A Replicated Architecture
for the Domain Name System

Jussi Kangasharju, Keith W. Ross
Institut Eurécom
2229, route des Crétes
B.P. 193
F-06904 Sophia Antipolis, France
{kangasha,ross} @eurecom.fr

Abstract—We propose a new design for the Domain Name System (DNS)
that takes advantage of recent advances in disk storage and multicast dis-
tribution technology. In essence, our design consists of geographically dis-
tributed servers, called replicated servers, each of which having a complete
and up-to-date copy of the entire DNS database. To keep the replicated
servers up-to-date, they distribute new resource records over a satellite
channel or over terrestrial multicast. The design allows Web sites to dy-
namically wander and replicate themselves without having to change their
URLs. The design can also significantly improve the Web surfing experi-
ence since it significantly reduces the DNS lookup delay.

I. INTRODUCTION

We propose a new design for DNS that takes advantage of re-
cent advances in disk storage and multicast distribution technol-
ogy. This design can be implemented incrementally, allowing
for a graceful evolution from the current DNS to a new system.
Our design does not change the syntax or semantics of the DNS
messages; it only affects the way the DNS database is managed.
Our proposed design has two principal features:

« First and foremost, it is highly responsive to changes in DNS
information. Being able to rapidly change DNS information and
propagate the changes is useful in solving the hot-spot problem
on the Web. Often, a single web server becomes suddenly pop-
ular and receives many more requests than it can handle. In our
design, without changing URLSs, the web server could replicate
its contents on another web server and inform the DNS system
of the alternative server. Because the new web server is imme-
diately available in the DNS to every client, many clients would
likely choose it over the old server (by using, for example, DNS
rotation), thus significantly reducing the load on the server and
improving the quality of service for everyone. Modern DNS
does not allow this because nameservers are allowed to cache
resource records.

o It can significantly reduce the DNS lookup time. The system
eliminates the need to query distant authoritative servers. Be-
cause DNS round-trip time is often a significant fraction of the
delay when accessing a Web page, our design can improve the
Web-surfing experience.

Our design is inspired by two recent technological advances.
First, disk storage has become abundant and cheap in recent
years, and the trend is expected to continue. As we shall argue in
the body of this paper, the entire DNS database can be stored in
disk of a household PC. Second, emerging terrestrial multicast
and satellite broadcast systems can efficiently distribute DNS in-
formation. We note here that these two advances abundant disk

space and efficient broadcast distribution are currently being ex-
ploited by Web cache technology in order to bring the “Web to
the edge of the network” [1].

In essence, our design consists of geographically distributed
servers, called replicated servers, each of which having a com-
plete an up-to-date copy of the entire DNS database. To keep
the replicated servers up-to-date, they distribute new resource
records over the satellite channel (or over terrestrial multicast).

In this paper we provide (i) a detailed description of the de-
sign, (i1) a detailed feasibility analysis for network traffic, repli-
cated server traffic and disk storage requirements, and (i4i) a
plan for migrating the existing DNS system to our replicated
design. We also discuss the security and fault-tolerance issues
for this new design. This paper is organized as follows. In Sec-
tion II we provide a short overview of the existing DNS system.
In Section III we describe the replicated DNS architecture. In
this section we also analyze storage and network bandwidth re-
quirements for the new architecture. In Section IV we model the
tradeoff between the staleness of the DNS information and the
traffic load at the replicated servers. In Section V we use empiri-
cal Internet data to study how much our architecture will reduce
the time it takes to resolve a hostname. In Section VI we look at
how the existing DNS system can migrate to our proposed archi-
tecture in a graceful manner. In Section VII we address security
and fault tolerance issues for the new architecture. Finally, Sec-
tion VIII concludes the paper.

II. OVERVIEW OF DNS

In this section we provide a brief overview of DNS and intro-
duce some terminology that we shall use throughout the paper.
The principle task of the DNS is to provide a mapping from the
human readable domain names to numerical IP-addresses used
to identify hosts on the Internet [2,3]. It is implemented in a
distributed database consisting of a hierarchy of nameservers.
The name space is divided into zones and each zone has two or
more authoritative nameservers that are responsible for keeping
information about that zone up-to-date. One of these authorita-
tive servers is the primary nameserver, which holds the master
file containing all the resource records for that zone. When new
hosts are added to a zone, the administrator must edit this file
manually to make the new hosts public. The other authoritative
servers (secondary nameservers) periodically fetch the contents
of the master file in order to keep their records up-to-date. These
zone transfers are done using the special zone transfer query



DZ
D3
2
I R
4
5 // Y

6 ’/ Dy ‘\‘
7 ! \

D 1 | \

o
=)

Fig. 1. A DNS query. C is the client, H is the host that the client is trying
to resolve, D1 is the local nameserver, D2 is a root name server, D3 is
an intermediate nameserver, and Dy is an authoritative nameserver for the
queried host H.

type in DNS (AXFR query type [3]).

When a client needs to obtain an IP-address for a hostname,
the query proceeds as shown in Fig. 1. In Fig. 1, C' is the client,
H is the host that the client is trying to resolve, and D1—Dy are
DNS servers.

First, the client sends the query to its local nameserver D;.
Typically this local nameserver acts as the primary nameserver
for the zone where the client resides and has all the DNS in-
formation for that zone as well as cached copies of DNS in-
formation from other zones that the local clients have recently
queried. Assuming that this server does not have a cached copy
of the information, it queries one of the root nameservers, D4
(currently there are 13 root nameservers in the world [4]) which
returns a referral to a nameserver responsible for the top-level
domain of the hostname. The local nameserver then queries this
server D3 and gets a referral to an authoritative server Dy for
the domain in which the host is located. Finally, the local name-
server queries the authoritative nameserver and gets the reply
with the IP-address of the host. When the local nameserver re-
ceives the reply it sends it to the client and caches a copy. If
another client now wants the address of the same host, the local
nameserver can immediately return the cached copy, thus avoid-
ing the need to query distant nameservers. (In this example we
assumed that all the queries from D, are iterative; recursive and
combinations of recursive and iterative queries are possible. We
also assumed that there is one intermediate nameserver between
the root and the authoritative nameserver; in reality there can be
more or less.)

III. REPLICATED DNS ARCHITECTURE

Our architecture makes use of replicated nameservers, with
each replicated nameserver storing the entire DNS database.
Before describing the architecture in detail, we perform a sim-
ple feasibility analysis for storing the entire DNS database on a
nameserver.

A. Storing the Entire Database on a Server

In 1999 standard PCs are sold with approximately 10 giga-
bytes of disk storage. If storage capacity continues to grow at
current rates, standard PCs will be sold with 20-30 gigabytes of
storage in 2000.

Now let us estimate the storage requirements for a replicated
nameserver. Since each replicated nameserver replicates all of
the DNS information on the Internet, it must have an entry for
every host in the DNS. It is possible that a hostname maps to
multiple IP-addresses, but this is not very common, so, for sim-
plicity, our analysis assumes that we need one resource record
for each existing hostname.

The Internet Domain Survey [5] reports that in July 1999
there were slightly over 56 million hostnames registered in
DNS. Using the data from their January 1997 survey we can
calculate the average length of a hostname in the DNS which is
20.07 characters. We will conservatively assume that we need
40 bytes of storage per hostname; this includes the actual host-
name, IP-address, TTL-information, and possibly other infor-
mation. In 1 gigabyte of storage we can store entries for 25 mil-
lion hostnames, thus we would need a bit over 2 GB of storage to
store the IP-addresses of all the hostnames in the DNS in 1999.

The above estimate only accounts for IP-addresses and host-
names, i.e., only for DNS A-type resource records. Note that
NS-type resource records are not necessary, since the replicated
nameservers contain information about all hosts. We will, how-
ever, need to account for other types of resource records, most
notably PTR, CNAME, MX, and SOA records. In order to get
an upper bound estimate, we will assume that there is one re-
source record of each of these types per host. In reality, only
PTR-records exists for each host. Most hosts on the Internet
do not have CNAME records, MX records exist usually on a
per domain basis, and SOA records exist only for authoritative
nameservers. According to our conservative assumptions, we
would need 10 GB of storage to store all the information in the
DNS system. In reality, this would probably be much less, on
the order of a few gigabytes, which is easily stored on the disk
of an inexpensive PC.

B. Interaction between Authoritative and Replicated Name-
servers

Our proposed architecture consists of the current authorita-
tive primary nameservers and a number of replicated name-
servers (something between 10 and 10,000) distributed all over
the world. Ideally there should be at least one replicated name-
server per region (e.g., one per country) so that clients can re-
ceive replies to queries fast. Replicated nameservers could also
be present at the local ISPs and at corporate and university net-
works.

Our replicated architecture maintains the “local administra-
tion, global availability” philosophy behind modern DNS [6].
In our replicated architecture the primary nameservers still keep
track of their own zones in the normal way, i.e., they have the
master file for the zone and administrators make changes to this
file in the usual manner. However, our architecture replaces the
secondary authoritative servers with replicated nameservers. A
replicated nameserver is responsible for all the primary name-



Fig. 2. Connections between authoritative nameservers (AS) and replicated
nameservers (RNS)

servers in its region and periodically fetches the zone infor-
mation from the primary nameservers. Naturally, a replicated
nameserver can also replace a primary nameserver, if needed.
(For clarity of presentation, we assume in the following that each
primary nameserver is associated with a single replicated name-
server; in reality the primary nameserver could interact with any
number of replicated nameservers.) In the new architecture,
the primary nameserver of a zone also pushes the information
to its closest replicated server when the information in a zone
changes. This combination of pushing updates and periodically
fetching the whole zone guarantees fast updates and guarantees
that the information is refreshed periodically in case some of the
update messages were lost in the network. (Recall that by de-
fault DNS works over UDP which offers no guarantees.) It also
provides a mechanism for replicated servers to quickly recover
from a crash. For the fetching, the replicated server uses the nor-
mal DNS zone transfer query (AXFR query type; zone transfers
are done over TCP); for the pushing the primary servers could
use the DNS dynamic update method [7].

C. Interaction among Replicated Nameservers

The replicated nameservers contain an up-to-date database
of the entire DNS database. As shown in Fig. 2, this is ac-
complished by having the replicated nameservers communicate
with each other in order to share the updates they have received
from the primary nameservers that they parent. In this section,
we outline two schemes for distributing the update information:
multicast and satellite.

IP Multicast

In this scheme the replicated servers all belong to a multi-
cast group which has a single multicast address. When a repli-
cated server receives new information from its child primary
nameservers, it sends the information into the multicast address.
Eventually all replicated servers will receive the update. The
advantage of this solution is that it does not require any special
hardware, but it needs all the replicated nameservers to have
access to multicast, e.g., to be connected to MBone [8]. This
solution works best if the number of replicated servers is not too
large and they can be equipped with multicast; also the amount
of update traffic may become an issue since the update traffic

has to share the bandwidth to the replicated nameserver with the
normal query traffic.
Satellites

Another possibility for transmitting information between the
replicated servers is to bypass the Internet and send the informa-
tion over a satellite channel. Because of the broadcast nature of
satellite and our need to broadcast the information to all repli-
cated servers, a satellite channel is a very attractive alternative
for distributing the information. The main advantages of us-
ing a satellite channel for distributing the information are the
following: (1) The update traffic does not have to travel long
distances over the terrestrial Internet; (2) information is imme-
diately available at all replicated nameservers.

We propose two possible schemes for handling the use of the
satellite channel. In the first scheme one of the replicated name-
servers is designated as the central server. All the other repli-
cated nameservers collect the updates from the primary name-
servers in their own regions, aggregate the updates, and send
them over the Internet via unicast to this central server. The
central server receives updates from all other replicated servers
and broadcasts these updates over a satellite link. This scheme
requires that all replicated nameservers be equipped with a satel-
lite receiver. This method has the advantage that there will be
no collisions on the satellite channel since only one station is
transmitting. This architecture is similar to the SkyCache archi-
tecture [1] where Web caches send access reports to a central
master server which streams the most popular Web pages over
the satellite link.

In the second scheme we have no central replicated server.
Instead each replicated nameserver has a satellite transmitter
and broadcasts over the satellite channel the updates it has re-
ceived to all other replicated nameservers. In this scheme we
have to use some method of resolving the conflicts that might
occur when two different servers want to broadcast information
at the same time. According to [9] the best medium access con-
trol protocol for bursty traffic is either random access or a sim-
ple reservation based protocol, depending whether the messages
are short or long, respectively. We expect DNS update traffic
to be bursty and the messages to be relatively short, so a sim-
ple medium access protocol, such as Aloha or Slotted Aloha, is
likely to provide sufficiently good performance.

The choice of the update scheme depends greatly on which
kinds of satellites, GEO or LEO, we are using. In order to get
global coverage with geostationary satellites, we need to use
several satellites in a coordinated fashion. Therefore it is simpler
to use the second scheme with GEO satellites. In a LEO constel-
lation, the centralized scheme works as described above since
the constellation provides global coverage; the second scheme
in a LEO constellation would most likely be analogous to ter-
restrial [P multicast.

One downside of using satellites, compared with using IP
multicast, is that we need to install satellite receivers and trans-
mitters and obtain bandwidth on the satellite channel. The first
scheme only requires a satellite receiver on the replicated name-
servers; this can be a normal satellite dish, such as the ones
used in the DirecPC-service [10]. Such dishes are relatively
cheap, around $300-$400, and provide several hundreds of kilo-
bits/second of bandwidth (DirecPC operates at 400 kbps/s). The



TABLE I
NUMBER OF UPDATES PER HOST PER WEEK FOR DIFFERENT SATELLITE

LINKS
Bandwidth Centralized Aloha Slotted
(kbit/s) Aloha
128 4.83 0.87 1.74
256 9.68 1.74 3.48
512 19.35 3.48 6.97
1024 38.71 6.97 13.93
2048 77.41 13.93 27.87

second scheme is more expensive since we need to install both
receivers and transmitters; typically this is done with Very Small
Aperture Terminals, or VSATs. An average VSAT costs be-
tween $5,000 and $10,000 making the cost of a single replicated
nameserver much higher than in the first scheme. Note, how-
ever, that in the first scheme we need also the central up-link
station which increases the total cost of the installation. These
costs are estimates for a system using geostationary satellites.
Reliability

Because having correct information in the replicated name-
servers is vital to the DNS system, we must ensure a reli-
able means of distributing the update messages. This means
that some sort or reliable multicast protocol must be employed,
whether terrestrial or satellite multicast is used. Protocols us-
ing Forward Error Correction (FEC) along with a return channel
(which is clearly available for replicated DNS) can efficiently
provide reliability [11, 12].

D. Traffic Analysis for Communication among Replicated
Servers

Assuming that each resource record is 40 bytes and that the
central master replicated server is using a 128 kbit/s satellite
channel to broadcast information to other replicated servers,
we can send information about 400 modifications every sec-
ond. Assuming that these modifications are spread uniformly
over all hosts, the information about a host could change every
110,000 seconds on the average, or once per 1.3 days. This is
less than the default time-to-live period of 2 days in the popu-
lar BIND-nameserver. We can therefore safely assume that the
rate of change of DNS information is far less than what can be
handled over a 128 kbit/s satellite link.

Table I shows the number of updates per host on the average
for different satellite link bandwidths. We show the numbers for
the centralized architecture and the distributed architecture us-
ing both pure Aloha and slotted Aloha. Recall that the through-
put for Alohais 18 % and for slotted Aloha itis 36 % [9]. In [12]
it is reported that using the FEC-protocol from [11] we can ex-
pect to use about 10 % extra bandwidth due to FEC.

The numbers in Table I assume that the changes are evenly
divided over all hosts. In reality this is unlikely, since most
hosts do not change their DNS information at all. The hosts
that rapidly change their associated DNS information may re-
quire high rates of change. Assuming that 90 % of the hosts on
the Internet are “stable”, i.e., they never change their DNS in-
formation, the remaining 10 % of the hosts could change their

DNS information 48 times per week using the 128 kbit/s link;
this corresponds to roughly 7 changes per day, or one change ev-
ery 3.5 hours. Using a 1 Mbit/s link, the rapidly changing hosts
could change DNS information 55 times per day, or little over
twice an hour on the average.

E. Resolving DNS Queries

We discuss two variations for resolving DNS queries. Nei-
ther variation requires any changes in client DNS software. In
the first variation, a client directly queries its replicated name-
server. (Thus, the client configures the client DNS software
to point to its parent replicated nameserver rather than to a lo-
cal nameserver.) Because the replicated nameserver contains a
complete and and up-to-date copy of the entire DNS database,
the replicated nameserver will be able to directly return the re-
quested RRs. Furthermore, because the replicated nameservers
are “close” to the client, the responses should come back fast.

One problem with the variation just described is that request
load on a replicated server can be high if the load is not bal-
anced over a large number of replicated servers. Our second
variation for resolving DNS queries makes use of the existing
infrastructure of local nameservers. In this variation, a client
resolves a hostname as follows. First, the client sends a DNS
query to its local nameserver. If the local nameserver is also
the primary nameserver for the local zone and the query is for a
local hostname, the local nameserver replies with the requested
information. If the query is for a remote hostname and the local
nameserver does not have the information cached, it sends the
query to the nearest replicated nameserver. This phase is similar
to a nameserver sending a query to a root nameserver with the
exception that in our architecture the closest replicated server is
typically well-defined; in normal DNS the nameservers measure
round-trip times to other nameservers and make decisions based
on past experience. (If the local nameserver has several repli-
cated nameservers to choose from, it can use round-trip time
measurements to select the closest one.) The replicated name-
server replies with the requested information, which the local
nameserver caches and returns to the client. This scheme has
the advantage that if the information is not cached, the query is
sent to a replicated nameserver in the same region as the client
instead of being sent possibly to the other side of the world as
can happen in normal DNS. This greatly reduces the latency that
a client observes when performing DNS queries.

In this second variation, a replicated nameserver receives less
request traffic because many client requests are filtered by the lo-
cal nameserver. In particular, all queries for a local host (i.e., in
the same zone as the requesting host) and all queries for cached
RRs are filtered. The downside of the scheme is that RRs in
the nameserver caches can be stale (as is the case in the current
DNS). Because one of our principle goals is to provide a DNS
architecture that is highly responsive to hostname changes, the
issue of staleness is important. In Section IV we will study in
detail the tradeoff between the amount of traffic at a replicated
server and the probability of receiving a stale RR.

F. Arpanet Name Resolution

This architecture is a step towards the old Arpanet
HOSTS. TXT -solution [6] with some important differences. In



Arpanet, the HOSTS . TXT file, which was maintained on a sin-
gle computer at Stanford Research Institute (SRI), contained the
name-to-address mappings for all hosts on Arpanet. Adminis-
trators e-mailed changes to SRI and periodically transferred the
HOSTS. TXT file over FTP. As Arpanet grew, several problems
with this centralized solution emerged. First, the traffic load on
the computer holding the master file became unbearable. Sec-
ond, maintaining the consistency of the file across the network
was difficult. Third, as more hosts were added to the Arpanet,
the HOSTS . TXT occupied more and more storage in the server.
In summary, the centralized mechanism didn’t scale. Instead, a
new system was designed to allow local administration of the
data yet make the data globally available; this was the modern
DNS.

Our replicated architecture takes the old HOSTS.TXT-
approach by collecting rather than partitioning the entire DNS
database. However, because of its replicated structure, our ar-
chitecture scales well. When the modern DNS was designed in
the early *80s disk storage was expensive; therefore maintaining
a replicated database of all hosts on the network was infeasible.
Nowadays, disk storage is cheap, and as we previously argued,
it is quite feasible to construct a replicated database for all of the
information in DNS.

IV. STALENESS VS. TRAFFIC AT REPLICATED
NAMESERVERS

In this section we suppose that clients direct their DNS
queries to local nameservers, and a query is only forwarded to a
replicated nameserver when there is a “miss” at the local name-
server (i.e., the second variation as described in Section III-E).
Passing queries through local name servers can significantly re-
duce the query traffic at the replicated servers. However, be-
cause the local nameserver caches RRs, there is a risk that the
local nameserver will frequently reply with stale RRs.

When a Web site with a particular hostname is moved or
copied to a new location, the RRs associated with that hostname
change. If the Web site knows its locations will change in ex-
actly ¢’ seconds, then the TTL for the RRs can be set to the re-
maining lifetime of the RRs. This ensures that local nameservers
never deliver to clients stale RRs for the site. However, in order
to respond to randomly occurring hotspots, many sites will want
to make spontaneous changes to their resource records. If the
TTL for the RRs of such a site is set to a large value there is a
risk that nameservers caching the RRs will frequently respond
with stale RRs. On the other hand, if the TTL is set to a small
value, then a large fraction of the queries will be forwarded to
the replicated server. In this section we quantify this tradeoff.

For simplicity, we consider only the clients under a single lo-
cal nameserver accessing one resource record (RR). This sce-
nario is depicted in Fig. 3. The local nameserver either has
a cached copy of the resource record, or has to query a repli-
cated nameserver for an up-to-date copy of the resource record.
When the local nameserver queries the replicated nameserver,
the replicated nameserver indicates a time-to-live value in the
reply. We consider the following two criteria:

1. The fraction of queries from the clients to the local name-
server that receive a stale RR because the RR has changed.
2. The number of extra queries to the replicated server which

Clients

Replicated
NS

Fig. 3. Clients, Local Nameserver (NS), and Replicated NS

Modification Times

| L L L |
T T
=

Client Requests

- T——

—

Fig. 4. Client Requests and Modification Times

only serve to validate the cached copy at the local nameserver.

Denote the rate at which clients request the resource record
as A\. When there is a large number of independent and active
clients under the nameserver, we can reasonably assume that the
inter-request times are exponentially distributed. Denote by T
the amount of time for which the local nameserver is allowed
to cache the resource record. Finally, let p denote the rate at
which information in the RR changes. We assume that the times
between modifications are exponentially distributed.

Fig. 4 shows the client queries and modifications to the re-
source record. The modification times are at the top and client
queries are at the bottom. The boxes, each of length 7', indicate
the period during which the RR is cached at the local name-
server. The shaded boxes indicate the periods during which the
clients receive a stale RR from the cache because the RR has
changed.

We now calculate what fraction of requests are forwarded to
the replicated nameserver. Given the above assumptions, the ex-
pected time between successive requests to the replicated name-
serveris T + % Therefore the rate of requests to the replicated
server is —1{ Given that the total rate of requests is A, the

T+
fraction of requests forwarded to the replicated nameserver is
1 1
A= . 1
T+§/ AT +1 )

Fig. 5 shows the fraction of queries forwarded to the replicated
nameserver for different A and 7". In Fig. 5(a) we show faster
request rates and TTLs up to one hour and in Fig. 5(b) we show
the slower request rates and TTLs up to 6 days.

From Fig. 5(a) we can see that if the request rate is high
enough, on the order of one request every 10 seconds (A =
10~1), even a short TTL-value, such as 5 minutes, is sufficient
to satisfy most queries from the cache at the local nameserver.
Fig. 5(b) shows that if the request rate is very low, the TTL-value
has to be extremely high to provide any measurable reduction in
query traffic to the replicated nameserver. The situation shown



Fraction of queries forwarded to replicated nameserver

Fraction of queries forwarded to replicated nameserver

— =107 \ -- a=10"
0.9 — =102 09p =107
! -- =107 N — =107
0.8} 2=t 08y 3 - - =102
Ay
L 0.7 \
0.6
N
05 AN
\\
04 Y
03 Tl
0.2 :““\—;.;\_»_
0.1‘*
I
0 TR T T 00 ar S5 a0 0 100000 200000 300000 400000 500000
0 500 1000 1500 2000 2500 3000 3500 4000 )
Time—to—Live T in seconds Time-to-Live T in seconds
(a) Short TTL-values (b) Long TTL-values
Fig. 5. Fraction of queries forwarded to replicated nameserver
. A=0.1 100 =01
810 e —— 81 ]
151 T T S I -
g I - g T
Sl - i ° |, T T
8 ! Tl P i
=1 o " -
o a -~
81 2 /
° /
> o
s g107 g
%
o 2
£ ]
24 S10°
4] €10 R
2 8
5 iy
> 510 ;1—1075 ]
° c --- p=10
s1 S 5
g g S—— p=10
o ©
E1o7 ; : ; : 10 4 6 8 10
0 100 200 300 400 500 ) )
Time-to-Live T in seconds Time-to-Live T in seconds x 10"
(a) Rapid changes (b) Slow changes over long TTL
» A=0.1 21=0.0001
$10 g10° ! ! ! .
2 S
2107 T E 5
4 - O 404
3 e [ 510
s b . DU 3
g10'f IR E g
g T 2
s - T40°
510 4 10
£ / 2 /
=3 = ’
Big9) 3 I
e g10° f/
8 7| 8 !
2 5] 2 E
%10 — pet0? g —  p=10 j
S p=10 S0t p=107"4
S s -6 <] 6
510 == }1=105 4 S - - p:105
£ ---  p=10" 5 - w=10"
£ 107 . , ; £ 107 . . . ;
0 100 400 500 0 100 200 300 400 500

200 300
Time-to-Live T in seconds

(c) Slow changes, popular RR

Time-to-Live T in seconds

(d) Slow changes, unpopular RR

Fig. 6. Fraction of stale resource records delivered to clients
in Fig. 5(a) represents a scenario where the resource record is interval is
very popular and the product AT is large, i.e., the expected num-
ber of requests in a TTL-period is high. Fig. 5(b) corresponds to
the case where the resource record is not very popular.

E[Nr_y)+] _ME[(T-Y)7"]
1+AT 14T
We can explicitly calculate the expectation:

2

We now calculate the fraction of requests that receive stale
RRs. Let Y denote the time between successive modifications.
Within each interval of expected length 7'+ &, E[N, (T—v)+] e~
quests see stale resource records, where IV, is a Poisson process
with rate A. Thus the fraction of stale resource records within an

T
B[(T - ¥)*] / (T — e vdy .

1
;(efuT + ,U/T — 1)



— h=n
A=10p ]
~ - A=100n

4
©

N~
N

o
Y

Fraction queries to replicated server
S © o ©
vow s o

o

2o

Fraction stale RRs

Fig. 7. Comparing fraction stale RRs and fraction queries to replicated server

The fraction of stale resource records is then

A (e‘“T+uT—1) 1 (e‘“T+uT—1>

1+ AT [ T Iy 1

“

If7T >> %, i.e., we have a large number of requests in one
TTL-period (AT is very large), then A has very little effect on
the overall fraction of stale resource records. In Fig. 6 we show
the fraction of stale RRs delivered to the clients in four different
scenarios. In Fig. 6(a) and Fig. 6(b) we show rapidly and slowly
changing RR, respectively and Fig. 6(c) and Fig. 6(d) compare
the effects of A on slowly changing RRs.

Assuming that we would like to have a fraction of less than
1073 stale RRs, we can see from Fig. 6(a) that this requires us to
effectively disable caching at the local nameserver for RRs that
change on the average more often than once every 3 hours (u =
10~%). When the resource records are changing more slowly, as
is the case in Fig. 6(b), we can see that even for RRs changing
on the average every 115 days (u = 10~7), the maximum TTL,
in order to have the fraction of stale RRs below 1073, is around
12 hours. Figs 6(c) and 6(d) show that the more popular the RR
is, the larger the fraction of stale RRs is (corresponding curves
in Fig. 6(c) are higher than in 6(d)). With longer TTL-values,
the fraction of stale RRs becomes insensitive to A, because the
increase in 7" increases the product AT'.

In Fig. 7 we compare the fraction of stale RRs and fraction
of queries to the replicated nameserver. The fraction of stale
RRs is on the x-axis and the fraction of queries to the replicated
nameserver is on the y-axis. We fix g and A (¢ = 0.001 and
A € {0.001,0.01, 0.1}; different values for y and A give similar
results) and vary T to obtain the curves. As we can see from
Fig. 7, to get the fraction of stale RRs below 10~3, we will have
to forward around 65 % of the queries to the replicated name-
server, even in the case where the RR is requested frequently
compared to its rate of change.

From these results we can conclude that replicated name-
server should allow the local nameservers to cache RRs for only
short periods of time, on the order of a few minutes. This is
because longer TTL-values increase the fraction of stale RRs
considerably, and even a short TTL-value provides a sufficient
reduction in query traffic to the replicated nameserver for popu-
lar RRs.

TABLE I
DNS QUERY RESULTS FOR UNPOPULAR SERVERS

Site | Average | Maximum % of lookups
latency latency exceeding 4 seconds
FR 1.79 47.44 14.4
FI 1.85 42.2 15.5
UsS 2.10 75.4 6.6
All 1.90 75.4 12.5

V. LATENCY IMPROVEMENT

In this section we study how much our proposed architec-
ture will reduce the time it takes to resolve a hostname. Be-
cause resolving some hostnames over the existing DNS requires
contacting distant servers, a DNS lookup may introduce a sig-
nificant delay into Web surfing and other network applications.
To evaluate the delay in the existing DNS, we performed DNS
lookups using the host- and dnsquery-commands on several
different hostnames all over the Internet. In order to evaluate the
effects of DNS lookups in a typical Web surfing context, we di-
vided the hosts into two groups: popular and unpopular hosts.
The popular hosts were the 35 most popular Web servers on the
Hot100-list [13]. For the unpopular hosts we chose 200 Web
servers randomly from 33 different top-level domains from the
results of the Netcraft Web Server Survey [14]. We chose to
study these two groups separately since the popular hostnames
are likely to be found in the local nameserver and therefore the
actual DNS architecture in the background has no effect. The
less popular hostnames require the local nameserver to go out
on the network to find the requested information. We performed
the queries from three sites, one in France (FR), one in Finland
(FI), and one in the US west coast (US). We discarded queries
which either resulted in an error or a timeout (as reported by the
command being executed).

A. Unpopular Servers

Table II shows the results for the unpopular Web servers. We
show the average and maximum query latencies and the percent-
age of requests exceeding 4 seconds. We can see that the average
DNS lookup latency is around 2 seconds and that at the worst it
can take over a minute to resolve a hostname. We also see that
a significant number of requests takes over 4 seconds to resolve
which in the context of Web browsing can induce a significant
delay.

In Fig. 8 we show the distributions of the query latencies for
the unpopular servers at all three sites.

B. Popular Servers

In Table III we show the average and maximum DNS query
latencies in seconds from all the three test sites as well as the
percentage of queries that took longer than 2 seconds to resolve.
The last line shows the averages over all three sites. We can
see that the average latencies are very low which is likely the
result of the requested information being present in the local
nameserver’s cache. We also see that, at worst, the latency can
be up to several seconds but that such events are relatively rare.



60 T T T T 60

Number of hosts
w
8
Number of hosts
w
8

40

Number of hosts
w
S

2 3
Duration in Seconds

2 3
Duration in Seconds

2 3
Duration in Seconds

(a) France (b) Finland (c) US
Fig. 8. DNS query latency histograms for unpopular servers
90 % 90
80 80 80
70 70 70
" 60 ” 60 " 60
@ k73 @
2 4 2
<50 £50 £50
5 5 5
5 5 5
£40 S40 £40
5 5 5
z z z
30 30 30
20 q 20 20
10 I 1 10 10
0 Liml L L L L L L 0 Ll.l“ F TR — L L L L L 0 Ilh o L L L L L
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Duration in Seconds Duration in Seconds Duration in Seconds
(a) France (b) Finland (c) US
Fig. 9. DNS query latency histograms for popular servers
TABLE III

DNS QUERY RESULTS FOR POPULAR SERVERS

Site | Average | Maximum % of lookups
latency latency exceeding 2 seconds
FR 0.31 4.53 29
FI 0.14 1.5 0
UsS 0.22 3.8 29
All 0.22 4.53 1.7

In Fig. 9 we show the distributions of the query latencies for
all the three sites.

C. Replicated Server

We also ran experiments on our local nameserver and the av-
erage time to resolve a hostname was 30 ms. The round-trip time
to the national Web cache of France from our network is on the
order of 20 ms, thus the total time to query a hostname at the
replicated nameserver (assuming it was placed at the same level
as the national Web cache) would be on the order of 50 ms. This
is areasonable assumption since, even though the database at the
replicated nameserver is larger than the one on our local name-
server, the replicated nameserver would be running on a more

powerful machine (our local nameserver runs on a SPARCsta-
tion 10). If the replicated nameserver was placed closer to the
client, the lookup latency would be shorter, since the round-trip
time to the replicated nameserver would be much smaller.

We can conclude that the speed-up from using a replicated
nameserver would be around one order of magnitude for popular
hosts and two orders of magnitude for less popular hosts. This
speed-up can significantly improve the Web surfing experience.

VI. GRACEFUL MIGRATION FROM DISTRIBUTED TO
REPLICATED SYSTEM

Because it is unreasonable to assume that everybody would
be able to upgrade their systems overnight to switch from the
“legacy” DNS system to the replicated system, we need to be
able to deploy the system incrementally and transparently. In
this section we outline one of many possible migration strate-
gies.

In the early stages of deployment, a relatively small number
of zones could replace their secondary or primary nameservers
with a replicated nameserver. Using satellite distribution or mul-
ticast IP, the replicated nameservers would share with each other
the up-to-date RRs for which they are responsible. Of course,
when only a subset of the local ISPs participate, a replicated



nameserver will not be able to authoritatively answer queries
for all hostnames. When a replicated server is unable to an-
swer a query, it will have to resort to the legacy DNS system
to obtain the RR, i.e., it will have to query a series of name-
servers, as shown in Fig. 1. Whenever a replicated nameserver
obtains a RR as a result of a DNS query, it should cache that
RR until the TTL of the RR has expired. Additionally, using
the satellite or multicast IP infrastructure, we propose that the
replicated nameservers share with each other the RRs that they
have recently requested from the legacy DNS system. In this
manner, most of the “popular” hostnames will be cached in the
replicated servers, even if a given replicated nameserver han-
dles relatively little DNS traffic. When a RR is about to expire,
areplicated server can refresh the RR and then distribute it to all
the other replicated servers. Note that this strategy is similar to
the Sky Cache model where the participating caches pool their
user communities in order to improve the performance. The ad-
vantage of this scheme is that it is easy to deploy a few replicated
nameservers at the leaves of the network, but the disadvantage is
that the replicated database will only contain a small (but widely
requested) part of the global DNS database. In addition, only
participating zones are able to distribute rapidly changing DNS
information; non-participating zones would have to rely on the
TTL-values to force the replicated nameservers to update their
databases.

Content providers would have an incentive to place their host-
names in zones with participating ISPs (i.e., an ISP with a a
replicated server), because a participating ISP will be able to
quickly distribute DNS information to all other participating
ISPs, even if the hosts are moved or replicated. Furthermore,
users will have an incentive to subscribe to participating ISPs,
since the databases in the replicated ISPs contain most of the
popular DNS RRs. These incentives should provide sufficient
motivation for the non-participating ISPs to become participat-
ing ISPs. Once all the ISPs participate, the legacy system (in-
cluding the root servers) can be disabled, and the full benefits of
the replicated DNS system can be reaped.

A. Gathering Information

If a replicated nameserver replaces a secondary nameserver
for a zone, the replicated nameserver can perform zone trans-
fers from the primary nameserver and thus obtains a copy of
the resource records for that zone. Therefore the problem of
gathering the DNS information reduces to getting information
from zones that are not represented by a replicated nameserver.
The simple solution is to contact one of the authoritative name-
servers of such zones and try to perform a zone transfer. If
this succeeds, the replicated nameserver can periodically per-
form the zone transfer in order to keep the records up-to-date.
In this situation, we lose the ability to track rapidly changing
information since the primary nameserver does not inform the
replicated nameserver of changes. Some zones, however, do
not allow other than the secondary nameservers to perform zone
transfers from them. From these zones we cannot get informa-
tion, except by querying separately for each resource record. In
practice this means that every time the replicated nameserver
receives a query for a host in such a zone, the replicated name-
server queries one of the authoritative nameservers and caches

the reply like a normal local nameserver. The replicated name-
server can then refresh the resource record when it is about to
expire. We will thus obtain from uncooperative zones all the re-
source records that clients actually request; this provides us with
enough information.

This method of gathering information presents us with the
problem of keeping it up-to-date. All RRs collected from unco-
operative zones will have the normal DNS TTL-stamp and the
replicated nameservers can store the RR until the TTL expires.
If the TTL is very short, the replicated nameservers should not
send that RR to the other replicated nameservers. This is in
order to avoid sending an almost continuous stream of update
messages which would be the result if the replicated nameserver
needs to access the same RR again in the near future. Send-
ing the updates would place an unnecessary burden on the other
replicated nameservers which would have to store the RR and
shortly after remove it because its TTL had expired. As a re-
sults, the replicated nameservers will contain all the RRs from
the zones they are responsible for as well as the slowly changing
RRs from other zones.

VII. SECURITY ISSUES AND FAULT TOLERANCE

Our architecture has one serious security hole, namely, it cre-
ates a new possibility for DNS spoofing. DNS spoofing goes as
follows.

A user (pc.client.com) wants to access the Web servers
of two competing companies, www.company—-a.com and
www.company—-b.com. First, the client issues a DNS
lookup for the address of the first server (www.company—
a.com). The request goes to client’s local nameserver,
ns.client.com, which does not have the answer. The
local nameserver contacts the nameserver of Company-A,
ns.company-a . com, and asks for the IP-address of the Web
server. Company-A’s nameserver replies with the address and
includes in the reply a false A-record for the Web server of
Company-B, www . company-b. com. The reply, including the
false address, is cached at the local nameserver and if the client
tries to access www.company—-b.com while the mapping is
still cached, the local nameserver will return the false map-
ping. The client is thus redirected to whatever server the name-
server at Company-A claimed was the Web server of Company-
B. This problem stems from the local nameserver’s willing-
ness to accept information that it did not ask (the IP-address
of www.company-b.com). Modern versions of nameservers
(e.g., BIND) block this security hole by not accepting RRs they
have not asked.

Our architecture is vulnerable to this type of attack if repli-
cated nameservers accept all information they receive from other
nameservers (primary or replicated). In this case, the attack
would be very simple. The administrator of a primary name-
server would only have to send a false mapping to the repli-
cated nameserver and the false information would immediately
be propagated to everyone on the network. If a client were to re-
quest this information, it would receive both the real information
(given by the real primary nameserver) and the false information
(given by the imposter). The client could easily choose to use
the wrong address instead of the correct one.

To counter this problem, the replicated nameservers must ver-



ify that the RRs they receive come from a server that is autho-
rized to provide this information, e.g., the primary nameserver
of that zone. We propose the following solution. Each replicated
nameserver is responsible for a zone (each of these zones may
contain several DNS zones) and can only provide information
for that zone. When a replicated nameserver receives updates
from a primary nameserver or another replicated nameserver, it
must verify that the server sending the original update is autho-
rized to do so. This requires that we extend the DNS SOA-type
RR to include the zones handled by replicated nameservers. In
addition, to avoid replicated nameservers from sending RRs for
non-existing zones, these extended SOA-RRs need to be signed
by a trusted certification entity using the DNS security exten-
sions [15].

A. Fault Tolerance

We must have a way of recovering from replicated name-
server crashes. These crashes present us with two problems.
First, clients that were using the crashed server must be redi-
rected to another server. Second, when the server comes back
on-line, it will have a stale copy of the database and it must get
a fresh copy.

To address the first problem, we propose that all local name-
servers be configured with the addresses of several replicated
nameservers. This is similar to configuring a local nameserver
with the addresses of all 13 root DNS servers in modern DNS.
If the client does not get a reply from a replicated nameserver
even after retrying a few times, it can assume that that server
has crashed and can switch to another replicated nameserver. In
this situation the crash of a replicated nameserver is analogous
to the crash of a root DNS server. If the replicated nameserver
is acting as the local nameserver for the client, then the local
clients will be without DNS service. This situation is identical
to the crash of a local nameserver in modern DNS and can be
handled by installing several normal local nameservers in addi-
tion to the replicated nameserver to be used as backups. These
local nameservers would have the addresses of other replicated
nameservers and could provide name resolution service to the
clients.

The second problem, that of stale information, is more seri-
ous and more difficult to handle. When the crashed server is
back on-line it must obtain a fresh copy of the database. Be-
cause the database is on the order of gigabytes, it is infeasible
to download the whole database from another replicated server.
We propose the following method for bringing the database up-
to-date. First, all the update messages are tagged with a unique
identifier (e.g., a counter) in addition to being tagged with the
identity of the sender of the update message. This sender is the
primary nameserver that owns the resource record, not the repli-
cated nameserver that distributes it to the others; this is required
to causally order successive modifications. When a server re-
covers from a crash, it knows the number and sender of the last
update message it has received, and can request another repli-
cated nameserver to send it all the update messages from that
primary nameserver since that “time.”

The above scheme is sufficient when the replicated server is
off-line for a short period of time and we only need to recon-
struct the parts that have been updated during that period. In

some cases, however, this method may be costly, since the repli-
cated nameserver has to check for updates for all the DNS zones
in the world. Also, should a replicated nameserver crash so se-
riously that the entire database is corrupted and must be rebuilt
from scratch, we propose the following strategy. In this strategy,
the replicated nameserver first performs zone transfers from the
primary nameservers in its zone. When the replicated name-
server receives a query for a RR it does not have, it contacts
another replicated nameserver and asks for the RR. It also per-
forms a zone transfer for the zone containing the RR from the
other replicated nameserver. As the replicated nameserver re-
ceives updates from other replicated nameservers, it can also
perform zone transfers for the zones concerned. This way, the
replicated nameserver will eventually obtain a copy of all the
RRs.

VIII. CONCLUSION

In this paper we have presented a new design for managing
the DNS database that takes advantage of recent advances in
disk storage and multicast distribution technology. Our design
is based on replicating the entire DNS database on geographi-
cally distributed servers, called replicated servers. Our design
has two main features: (i) It is highly responsive to changes
in DNS information and (ii) significantly reduces DNS lookup
time. We have closely studied the issues related to storing the
DNS database and evaluated the tradeoff between the stale-
ness of DNS information and traffic load on the replicated DNS
servers.

REFERENCES

[1] “SkyCache, Inc.,” http://www.skycache.com.

[2] P. V. Mockapetris, RFC 1034: Domain names — concepts and facilities,
Nov. 1987.

[3] P. V. Mockapetris, RFC 1035: Domain names — implementation and
specification, Nov. 1987.

[4] “DNS root servers,’
root—-servers.txt.

[S] “Internet domain survey,” Jul. 1999,
http://www.isc.org/ds/.

[6] P. Albitz and C. Liu, DNS and BIND, O’Reilly & Associates, Inc., 1994.

[71 P. Vixie, S. Thomson, Y. Rekhter, and J. Bound, RFC 2136: Dynamic
Updates in the Domain Name System (DNS UPDATE), Apr. 1997.

[8] H. Eriksson, “MBONE: The multicast backbone,” Communications of the
ACM, vol. 37, no. 8, pp. 54-60, Aug. 1994.

[9] H. Peyravi, “Medium access control protocols performance in satellite

communications,” IEEE Communications Magazine, vol. 37, no. 3, pp.

62-71, Mar. 1999.

“DirecPC home page,” http://www.direcpc.com/.

J. Nonnenmacher, E. W. Biersack, and D. Towsley, “Parity-based loss

recovery for reliable multicast,” IEEE/ACM Transactions on Networking,

vol. 6, no. 4, pp. 349-361, Aug. 1998.

M. Jung, J. Nonnenmacher, and E. W. Biersack, “Reliable multicast via

satellite: Uni-directional vs. bi-directional communication,” in Proceed-

ings of KiVS’99, Darmstadt, Germany, Mar. 1999.

“100hot sites,” http://www.hot100.com.

ftp://rs.internic.net/netinfo/

[10]
(1]

[12]

[13]

[14] “Netcraft web server survey,” http://www.netcraft.com/
survey/.

[15] D. Eastlake, RFC 2535: Domain Name System Security Extensions, Mar.
1999.



