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Telecooperation Group
Department of Computer Science

Darmstadt University of Technology
Hochschulstrasse 10, 64289 Darmstadt, Germany

E-mail: {elmar, gerhard, jussi}@tk.informatik.tu-darmstadt.de
E-mail: max@informatik.tu-darmstadt.de

Current web applications are meant to be accessed from a single device, typically
a desktop computer. Single authoring has been proposed as a solution for allowing
web applications to be used from a variety of devices. However, single authoring
does not provide sufficient flexibility to allow a user to roam seamlessly from one
device to another. In this paper, we address this problem and present our ar-
chitecture for allowing access to web applications from a set of federated devices.
Our architecture is intended as a general-purpose solution and is able to select the
appropriate devices, synchronize the different views, and transcode documents as
needed. We also present the main features of the implementation of our architec-
ture, including an infrared positioning system which allows us to determine which
devices are available to the user.

1 Introduction

One problem of most current web applications and web sites is that they are
not authored in a device independent manner. Using a device other than
a desktop computer to render such markup will often result in a broken or
unusable rendering, or not be possible at all. Single authoring (also referred to
as device independent or platform independent authoring) has been proposed
as a solution to this problem1. Web sites are specified in a single, device
independent format, which can be used to generate adapted content for all
available client devices automatically. The vision of device independence is
that users can switch between devices at will, and find a usable and familiar
representation of their web applications on every device.

Single authoring is an interesting way of matching the research challenges
of ubiquitous computing. Ubiquitous computing envisions that computing
and interaction facilities will be generously integrated in the environment,
and available to be used casually by everyone2. Whenever a user needs the
services of a computer, she simply picks up or walks up to any device that she
finds convenient. She should not have to consider which device will render
her applications best, as this conflicts with the requirement that use is casual
and effortless.
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In such environments, it becomes clear that single authoring alone is not
sufficient. Single authoring provides a usable interface on any device, but
migrating from device to device still requires the user to authenticate herself
to the machine, and to browse to her personal web application from this un-
personalized device. If the user wishes to roam to a different device, she has
to undergo the same ordeal there. If she had already filled out parts of a web
form, she cannot roam to another device without having to repeat all input
on the new device.

In this paper, we present our solution to extend the possibilities of single
authoring to multiple, federated devices. Our approach to this problem con-
sists of four steps. The first step is to use context awareness techniques to
monitor which device a user is currently using. The second step is to store the
state of a web application on a server while it is being filled out. When a user
roams from one device to another, this is detected by the context sensors, and
the currently open web application is migrated by the server from the old to
the new device.

This enables us to dispose of the requirement that the user only browses
from one device. This is the third step of our solution. A particular focus of
our research considers scenarios where the user roams between a mobile device
and a larger, fixed device. Consider the example of roaming from a PDA to a
wall-mounted screen. Simple roaming would allow the user to move her run-
ning session from the PDA to the display, so that she gains the advantages of
the larger screen but loses the ability to make input through her PDA. If the
display features no convenient mode of input, then the quality of the presenta-
tion of the web application actually becomes significantly lower by roaming.
We therefore allow coordinated access to a web application from multiple,
federated devices, which work together to display a single web application.
So in the above example, the user would still be able to perform input on
the PDA, while receiving output and feedback from the larger, better display.
The benefit of such an approach becomes even more obvious when you replace
the PDA with a speech-based device. Interaction becomes multimodal – it
takes place through speech and a display at the same time.

A naive approach to such device-spanning presentations of web applica-
tions would be to display the full application on each device concurrently.
However, this has the major drawback that some devices may not support
all the components in the interface. For example, a large wall-display might
not have any input capabilities, and a speech-based device is unable to ren-
der images in a meaningful manner. Instead of naively displaying all of the
interface on all devices, we try to generate a user interface for each device
which explicitly takes into account that there are other devices, which might
be better suited to render certain parts of the web application. Therefore, the
fourth step in our approach is an explicit support for such splitting of user
interfaces.
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2 Architecture

Figure 1 illustrates our architecture. Sensors detect which devices (both per-
sonal and publicly available) are able to interact with the user. This infor-
mation is processed and stored by a context server implementing our context
stack model. An application server (the dialog manager) uses this information
to decide through which device or devices it will interact with the user. Then
it transcodes user interface markup to the device specific markup required by
the various clients. It also maintains a consistent state among the different
views which the different clients present.
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Figure 1. Architecture sketch.

2.1 Multi-Device Browsing

In the introduction we have proposed to use multiple devices concurrently
to render a single web application. In a way, these different devices form a
“virtual browser”. A traditional browser displays all content on one com-
puter and even in the case of multimodal browsers, such as the multimodal
browser developed by IBM and Operaa, all channels are still rendered by a
single program on a single device. When we move away from the desktop
and its single, full-featured device, to an ad hoc federation of devices that
cooperatively renders the various channels, some part of the browser has to
move to the network as well, in order to orchestrate all these devices.

We call this server the dialog manager. Its tasks are to coordinate input
and output occurring on any given channel with all other devices. In software
engineering terms, the dialog manager can be understood as the model in a
model-view-controller pattern, whose multiple views and controllers run on

ahttp://www-306.ibm.com/pvc/multimodal/

3

http://www-306.ibm.com/pvc/multimodal/


several distributed devices. We explain details of our implementation of this
concept in Section 3.

The other task of the dialog manager is to listen to context events that
tell it which devices are currently available to the user. Whenever this set
of available devices changes, the dialog manager needs to generate a new set
of sub-documents, adjusted to the new situation, from the document that it
is supposed to render. This is because some devices in the set may not be
able to render the full document. Even if they were capable of it, the result
could be more confusing than helpful. For example, a PDA, when used in
conjunction with a large screen display, would not render elements that take
up much space. Instead it would primarily render the most important input
elements, which will then be available on a device that is easy to reach as it
is already in the hand of the user.

Segmenting an HTML document in such a manner is difficult, as it re-
quires information about parts of the document (e.g., their order of impor-
tance) which are not usually provided by HTML. Therefore we have decided
to make a small number of extensions to XHTML and XForms, which al-
low single authoring a document that can be rendered on an arbitrary set of
devices. The dialog manager transcodes this source document to a set of con-
crete documents whenever its set of available devices changes. In other words,
our “virtual browser” is the “virtual target device” for which the transcoder
generates output. More information about our single authoring language can
be found in earlier publications3,4.

2.2 Context

The inclusion of information about the user and her context is a requirement
for providing the users with seamless and effortless interaction. Context in-
formation enables us to determine which devices are currently easily usable
by the user and therefore are suitable candidates for interaction.

Our context architecture provides context aware applications with a con-
text stack5, which covers the delivery of context information from the context
sensors to the applications and provides possibilities for filtering at interme-
diate stages. We present an overview of the context stack, and how it can
deliver the information we need to make decisions about how to display our
applications, below.

Figure 2 presents our context stack. It is divided into five context layers
and the application layer. Their roles are described below.

• The Context Sensor layers contains all the context sources which are of
interest to us. The task of this layer is to feed context information to the
rest of the stack. It is responsible for expressing the context information
in a suitable format and also adds metadata (e.g., a timestamp) to the
information. This metadata is passed up along the stack so that the
higher layers can decide whether that piece of information is still relevant.
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Figure 2. The Context Stack.

• The Primary Filter protects the stack from being flooded by informa-
tion. When context information is continuously delivered from a source
(e.g. a temperature reading), the application may be interested in only
a few values every now and then.

• The Fusion Module merges the context information delivered through
the Primary Filter. This can either make the context information easier
to access (for the higher layers) or get a higher-level representation of the
raw context information. Some abstracting functionality is also included
in the next higher layer.

In the application we present in this paper, the Fusion Module provides
easier access to information delivered from our user positioning systems.
In this application, the Fusion Module only facilitates access to context
information and does not change any information.

• The Context Filter is similar to the Primary Filter in that it filters
information coming from the Fusion Module. However, the Context Fil-
ter acts on a higher level and is therefore able to perform “intelligent”
filtering. For example, a positioning system may send periodic events
indicating which user is in which room. The Context Filter takes these
events and is able to generate higher-order events from them, such as
“person X entered room Y”.

• The Interpreter contains logic for implying higher-level context from
the information supplied by the Context Filter. Its task is to derive
context events which cannot be directly measured. Consider a situation
where there are many people in a room, the noise level indicates people
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speaking, and the lights are turned on. None of the individual context
“readings” alone is sufficient to infer that a meeting is taking place, but
put together, the Interpreter can deliver this result.

• The Application layer contains the application using our context stack.

3 Implementation

Our implementation of the multi-device browsing architecture has three main
components: a number of clients running a customized browser, the dialog
manager, and a sensor infrastructure that detects which clients are in the
vicinity of the user.

3.1 Browser Client

The most important task of any client in such a “virtual browser” is to render
its respective part of the web application. This aspect of the client is no
different from any normal single-device web browser. However, the client must
perform a few additional tasks that current web browsers are not capable of
without modification.

Recall our goal that roaming from one device to another should not require
anything more than walking from the first device to the second. Previously,
this type of roaming has been implemented, for example, by forwarding a
user’s X-Window desktop to whatever desktop PC is nearest to her, and is
also referred to as Teleporting6. To achieve teleporting of a browser window,
the dialog manager must be able to tell the browser on a device to start
displaying a page as soon as the user walks up to that device. So our first
extension of the browser is that it must allow the dialog manager to remotely
open or close (“push”) a browser window with a certain page.

Another problem is that normal web forms transmit the state of the form
elements (text boxes, radio buttons, etc.) to the server only when the user
presses the submit button. If we consider multiple devices to form a “virtual
browser”, then the state of form elements needs to be synchronized, to ensure
that the state shown to the user is consistent across all devices. Requiring the
user to press a button to synchronize the views would be contrary to our goal
that the interaction should be effortless. Therefore, the second new feature
of the browser is to both send status updates to and receive them from the
dialog manager whenever the state of any form element changes.

The same applies for the focus (i.e., where the cursor is) across several
views. For purely visual clients, this may seem trivial, but it is important
when a speech client is added to a visual client for multimodality. When
making speech input, the user will expect that her input ends up in the form
field that visibly has the focus. However, the visible focus is displayed by a
different client than the speech client. Therefore, focus must be synchronized
across clients as well.
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Our first implementation consists of a wrapper around the Internet Ex-
plorer, which communicates with the dialog manager and sends and receives
the required updates whenever the user makes an input to the wrapped
browser. We do not use any features exclusive to the Internet Explorer, and
it is possible to implement a similar client for other browsers.

As a speech client, we are currently implementing a similar wrapper
around IBM ViaVoice. We have also implemented clients for cell phones
based on the Java Mobile Information Device Profile (MIDP) 2.0, and PDAs
running a Java 2 Micro Edition (J2ME) Virtual Machine. We are currently
working on a browser independent client based on a Java applet.

3.2 Dialog Manager

As described above, the dialog manager is the server that receives all the
updates from the various clients. Whenever an input occurs at one of the
clients, the client sends this input to the dialog manager, which in turn relays
this update to all the other clients.

In our implementation, the dialog manager is simply a Java program with
an event loop. Updates that are received from the clients are enqueued at the
end of the event loop and processed in the order of their arrival. One other
type of event that the dialog manager has to process are the events that occur
whenever the user enters or leaves a device (see Section 3.3). Whenever such
events occur, the dialog manager calls the transcoder in order to generate
web pages adapted to the new set of devices, and pushes the outcome of this
transcoding to the devices.

When speaking about a “server” in the context of web applications, it is
important to point out that the dialog manager is not the same server as the
one that receives and processes user input when the user is done and submits
a form. The dialog manager is only responsible for synchronizing multiple
clients in a “virtual browser”, and therefore is part of the browser, not the
application server. It is even preferable to have the dialog manager running
on a device near the user, for example one of the client devices, to ensure that
feedback to input is shown with low latency.

However, we are also investigating applications beyond traditional web
applications, and allow custom Java applications to connect directly to the
dialog manager. These applications are notified of any input that takes place,
and can react to it immediately, without waiting for the user to finish her
input and press the submit button. In this context, the dialog manager acts
like a widget toolkit that is able to place its widgets across several devices.

3.3 Sensors and Context Processing

Since we rely on tracking which devices are near the user, we need cheap and
unobtrusive sensors for tracking them. We use a system consisting of three
distinct devices: tags, badges, and room receivers (see Figure 3). Badges and
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room receivers are similar to the Active Badge location system7,8. The novel
part of our system are the tags, which allow identifying objects (like displays
and other means of interaction) in the user’s field of view.

(a) Badge (front). (b) Badge (back). (c) Badge (in case).

Figure 3. A small badge. Tags use the same hardware but different software. They also
draw power from a USB cable (not shown) instead of a battery. The scale on the pictures
shows centimeters.

• Tags (or device tags) are small infrared emitters that we can attach to
both fixed and mobile devices. A tag has a unique tag identifier which it
broadcasts periodically. These broadcasts can only be received by nearby
(ca. 1.2m) receivers within direct line of sight. Therefore reception of a
tag ID conveys the context that the receiver is close to and facing the
tagged object. Tags do not receive any transmissions.

• Badges are intended to be worn by people. Badges both transmit and
receive through their infrared interface. Each badge has a unique badge
identifier which it broadcasts periodically. This transmission uses an
error resilient encoding and can be received several meters away, even if
the signal propagates indirectly by reflection. Reception of a badge ID
conveys the context that the wearer is in the same room as the receiver.

Badges also listen for tag ID broadcasts. If a badge sees a tag it appends
the tag ID to its next badge ID broadcast. Such a message conveys the
context that the badge’s wearer is in the same room as the receiver, and
is nearby and facing a tagged object.

• Room Receivers are firmly installed in a room, listen for badge broad-
casts, and relay them to the local network. They insert the room identifier
of the room they are installed in into the message. There are two distinct
messages types: “badge b seen in room r facing object t”, and “badge b
seen in room r not facing any tagged object”.

Figure 4 shows the sequence of events when a user enters the proximity
of a tagged device. The user’s badge continuously broadcasts its identifier to
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the room receiver (step 1©). When he approaches a tagged device in step 2©,
his badge starts to receive the tag’s identifier (step 3©). In step 4© the badge
relays this identifier together with its own to the room receiver, which passes
it on to the network for further processing in the context stack.

Room 
Rec

BadgeTag

Figure 4. Sequence of events in associating a device.

A network service, which corresponds to the primary filter and fusion
module in our context stack, filters out events from users we have no interest
in, and maps the IDs to more meaningful forms of identity (badge IDs to user
names and tag IDs to device names and network addresses).

After this first filter, we still have a stream of “person X in room R”
or “person X in vicinity of device D” events, which repeat once per second.
However, what we are interested in are “person X entered vicinity of device
D” and “person X left device D” events when this stream starts and ends.
This filtering is done at the context filter level. This filter also adds error
resilience. It does not send out the “enter” event until several pings have been
received, and delays the “left” event until several pings have been missing.
This filters out transmission errors and occasional lost packets in the infrared
communication.

One of the main advantages of using a context stack is that it abstracts
from the underlying sensors. Therefore we are able to employ other sensors
than the badge system for tracking the user and her devices. For example, we
use a second location system called IRIS9. It has higher accuracy than the
badge system, but is more difficult to set up.

The use of mobile devices, which are not tracked by either location system,
is detected through a simple heuristic. We can sense whether they currently
enjoy their owner’s attention by querying whether they are turned on. This
heuristic works fairly well, because most mobile devices quickly go to standby
when not used for power saving reasons.

Aggregating the context information that comes from the different sensors
is currently handled by the dialog manager, which corresponds to the appli-
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cation level in our context stack. Strictly speaking, this kind of functionality
belongs in the interpreter level, but for efficiency reasons, we have combined
the two levels in the dialog manager.

The system described in this paper is only one example for using our
context stack. For more complex examples of how the general context stack
can be used in other kinds of applications, please see Austaller et al.5.

4 Related Work

4.1 Multiple-Device Interfaces and Single Authoring

The combined use of portable and stationary devices has been explored before
(e.g. by Rekimoto10 or Myers11). However, such research usually focused on
one fixed combination of devices. We try to utilize whatever set of devices
happens to be convenient for and available to the user depending on the
context, not a single fixed set of devices.

The first attempts to use a browser to access multiple devices at once
was first investigated for remote controlling other associated devices from
one central device. The UbicompBrowser12 controls nearby devices by
clicking specialized URLs on a handheld device. For example, the URL
tv://local/station switches a nearby TV to the channel “station”. Inter-
action with this system always takes place through the handheld; associating
nearby devices to render the web page that contains the links in higher quality
was not among the goals of the UbicompBrowser.

The Small Screen / Composite Device (SS/CD) project13 renders multi-
media on multiple federated devices, which are automatically chosen from the
devices available in the user’s environment. The idea of federating devices and
selecting those devices based on the user’s context is similar to ours. How-
ever, rendering multimedia (such as a movie) is considerably different from
rendering a web page or web application.

The development of a multimodal web browser by synchronizing browsers
on multiple devices has been described by Kleindienst et al.14. However,
this project considers a more or less fixed set of devices. Authoring for this
synchronized browser is done by authoring separate versions of the same page
in the native format for each device (HTML, VoiceXML, WAP) and glue code.
This is similar X+V15, proposed by Opera and IBM, which mixes XHTML,
VoiceXML and ECMAScript in one document. In both cases the interface
has to be authored more than once, and the author has to ensure consistency
and operability manually.

Another project called WebSplitter16 also synchronizes multiple browsers,
but for a different reason: the browsers of different users are synchronized to
achieve co-browsing (the navigation of several users is synchronized).

A project by Bandelloni and Paternò synchronizes interaction between
exactly two devices17. The interface is split up into a control part and a
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visualization part. The visualization part is allowed to migrate, while the
control part is not. This system uses task models to author user interfaces.
Since these task models are device-independent, the visualization part could
migrate among different types of devices.

While our work only migrates the user interface and keeps the applica-
tion logic on a server, one might also consider migrating the whole application.
The Roam framework18 does this. It is a Java toolkit which allows writing
applications as a set of migratable components. Each component can either
be written using a device independent widget toolkit, or as multiple device
dependent versions. At runtime, Roam chooses the appropriate device depen-
dent version, or if none exists the device independent version.

4.2 Context Awareness

In the beginning of context-aware computing, exploring the possibilities and
advantages to users of this new kind of application has been at the focus
of research like the phone forwarding application built on top of the Active
Badge Location System8 and the GUIDE project19,20.

With the increasing mobility of devices, work such as the dissertations
of Schilit21 or Nelson22 explored the efficient distribution of notifications to
clients. Dey introduced the separation of concerns and reusage in the design
process of context aware systems23. Later models include work by Schmidt
and Gellersen24, and Grossmann et al.25. Recent work has studied automatic
building of context models26 and predicting context27.

In contrast to previous work, our context model explicitly formalizes the
different layers between the context sources and the application. Formalizing
the context model in layers gives us the advantage that we can use existing
modules for each layer and plug in the appropriate modules or layers on-
demand. Furthermore, our layered model, based on ubiquitous services, is
highly scalable, and can handle a large number of context sources, filter, and
context consumers (applications) concurrently.

The more refined context models have also advanced the development
of new kinds of context, although location still remains the most important
context information. There are many positioning systems which can act as
a source of location, including infrared8, cell based WLAN systems20, and
ultrasonic28,29. Some systems use RFIDs30 or triangulation of WLAN signal
strengths from multiple base stations31 as a location system.

5 Summary

In this paper we have addressed the problem of accessing web applications
through the “countless appliances pervading the workspace” paradigm of ubiq-
uitous computing, rather than a full-featured desktop PC. We have presented
our architecture which allows seamless roaming between devices. Our archi-
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tecture is integrated with our context stack implementation, which provides
the information which devices are available. The dialog manager performs
the splitting of the interface, any required transcoding, and synchronizes the
views on different devices. We have presented an implementation of our ar-
chitecture, using Internet Explorer and our infrared badges, tags, and room
receivers which act as location information sources.
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