
An Optimal Basis For Efficient Peer-To-Peer
Content Distribution Algorithms

Jaakko Kangasharju
Helsinki Institute for Information Technology

Helsinki, Finland

Jussi Kangasharju
Technical University of Darmstadt

Darmstadt, Germany

Abstract— Peer-to-peer content distribution has become ex-
tremely popular, thanks to its highly scalable performance. In this
paper, we derive a lower bound on the performance of chunk-
based peer-to-peer content distribution systems and develop an
algorithm that is within 1 round of the lower bound in special
cases, and within 1 + log2

2(I) rounds in the general case, where
I is the number of peers. We consider the performance of our
algorithm also in a heterogeneous bandwidth environment and
under churn. We show that our algorithm always achieves good
performance and does not impose an undue burden on fast peers,
thus providing a natural incentive for all peers to participate.

I. INTRODUCTION

Peer-to-peer content distribution is becoming the de-facto
content distribution mechanism for distributing large files
to a large number of interested users. Peer-to-peer content
distribution has been shown to be an efficient and a highly
scalable content distribution mechanism [3], [8]. In a peer-
to-peer content distribution system large files are typically
divided into small, constant-size chunks (e.g., 256 KB) and
peers download chunks from other peers and allow others to
download from them the chunks which the peer possesses [5].

In this paper we address the problem of selecting the
chunk to download in a chunk-based peer-to-peer content
distribution system. Specifically, we derive a lower bound on
the distribution time of any chunk-based content distribution
scheme and we present an algorithm which, in special cases,
is within 1 distribution round of the lower bound, and, in the
general case, is within 1+log2

2(I) rounds of the lower bound.
A second, more important metric that we consider is the

delay stretch which captures how much the download of an
individual peer is slowed down by having to share chunks with
other peers. As we argue in Section II-B, the delay stretch is
a much more appropriate metric for heterogeneous situations
than the commonly considered distribution time. To the best
of our knowledge, no previous work has yet considered other
metrics besides the distribution time.

We also investigate our algorithm in more realistic con-
ditions, such as asymmetric and heterogeneous bandwidth
conditions and peers joining and leaving the system during
the distribution (also called churn). As our results show, our
algorithm needs only minor changes to handle these cases
and the effect on performance is negligible. Furthermore,
our algorithm does not require any additional incentives, nor
does it require that peers remain in the system after they
have finished their downloads. Hence, the algorithm is very

appropriate for heterogeneous environments with selfish peers,
such as the Internet.

This paper is organized as follows. Section II presents the
lower bound as well as algorithms for chunk-based content
distribution. In Section III we consider the communication
overhead of our algorithms. Section IV discusses how our
algorithms behave under churn. In Section V we review related
work. Finally, Section VI concludes the paper.

II. OPTIMAL ALGORITHMS

In this section we will derive bounds on the performance of
any chunk-based content distribution system and develop an
algorithm which we show to be very close to this bound.

A. Model

Assume that there are I peers interested in a file and the file
has K chunks. Furthermore, assume that one peer (called the
seed; also considered as peer number 1) has the complete file
and other peers have no chunks in the beginning. We assume
that there is an additional entity, called tracker (similar to
the tracker in BitTorrent [5]) which helps us coordinate the
downloading peers. The tracker maintains a list of all peers
who are currently downloading the file. We also assume that
time is discretized into rounds, and one round is defined as
the time it takes for a peer to download or upload a chunk. In
our model the chunks are discrete, i.e., a chunk is available
for uploading only after it has been completely downloaded. A
peer can upload and download in the same round. In Section II-
F we discuss the implications of non-homogeneous bandwidth.
In terms of peers joining and leaving, we first assume that all
the peers join the file distribution at the same time and that
no peers leave until the complete file has been distributed
to all peers. In Section IV we consider how churn affects
our algorithms. We also make the natural assumption that
K ≥ log2(I), since typically the files being distributed are
very large, hence the number of chunks will be very large.

B. Performance Metrics

There are two natural performance metrics that we consider.
The first is the total time to distribute the complete file to all
the clients. We call this metric distribution time. It is the time
when the last client receives the last chunk of the file; other
clients may have finished already much earlier. This metric
has also been widely studied in literature.



The second metric we consider is what we call delay stretch.
The delay stretch captures the increase in the time to download
the complete file for an individual peer, compared to the case
of the single peer just downloading the file from the seed (or
fastest source). In other words, the delay stretch is a measure
of how much overhead the distribution algorithm represents.
For example, if a peer would get the file in K rounds by
downloading directly from the seed and in 2K rounds using
some distribution algorithm, the delay stretch would be 2.

We argue that the delay stretch is more appropriate, since
distribution time as a metric has one significant problem in
realistic scenarios. Minimizing the distribution time carries
with it the implicit assumption that peers do not care when
their own download finishes. This is because distribution
time measures only when the last peer finishes, but does not
give us any information about when the other peers have
finished. While this assumption about altruistic peers might be
true in some closed environments where cooperation can be
enforced, it cannot be assumed to hold in Internet, where peers
are known to behave selfishly [6]. In such cases, the delay
stretch is more appropriate, since it describes how much the
performance decreases because of cooperation. An algorithm
that minimizes delay stretch is likely to be more acceptable,
since the effect of “other peers” is minimized.

Note that in homogeneous network environments (all peers
have the same bandwidth), the two metrics are identical, in the
sense that an algorithm which achieves the lower bound on
distribution time has also the lowest maximum delay stretch.
Note that the maximum delay stretch may only apply to a few
peers in any given case; other peers might still finish their
downloads earlier. However, the maximum delay stretch gives
us an overall idea of how well an algorithm performs.

In this paper we derive expressions for the maximum delay
stretch of our algorithms. Investigating other possibilities, e.g.,
mean or median delay stretch, is part of our future work.

C. Lower Bound

We will now turn our attention to deriving the lower
bound of the distribution time under homogeneous bandwidth
conditions. As mentioned above, the lower bound also gives
us the minimal maximum delay stretch.

Under assumptions from Section II-A, to distribute 1 chunk
to all I peers takes �log2(I)� rounds, since the number of
peers holding a chunk can at most double in one round. Since
the seed can send only 1 chunk per round, it will take at least
K − 1 rounds to put chunks 1, . . . ,K − 1 into distribution.
After this, it will take at least �log2(I)� rounds to distribute
the last chunk to all the peers.

Hence, a lower bound Rmin on the number of rounds for
any chunk-based content distribution system is:

Rmin = K − 1 + �log2(I)�. (1)

Note that this lower bound applies to any chunk-based content
distribution in the model of Section II-A, regardless of the
details of the system.

Group 3

1

0 00 0 0

2

2

3

3

3

3

Chunks

P
ee

rs

1 2

1

2

3

4

5

6

7

8

3 4 5 ...

Group 1

Group 2

Fig. 1. Ramp-up phase. The squares are the chunks sent to peers and the
number inside the square indicates in which step that chunk is transmitted.
The arrows show which peer sends which chunk to which peer.

Consequently, the maximum delay stretch is

Dmin =
Rmin

K
= 1 +

�log2(I)� − 1
K

(2)

since a peer could download the file in K rounds.

D. Number of Peers is 2i

We initially make the assumption that I is a power of 2 to
illustrate our algorithm better, but in Section II-E we relax this
assumption and extend our algorithm to all values of I .

We divide the distribution of a file in three phases. In the
ramp-up phase, fewer than I peers possess chunks, hence
some peers cannot upload any chunks in the ramp-up phase.
In the distribution phase, all I peers have at least one chunk
and are uploading, but some chunks are only possessed by the
seed. In the endgame phase, there is at least one copy of every
chunk in addition to the copy held by the seed.
Ramp-up Phase

For the ramp-up phase, we divide the remaining I−1 peers
2, 3, . . . , I into log2(I) groups such that group i contains I/2i

peers. This can be done by the tracker. Each peer is assumed
to know in which group it belongs to and who are the other
members of its group. The ramp-up phase is shown in Figure 1.
In the ramp-up phase, we perform log2(I) steps as follows.
In step i, the seed sends chunk i to some member of group i.
Groups 1, . . . , i− 1 distribute the chunk they have received in
an earlier step among themselves, as shown in Figure 1. For
group i having I/2i members this distribution takes log2(I)−i
rounds. Since chunk i is placed into circulation on round i,
all groups complete the ramp-up phase at the same time, i.e.,
on round log2(I).
Distribution Phase

The second phase, the distribution phase, proceeds as fol-
lows. We classify chunks into three classes:

1) A chunk is completed if all the peers possess that chunk.
2) A chunk is empty if only the seed has that chunk.
3) Otherwise a chunk is called active.

The distribution phase lasts K − log2(I) steps, and at any
given time, there are log2(I) active chunks. As in the ramp-up
phase, these active chunks are distributed among the groups so
that each group has a single active chunk that is not possessed
by any peer in the other groups. We number the groups so that
the active chunk of group i at the start of step k is k + i− 1.



Group 3

0 00 0 0

4

4

4

4

4

4

4

3

3

2

3

3

2

1

Chunks

P
ee

rs

1 2

1

2

3

4

5

6

7

8

3 4 5 ...

Group 1

Group 2

Fig. 2. Distribution phase. The gray chunks were distributed in the ramp-up
phase and the white chunks are distributed in the distribution phase.

The actual steps for k = 1, . . . ,K − log2(i) are:

1) Select any peer from group 1. This peer does not send
a chunk, but receives chunk k + log2(I) from the seed.

2) All other I/2 − 1 members of group 1 send chunk k
(which they all possess) to all other peers in the other
groups. There are I/4 + · · · + 1 = I/2 − 1 such peers.

3) A member in group i = 2, . . . , log2(I) sends chunk
k + i − 1 to that member of group 1 who sent a chunk
to it.

4) Re-create the groups such that the distribution of chunks
to the groups corresponds to the distribution at the end
of the ramp-up phase, with the exception that chunk k
has been completed and chunk k + log2(I) has become
active.

Figure 2 shows step 1 of the distribution phase, i.e., step 4 of
the algorithm. We re-organize the groups such that peers 4, 5,
6, and 7 are in the same group, peers 3 and 8 in one group, and
peer 2 is in the last group. We will discuss this organization
in detail in Section III, where we will derive a bound on the
number of peers that a single peer must communicate with.

After K− log2(I) steps in the distribution phase, all chunks
are either completed or active, which leads us to the last phase.
Endgame Phase

At the start of the endgame phase, there are log2(I) active
chunks. Sending chunks the same way as in the distribution
phase (leaving unnecessary operations out), we can complete
one active chunk per step. The length of the endgame phase
is therefore log2(I). Note that even though some peers are
not uploading any chunks, all the peers still missing chunks
are downloading on every round, hence the additional upload
capacity cannot be used and the length remains log2(I).

The total length of the distribution is (log2(I)) + (K −
log2(I)) + log2(I) = K + log2(I) steps. Comparing the this
to the lower bound from equation (1), we can see that our
algorithm needs only 1 round more to distribute the chunks.

The delay stretch of our algorithm is then 1 + log2(I)/K,
i.e., only 1/K larger than the lower bound. As the number of
chunks increases our algorithm gets closer and closer to the
lower bound, thus improving performance.

E. Arbitrary Number of Peers

In this section we will extend the algorithm to support the
case where the number of peers is arbitrary. In order to achieve
this, we need to change the way the groups are formed. We will

Clique 2/Group 2

0 00 0 0

3

3

2

3

2

1

4

4

4

4

4

45

5

5

5

4

5

5

54

5

5

3

Chunks

P
ee

rs

1 2

1

2

3

4

5

6

7

8

3 4 5 ...

10

11

9

Clique 1/Group 1

Clique 1/Group 2

Clique 1/Group 3

Clique 2/Group 1

Fig. 3. Round 5 of ramp-up phase for 2 cliques

divide the peers into groups, such that each group has 2n − 1
peers for some value of n. We call such groups “cliques”, and
continue to use the term “group” for a part of a clique having
2i members for some i. We denote the number of cliques by
C and the total number of groups in all cliques by G. A clique
with 2n − 1 peers is called an n-clique.

The standard greedy coin changing algorithm minimizes
both C and G [4]. From this it follows that if there are two n-
cliques in this optimal division, there cannot be any additional
k-cliques with k ≤ n. Therefore C is bounded above by
�log2(I)�+1 and G by 1+

∑�log2(I)�
k=1 k = 1+(�log2(I)�2 +

�log2(I)�)/2 ≤ 1+log2
2(I). For example, if there are 22 peers,

then we have cliques of 15, 3, and 3 peers, with the remaining
1 peer being the seed. In this case, C = 3 and G = 8.

Figure 3 shows a network of 11 peers, divided into 2 cliques
of 7 and 3 peers. The ramp-up phase up to round 3 proceeds
exactly the same way as in the algorithm with 2i peers, shown
in Figure 1. In the 4th round, shown in Figure 2, peer 2 does
not upload any chunks. We can use this additional upload
capacity to send chunk number 1 to a peer in the biggest
group of clique 2, i.e., peer 2 sends chunk 1 to peer 9 (or peer
10). For clique 2, peer 2 appears as the seed.

In round 5, clique 1 continues distribution as usual in a
group of 8 peers, with one of the peers 4, 5, 6, or 7 not having
to upload any chunk within the clique (peer 6 in the case of
Figure 3). That peer would send chunk 2 to peer number 11,
thus seeding chunk 2 in that clique. On round 5 in clique 2,
peer 9 would send chunk 1 to peer 10. Since every peer now
has at least one chunk, the ramp-up phase would be completed.

As we see from the above example, the ramp-up phase in
the general case is longer than in the case with 2i peers. This
is due to the chunks having to “trickle” through all the cliques
to the last group of the last clique. Whereas in the 2i case,
the ramp-up phase takes log2(I) rounds, the number of rounds
required in the general case is G, i.e., 5 rounds in our example.

However, the distribution phase is correspondingly shorter,
and the total length of the ramp-up and distribution phases
remains K. This can easily be verified, since on every round
during ramp-up and distribution, one chunk is transformed
from empty to active, thus needing K rounds for all K chunks
to become active.

As there are G active chunks at the end of the distribution



phase and the endgame phase completes one chunk on each
round, the endgame phase will last G ≤ 1 + log2

2(I) rounds.
Hence, the generalized version of our chunk selection

algorithm can distribute all the chunks to all the peers in at
most K + 1 + log2

2(I) rounds. This implies a delay stretch of
1 + (1 + log2

2(I))/K. As with the basic algorithm, when the
number of chunks increases, the delay stretch also diminishes
proportionally to the number of chunks.

F. Heterogeneous Bandwidth

The algorithm above assumes that the bandwidth of the
peers is homogeneous and that we can upload and download
only 1 chunk per round. We now discuss how the algorithms
are affected by realistic bandwidth conditions.

If the bandwidths of the peers are homogeneous, but asym-
metric, we have two possibilities. If the upload bandwidth
is smaller than the download bandwidth, then all peers are
already uploading chunks whenever possible in the ramp-
up and distribution phases. Hence, the upload capacity is
already at its maximum and the increased download bandwidth
remains unused. The only exception is in the endgame phase,
where peers are able to download chunks from several sources,
hence the endgame phase could be slightly shorter. If the
download bandwidth is smaller, then in the distribution and
endgame phases, all peers (that are still downloading) are
downloading on every round, hence the additional upload
capacity cannot be used. Additional upload capacity could
make the ramp-up phase shorter.

From the above, we can conclude that any homogeneous
bandwidth case even with asymmetric upload and download
bandwidths at most shortens the ramp-up or endgame phases
proportionally to the bandwidth asymmetry. Likewise, the
delay stretch is only marginally affected in these cases.

If the peer bandwidths are heterogeneous, that is, each peer
has different upload and download bandwidths, deriving a
lower bound becomes more complicated. If we normalize all
the bandwidths by the download bandwidth of the slowest
peer, the distribution will take at least K such normalized
rounds, since that is the time it takes for the slowest peer
to obtain all the chunks. Other peers could complete the
download much faster, but the complete distribution would
be bounded by K. However, this does not tell us anything
about the delay stretch for the faster peers.

To minimize the delay stretch for the faster peers, the correct
solution is to divide the peers into cliques according to their
bandwidths, by attempting to have all the peers in a clique have
roughly the same bandwidth. This may result in the number
of cliques being larger than the minimum required, which will
slightly increase the distribution time for the last cliques. These
would typically be the slowest peers, hence the additional time
would not matter much. However, by having all the peers in
a clique have roughly the same bandwidth, they are able to
perform the distribution within the clique much faster than
if there were also slow peers in the clique. Hence the delay
stretch will be smaller, on the order of 1+n/K for the fastest
n-clique. In other words, the faster peers are not affected by the

slower peers and experience performance which they would
get in a system with only fast peers. Note that since a round
is defined as the time to download one chunk, different cliques
would have rounds that are of different lengths.

Since the chunks trickle through the cliques, the distribution
time of a clique is actually dominated by the download
bandwidth of the next clique to which the chunks trickle from
the current clique. Assuming that there are no large “jumps”
in the bandwidths, this is likely to have only a negligible effect
on the overall performance of the system.

Note that a clique with high-bandwidth peers will finish
their download quickly. They can then serve as additional
seeds for the slower peers, thus improving the distribution
time and delay stretch for the slower peers. However, the
algorithm does not rely on peers remaining in the system after
completion; the slow peers will finish in the number of rounds
indicated in the worst case and if some peers altruistically
remain in the system, the slow peers can finish faster.

III. COMMUNICATION OVERHEAD

In this section, we will turn our attention to the number
of peers that a given peer must communicate with during
the distribution phase. First, we present an algorithm that
determines the composition of the different groups during the
distribution phase. We present only the case where the number
of peers I to be a power of 2; extension to multiple cliques
is straightforward. The message overhead of the algorithm is
minimal, since the initial coordination is done by the tracker
and the peers can run the algorithm independently.

A. Group Assignment

Under the above assumptions, we have I peers and log2(I)
groups of peers, such that group i has I/2i peers. We label
each peer with its initial group number. We start counting the
rounds from 0.

Intuitively, the algorithm can be described as follows. In
any given round, all peers which are in group i > 1 will be in
group i−1 in the following round. All the empty places in the
other groups will be filled with peers that were in group 1 in
that round. Half of the peers who were in group 1 will remain
in group 1. The key to the algorithm is to select which peers
from group 1 leave that group and into which groups they are
assigned. We use the following procedure for determining this.

1) On any given round, half of the peers in group 1 are
labeled with 1, and the rest have labels 2,. . . ,log2(I).
We call the peers with a given label a set. From each
of the sets, we select half of the peers arbitrarily. Set
i = 2.

2) If the smallest set has only 1 peer, go to Step 4,
otherwise select half of the peers from each set and put
them in group i.

3) Increase i by 1 and repeat step 2 with the remaining
peers in the sets.

4) When the smallest set in Step 2 has only 1 peer,
distribute the remaining peers in the order of their labels
into the remaining free places in the groups.



Round 0:
11 12 13 14 15 16 17 18

29 210 211 212

313 314

415
Round 1:

11 12 13 14 29 210 211 212

15 16 313 314

17 415

18
Round 2:

11 12 15 16 29 210 313 314

13 17 211 415

14 18

212
Round 3:

11 13 15 17 29 211 313 415

12 14 16 18

210 212

314

Fig. 4. Group assignment algorithm

On the last round (round log2(I)− 1), we simply select all
the peers with a label other than 1, in order to return to the
original situation after log2(I) rounds.

Figure 4 illustrates the algorithm for I = 16. The seed is
not shown, so only 15 peers are shown. The labels are of the
form ip, where i is the label (original group number) and p is
the number of the peer, where we assume that all peers have
initially been numbered, starting from 1.1 Note that after 4
rounds, the situation would revert to the initial situation.

B. Inter-Peer Communication

Given the above algorithm for group assignment, we now
calculate the number of peers that a given peer must commu-
nicate with during the distribution phase.

We assume that each peer knows its number and group
number at the beginning, for example by ordering the peers
according to their IP addresses. Recall that the tracker knows
every peer and can easily provide this information. Therefore
there is no need for additional coordination between the peers.

As we have shown, the assignment of peers to groups fol-
lows a cycle of log2(I) rounds. This implies that a peer needs
to communicate only with the peers that it communicates with
during one cycle. Recall from Section II-D that during the
distribution phase, peers form pairs to exchange chunks. This
means that on every round, a peer needs to communicate with
exactly one peer. Since there are log2(I) rounds in the cycle,
this means that a peer will exchange chunks with log2(I)
peers during a cycle. Because the cycle repeats, the peer can
exchange chunks with the exactly same peers during the next
cycle. Hence, a peer needs to know only log2(I) other peers.

To consider the more general case where the number of
peers is arbitrary, Section III-A shows that it is possible to ar-
range intra-clique distribution in an n-clique so that the group
assignment is restored after n rounds. Therefore, by repeating
the same distribution pattern throughout the algorithm it is
necessary for each peer to communicate only with n peers
in its own clique. Finally, on each round one of the peers in
group 1 of a clique sends to a different peer from the one it
receives from, so it communicates with one additional peer,

1This number is shown for illustration; the algorithm does not need it.

and so the required connectedness of the distribution graph is
bounded above by n + 1 ≤ �log2(I)� + 1.

IV. HANDLING CHURN

In the algorithms presented so far, we have assumed that all
the peers arrive at the same time at the beginning of the file
distribution, no new peers join during the distribution, nor do
any peers leave prematurely. We will now discuss how churn
affects our algorithms.

A. Peers Joining

New peers joining the system during the distribution are
only a small problem. We take all the peers that arrive during
a round and the tracker forms a clique out of them and adds
it as “the last clique”. If peers join the system frequently,
it might be beneficial to wait a few rounds before forming
the new clique, so that we are able to create a larger clique.
This is because each clique is a slow-down of 1 round to all
subsequent cliques, hence minimizing the number of cliques
is beneficial to all.

Note that if peers have heterogeneous bandwidths, we would
form possibly several new cliques, in order to group peers
with similar bandwidths in the same clique. This would be a
further incentive to wait a few rounds before forming the new
cliques. Since the files are typically large, the overhead of
having to wait a few rounds is offset by the better distribution
time and delay stretch. The tradeoff between how many peers
are needed for a new clique and how long to wait to get a
bigger clique, is part of our future work.

B. Peers Departing

The case of peers departing is more complicated. First,
assume that only one peer per clique leaves during a given
round. In this case, the clique has 2n − 2 peers remaining
(for some n) and can be divided into two n−1-cliques, which
then continue the distribution as usual. Peers in one of the new
cliques will not see any effect on their performance, whereas
peers in the other new clique will experience a slowdown of
1 round. The departure will slow down the distribution time
for all peers in that and subsequent cliques by one round.
The worst case is that the departing peer is the peer that just
received a new chunk. Then, one additional round is needed
to get that chunk again.

It may seem that frequent peer departures might have a
significant, adverse effect on performance, since each depar-
ture will add one round to each of the “downstream” cliques.
However, in practice, we can merge many of the new cliques
formed by departures to form larger cliques (see below for
details on merging of cliques). In this case, we try to arrange
the new cliques according to bandwidth and progress in the
distribution, so that the new, larger cliques can continue the
distribution in the most efficient manner possible. Some peers
will experience an increased delay stretch, since they might be
put in the same clique with slower peers, but other peers will
experience considerably shorter distribution times (and delay
stretches) compared to the situation where we would leave the
small cliques intact.



C. Merging Cliques

Formally, the merging of cliques happens as follows. As-
sume two n-cliques A and B and that A is “ahead” of B, i.e.,
A has more chunks than B. This can easily be verified by the
tracker. If a new peer N joins, we can merge cliques A and
B with N to form one n + 1-clique. In the new clique, the
peers from the old clique B and N will form group 1. Peers
from the old clique A which were in group i in A, will now
be in group i + 1.

Then, the distribution proceeds as per the algorithm, with
the exception that peers who were in B (and peer N ) do not
upload anything to A, since the peers in A already have all
the chunks that peers in B have. As a result, the peers who
were in B will have a gap in their chunks, since they will
start to get new chunks from A and have to start distributing
those. This gap will then be filled during the endgame phase
which will require that either one peer from A remains to send
the missing chunks to B or that they get them from the seed.
Naturally, the new peer N will have a gap from the beginning
and this needs to be filled also at the end.

Investigating this more closely and identifying under which
conditions should new cliques be formed, as well as the
overhead incurred for merging, is part of our future research.

V. RELATED WORK

One of the most popular chunk-based content distribution
systems is BitTorrent. For a detailed description of how
BitTorrent works, please see [5]. Although we do not explicitly
model or analyze BitTorrent in this paper, we base some of our
assumptions (one seed, tracker-like functionality for knowing
which peers are downloading) on it. The good performance
of BitTorrent shows that such assumptions are realistic for
building a practical, large-scale system.

Work in [1] considers a problem similar to ours. The
main differences between our work and theirs is that our
lower bound on distribution time is much tighter. They only
consider a trivial lower bound of K rounds. Furthermore, their
results, including their lower bound, appear to be the results of
simulations, whereas our work can be provably derived from
a small set of core assumptions. The results from [1] actually
confirm our theoretical results from this paper.

Biersack et al. [2] present several different algorithm for
a chunk-based content distribution system. Their approaches
are similar to ours. Their work does not address the issue of
a lower bound, nor are their algorithms as general as the ones
in this paper, since they require a specific number of children
per peer. Their best performing algorithm PTreek requires
that each peer has k children; our generalized algorithm from
Section II-E imposes no limitations on the number of peers
and achieves the same, or better performance as PTreek.

Work in [3], [8] considers the capacity of peer-to-peer
content distribution networks to serve traffic. In [3] different
chunk selection algorithms are compared in homogeneous

environments. They also claim that the differences between
algorithms are smaller in heterogeneous environments. Yang
and de Veciana [8] discuss an algorithm similar to Section II-
D, but their focus is on deriving expressions for the service
capacity of peer-to-peer networks and they do not consider
general case of arbitrary number of peers.

Schiely et al. [7] perform simulations and experiments
in a heterogeneous bandwidth environment using tree-based
distribution. Their results show that it is advantageous to
organize the high-bandwidth peers higher in the tree, similar to
organizing the peers into cliques according to their bandwidths
(as in Section II-F). Their work only covers a static case and
does not consider what happens under churn.

What is common to all the previous work mentioned above,
is that they only consider distribution time as a metric. As
argued in Section II-B, distribution time is only appropriate
in homogeneous situations, and in heterogeneous situations a
metric like the delay stretch should be used.

VI. CONCLUSION

In this paper, we have considered optimal distribution algo-
rithms for peer-to-peer content distribution. We have derived
a lower bound which applies to any chunk-based content
distribution system. We have also developed an algorithm
which gets to within 1 round of the optimal in special cases
and within 1 + log2

2(I) in the general case. The delay stretch
of our algorithm is also close to the minimal stretch. Our
algorithm does not require excessive communication; each
peer needs to communicate with 1 + log2(I) other peers. We
have also considered heterogeneous bandwidth environments
as well as churn, and have shown that our algorithm needs
only slight modifications to handle them and that the decrease
in performance is negligible.

In our future work, we will implement the algorithms from
this paper and perform a numerical evaluation of them. Our
emphasis will be on evaluating the algorithms in heteroge-
neous bandwidth conditions.

REFERENCES

[1] A. Al Hamra and P. A. Felber. Design choices for content distribution
in P2P networks. Computer Communications Review, 35(5):29–40, Oct.
2005.

[2] E. W. Biersack, P. Rodriguez, and P. Felber. Performance analysis of peer-
to-peer networks for file distribution. In Fifth International Workshop on
Quality of Future Internet Services, Barcelona, Spain, Sept. 2004.

[3] P. A. Felber and E. W. Biersack. Self-scaling networks for content
distribution. In Proceedings of Self-*, Bertinoro, Italy, May 2004.

[4] T. C. Hu and M. L. Lenard. Optimality of a heuristic solution for a class
of knapsack problems. Operations Research, 24(1):193–196, Jan.–Feb.
1976.

[5] M. Izal et al. Dissecting BitTorrent: Five months in a torrent’s lifetime.
In Proceedings of PAM, Apr. 2004.

[6] S. Saroiu, K. P. Gummadi, and S. D. Gribble. A measurement study of
peer-to-peer file sharing networks. In MMCN, San Jose, CA, Jan. 2002.

[7] M. Schiely, L. Renfer, and P. Felber. Self-organization in cooperative
content distribution networks. In Network Computing and Applications,
Cambridge, MA, July 2005.

[8] X. Yang and G. de Veciana. Service capacity of peer-to-peer networks.
In Infocom, Hong Kong, Mar. 2004.


