trans-
parent to the users.
Communication in MUNDO

Even though users and their activities are the focus of
MUNDO, through their MEs, the majority of the com-
munications in MUNDO will happen between the dif-
ferent devices. Examples of this are an US associating
automatically with a ME, a WE forming for sharing in-
formation, an US communicating with another US, and
so on. It is therefore vital that we have a strong basic
communication layer which will allow us to connect all
the components of Mundo in an efficient manner.

3 MundoCore
MundoCore can be considered as a peer-to-peer tech-
nology. It features automatic discovery of other nodes,
autoconfiguration and routing. The graph of connected
MUNDO-aware nodes forms an overlay network over
the existing Internet infrastructure and private network
links.

3.1 Concepts
The basic communication layer is used for communi-
cation between local services and applications. It in-
terconnects components residing in the same address
space and operating system process. The communica-
tion to remote Mundo nodes on the same machine or
on another machine that is reachable by IP or over a
tunnel connection, relies on a number of transport and
routing services. Nodes on the same physical machine
can communicate via shared memory and remote nodes,
for example, via IP connections or bluetooth RFCOMM
tunnels.

In the following, we use the terminology introduced
in [4] for Publish/Subscribe systems. The single pro-

gramming abstraction on the basic level is that of a
channel-based Publish/Subscribe system. Even remote
method invocations build on top of this concept. It has
been shown in many earlier projects [7] that event rout-
ing systems scale well to very large networks.

MundoCore consists of a basic communication layer,
a few base services and a number of interface defini-
tions with associated semantics. Specific functionality
is implemented by pluggable services.

The current implementation is based on C++ and sup-
ports several platforms, including desktop/server Win-
dows, Windows CE, Mac OS/X and Linux/uClinux. An
installation with a minimum set of services and full
XML processing requires only 88 KB. We are also
working on a Java implementation of the system that
is compatible on the protocol level.

3.2 Services
Services in MUNDO are components that implement
a certain functionality by processing messages from
channels or their methods can be invoked by means of
remote method calls.

A service is the migration unit and manages objects
that are closely related to each other. References to lo-
cal and remote objects are explicitly distinguished by
different types of reference variables. Services are not
bound to a particular physical location; they can be mi-
grated from one address space to another. The commu-
nication abstractions provided by MundoCore enable
services to maintain all communication links to other
services even if they are moved to other physical loca-
tions.

The service manages execution. By means of ses-
sions, incoming remote method calls are serialized to
control concurrency. A session is a single-threaded
context for producing and consuming messages, like in
JMS [6]. The service can also be thought of as a layer
between the runtime environment and the objects that
controls execution. The last two aspects are inspired
from the virtual processor concept described in [3].

Multiple services can offer the same interface and re-
alize the same functionality, but rely on services in the
network to different grades. We call this concept ser-
vice fidelity. On devices with very limited processing
power, simple services run on the device that mainly
delegate all tasks to more powerful services in the net-
work. If no network infrastructure is present, the quality
of a service may get limited to a basic set of functions.
For example, a voice recognition system running on the

3



ME-device may be limited to understanding a dozen of
core commands; once the device has a network connec-
tion, more complicated commands are recognized by
a network-hosted full fledged voice recognition system
and the device may also be used for dictating letters,
mails, etc.

Services usually realize their functionality by dele-
gating subtasks to other services. In most cases, the
Publish/Subscribe metaphor provides good decoupling
between such services. If services explicitly use di-
rected connections to other services, a Lease concept
[6] ensures that the services are aware of broken links
and that allocated resources on remote nodes are freed.

3.3 Extensions to Publish/Subscribe

A Publish/Subscribe system offers a clear advantage
for point-to-multipoint communication patterns. We
have optimized this mechanism to allow us to use the
same abstraction for point-to-point connections. Spe-
cific communication patterns are expressed in attributes
of the channel objects. The messaging middleware
makes use of this information and can improve rout-
ing efficiency. Further extensions include zones, mes-
sage queuing, streaming of multimedia data and re-
mote method calls (RMC) built on top of the Pub-
lish/Subscribe system.

The scopes of channels are limited and organized into
zones. Scoping ensures that subscribers do not receive
event notifications even though they may be subscribed
to relevant channels, unless the event has been propa-
gated to a zone of which they are a member. Zones
may overlap allowing publishers and subscribers to be
a member of two or more zones. Typically one zone
hierarchy is not enough. An organizational hierarchy is
well suited for security aspects, but a hierarchy based
on geographical location is better suited for distribut-
ing context information. The concept of zones first ap-
peared in the ECO system [8].

In subscription-based Publish/Subscribe, a subscrip-
tion has to be flooded to all network nodes in the respec-
tive zone. But in the case of a directed connection, like
between an RMC client and server stub, the used chan-
nel has exactly one publisher and one subscriber. If this
constraint is known to the messaging middleware, rout-
ing can be significantly optimized. For directed con-
nections, the advantage of the Publish/Subscribe system
comes into play, when a service is moved to another lo-
cation:

� First, all subscriptions are closed at the source lo-
cation. Like with Durable Subscribers [6], further
messages will be queued.

� Then, all objects managed by the service are seri-
alized and sent to the target node.

� The service is now started on the target node and
initialized with the serialized object graph.

� Finally, all subscriptions are opened again at the
target location.

3.4 Basic Services
Figure 2 shows the basic communication services ar-
ranged into a layer model.

Network Access Services communicate with access
points, configure the network device settings of the un-
derlying operating system and establish connections.
For example, such a service performs dial-in to an ISP
via a cellphone or maps a bluetooth serial connection
between the client and access point so that a transport
connection can be created on top of this serial link.

Transport Services connect adjacent nodes via a
tunnel or use an underlying routing-capable transport
system like IP to connect endpoints. Besides point-to-
point connections, transport services can directly pro-
vide point-to-multipoint communication via broadcasts
and multicasts.

The bandwidth of wireless networks is scarce, but be-
cause it is a shared medium, it is possible to send broad-
cast messages to all nodes in the vicinity. Therefore,
it is highly desirable to have the multicast functional-
ity in lower transport layers and aspects like encryption
in higher layers. In contrast, the Bluetooth LAN ac-
cess profile makes use of encrypted point-to-point tun-
nel connections to the access point and makes the low
level multicast functionalities completely unavailable.
This means that IP broadcast packets have to be repli-
cated for each client and individually transmitted on the
shared medium.

The transport service allows us to insert additional
transformation steps like encryption or data compres-
sion for certain connections. A transport service may
also feature automatic discovery of neighboring nodes.
If neighbors are detected, this information is reported to
the Routing Service.

The Routing Service uses Transport Services to cre-
ate connections to remote nodes when needed and picks
the most suitable Transport Service to route a message

4



Figure 2: Layer model

towards its destination. Compared to solely IP based
routing, private network links can be opened on de-
mand, based on cost models and Transport Services that
provide circuit-switched connections can be integrated
to provide enhanced QoS.

The Event Routing Service (ERS) handles all sub-
scriptions and advertisements of local services that are
not restricted to the local runtime zone. It discovers
Event Routing Services on neighboring nodes and per-
forms message routing. A minimal ERS on a device
with limited resources simply forwards all messages to
the ERS of an access point. More sophisticated ERS in
the MUNDO overlay network can perform filter merg-
ing and content-based Publish/Subscribe with complex
XML-based filtering.

3.5 Remote Method Calls
The RMC functionality is also built on top of the
Publish/Subscribe system of the basic communication
layer. To export an object, a server stub is created and
subscribed to a channel.

Server and client stubs are created by our own com-
piler that parses the class definitions found in C++
header files. Additional processing instructions can be
passed to the compiler by means of special comment
tags in the header file. Remote methods can be called
in a synchronous, asynchronous, or oneway manner.
Oneway calls are also suitable for point-to-multipoint
communication patterns.

Calls to remote services within the same address
space can be performed with a minimum of glue code.
A serialization of the call parameters and return values

is not necessary. Our RMC implementation is currently
based on XML/SOAP, but is generally not fixed to a sin-
gle Inter-ORB protocol. Currently there are two ways
to extend the system. Firstly, the RMC compiler can be
extended to create different client and server stubs. Sec-
ondly, a new service can be instantiated that translates
from the XML/SOAP to another protocol.

4 Experiences and Observations

From our experiences in implementing MundoCore, we
have made several observations regarding practical mat-
ters.

Even though MundoCore is aimed at communication
between devices, we still need some kind of a user in-
terface for debugging and verifying correct behavior. In
case of embedded devices, this may not always be easy
to achieve.

However, the basic abstraction of a Pub-
lish/Subscribe system helps us develop GUI tools
for administration and connecting services. This is
because all the services have well-defined and clear
interfaces and the channels of the Publish/Subscribe
system form a connecting network that can be mapped
to a graphical representation.

Current wireless networks still have several problems
that prevent large-scale deployment of pervasive com-
puting communication infrastructures. MundoCore re-
quires a robust and reliable wider area wireless multi-
cast functionality which is not available yet. Our initial
experiments with existing reliable multicast libraries
have not been fully satisfactory. Most systems do not

5



deal well with a dynamically changing network. We
are currently working on developing efficient methods
for multicast using MundoCore. In addition, wide area
wireless bandwidth (e.g., GPRS) is currently relatively
scarce and very expensive. For these reasons, we plan
to investigate implementing more size-efficient binary
protocols beside XML/SOAP.

Java runtime environments on embedded devices are
also severely lacking in capabilities, making it impos-
sible to write code that would work efficiently in all
environments. This is the main reason why our cur-
rent implementation is done in C++. In our experience,
porting Java code to embedded devices takes as much
work as porting C++, and performance of Java is far
from satisfactory. Some services like the Network Ac-
cess Services require access to special operating system
APIs that are not accessible from Java. This means, that
a Java implementation will also have small C++ parts
using the Java Native Interface.

We have already implemented parts of MundoCore
in Java that is compatible to the C++ implementation
on the protocol level. Because of the higher resource re-
quirements, the Java version mainly targets desktop and
server applications. Programming Java is more con-
venient than programming C++, because the language
features a garbage collector. On the other hand, freeing
operating system related resources needs special atten-
tion in Java.

References

[1] Erwin Aitenbichler and Max Mühlhäuser. The
Talking Assistant headset: A novel terminal for
ubiquitous computing. Technical report, TK-02/02,
Telecooperation Group, Department of Computer
Science, Darmstadt University of Technology,
2002.

[2] Christian Becker, Gregor Schiele, Holger Gubbels,
and Kurt Rothermel. BASE - A Micro-Broker-
Based Middleware for Pervasive Computing. In
Proceedings of the First IEEE International Con-
ference on Pervasive Computing and Communica-
tions (PerCom’03), pages 443–451, 2003.

[3] M. Boger, F. Wienberg, and W. Lamersdorf. Dejay:
Unifying concurrency and distribution to achieve a
distributed Java. In Proceedings of TOOLS Europe
’99, Nancy, France. Prentice Hall, June 1999.

[4] A. Carzaniga. Architectures for an Event Notifica-
tion Service Scalable to Wide-area Networks. PhD
thesis, Politecnico di Milano, Milano, Italy, De-
cember 1998.

[5] Andreas Hartl, Erwin Aitenbichler, Gerhard
Austaller, Andreas Heinemann, Tobias Limberger,
Elmar Braun, and Max Mühlhäuser. Engineer-
ing multimedia-aware personalized ubiquitous ser-
vices. In IEEE Fourth International Symposium
on Multimedia Software Engineering (MSE 2002).
Newport Beach, California, pages 344–351, 2002.

[6] Sun Microsystems Inc. The Java Message Ser-
vice 1.0.2b Specification. Available for download
at http://java.sun.com/products/jms/, October 2001.

[7] René Meier. State of the Art Review of Distributed
Event Models. University of Dublin, Trinity Col-
lege, March 2000.

[8] Karl O’Connell, Tom Dinneen, Stephen Collins,
Brendan Tangney, Neville Harris, and Vinny Cahill.
Techniques for Handling Scale and Distribution in
Virtual Worlds. In Proceedings of the ����� ACM
SIGOPS European Workshop, pages 17–24, 1996.

[9] Manuel Román, Fabio Kon, and Roy H. Campbell.
Reflective Middleware: From Your Desk to Your
Hand. IEEE Distributed Systems Online Journal,
Special Issue on Reflective Middleware, 2001.

6


