

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
TAMODIA’05, September 26–27, 2005, Gdansk, Poland.
Copyright 2005 ACM 1-59593-220-8/00/0000…$5.00.

Executable Task Models

Tobias Klug
t.lastname@sap.com

SAP AG
SAP Research CEC Darmstadt

Bleichstraße 8, 64283 Darmstadt

Jussi Kangasharju
firstname@tk.informatik.tu-darmstadt.de

Department of Computer Science
Darmstadt University of Technology
Hochschulstr. 10, 64289 Darmstadt

ABSTRACT
Current task modeling techniques have a shortcoming in that
they only use the model at design time. This means that the
information contained in the model has to be embedded in-
to the application and makes the task model static. In this
paper we propose using the task model at runtime, in order
to simplify producing applications which adapt to the acti-
ons of the user. In particular, we extend the ConcurTaskTree
(CTT) notation to allow dynamic execution of a task model.
A key feature of our extension is that it gives semantics for
the use of information exchange operators. Our second con-
tribution is an implementation of our dynamic task model.
We present a prototype application which shows how the in-
teractions with the task model at runtime allow us to produce
a dynamic and context aware user interface.

Author Keywords
task modeling, dynamic UI construction, proactive user in-
terfaces

ACM Classification Keywords
H5.2 User Interfaces – Graphical User Interfaces (GUI),
D2.2 User interfaces – Dynamic Construction

INTRODUCTION
The user interface is one of the most critical factors for the
success of a software product. If the users are not satisfied,
the software risks being rejected. One of the main focus
points in HCI research is to find ways of easing the deve-
lopment of easy-to-use user interfaces. One key step towards
this goal is understanding the structure of the tasks that the
user needs to do while using the application.

Task modeling is the art of capturing the tasks and their tem-
poral relationships and dependencies on one another. Task
models can be used at different stages of the development
process, in analysis, design, and implementation phases. In
the analysis phase, they can be used as a communication tool

between developers and users that allows both parties to ex-
press their understanding of the future work process [2]. Du-
ring the design and implementation phases, task models can
be used as a starting point for the development of concre-
te user interfaces. Task models can also be used for quality
assurance, because the application can be checked against
the underlying model.

So far most approaches for using task models in the con-
struction of user interfaces have followed a transformation-
based approach. In this approach, the task model is trans-
formed into more concrete representations of the user inter-
face until an implementation for a specific platform, envi-
ronment, or user is reached. At this point, however, all in-
formation about the original task model is lost. This has two
consequences: First, all the information contained within the
task model has to be compiled into the user interface. This
can be very complicated. Second, a lot of flexibility is lost,
because it is no longer possible to make changes to the task
model at runtime to adapt the application to specific circum-
stances.

In highly dynamic environments, such as mobile and ubi-
quitous computing scenarios, these points become severe di-
sadvantages. Mobile users tend to perform several tasks at
the same time, interrupting and resuming a task repeatedly,
leading to very complex temporal relations.

We believe that the correct solution for these problems is to
use a dynamic version of the original task model which can
be executed at runtime. This approach has several advanta-
ges. First, it allows applications to stay coherent with the
workflow by accessing the runtime task model. Second, the
task model can be modified on demand by performing the
necessary changes to the task model in memory. Neither of
these is possible with the traditional, statically compiled-in
task models.

In this paper we present a system which is able to load a
task model at runtime and allows an application to access
and manipulate this task model. We present our extensions
to the existing CTT notation and describe the semantics of
our extensions. We also present an implementation of our
executable task model and show one primitive and exempla-
ry way of using it in a hospital ward round scenario.

This paper is structured as follows. First we review some re-
lated work in the area of task modeling. Then we present our

1

TAMODIA 2005 | PAPERS 26-27 September | Gdansk, Poland

119

extension to the CTT notation. Finally, we present our im-
plementation and the example application. In the conclusion
we also present directions for future work.

RELATED WORK
The basis for our work is the ConcurTaskTree (CTT) nota-
tion developed by Mori et al. [5]. This notation enjoys wi-
despread use throughout the research community for repre-
senting task models.

Several transformation based user interface creation tools
have been developed. One example of a transformation-
based user interface generation tool is the TERESIA envi-
ronment [6]. It allows the interactive adaptation of the task
model according to certain constraints from the platform as
well as a semi-automatic transformation into an abstract user
interface description (UIML [1]) which is further transfor-
med into a concrete user interface.

Another example IKnowU [3] from Furtado et al. IKnowU
is a knowledge based system that generates concrete user
interfaces by applying design rules to abstract models. Those
models and intermediate results are stored in UsiXML [4],
an user interface markup language (UIML).

EXECUTABLE TASK MODEL
Task States
The CTT Environment already includes a task model simu-
lator, which can be used for interactive walkthroughs of the
developed task model. The purpose of the task simulator is
to verify the task model during the design phase. One li-
miting assumption, that the simulator makes is that all leaf
tasks are atomic. This has the following consequences. First,
the simulator calculates a set of enabled tasks which repres-
ents the tasks that could be done next. Once one of these
tasks is selected by the user for execution, it is automatical-
ly completed from start to finish. In other words, there is no
intermediate state between the enabled and finished states. It
is therefore impossible for two leaf tasks to be active at the
same time, which contradicts the concurrent specification of
the model. To correctly represent real world tasks, the use of
the active state needs to be extended to the leaf tasks as well.

Task states and the transitions between that states are the
main source of information when trying to capture current
state of a task model. Figure 1 shows the complete set of
states including the respective transitions as they are used
in CTT. We believe that task states and transitions between
those states, together with additional information about the
nature of tasks, carry enough information to allow a basic
understanding of the users tasks by an application accessing
the model.

Information Exchange
The CTT notation also defines two information exchange
operators, which are special versions of the enabling and the
concurrency operators. These operators indicate, that the re-
spective tasks are exchanging information. However, CTT
offers no constructs to define what information is provided
or consumed by specific tasks.

Figure 1. Task states and transitions in CTT.

Figure 2. Task T1.1 produces information that is consu-
med by T2.2.

Our extension is to use the concept of input and output ports
for each task. These ports can be seen as an interface of that
particular task. We also need to define the semantics for the
information exchange as well as rules to check the model for
completeness and correctness.

Information exchange can happen between directly related
tasks, but also between disconnected tasks. Consider the sce-
nario in figure 2. Tasks T1.1 needs to send information to
T2.2, but the two tasks are not directly connected. The stan-
dard information exchange operator of CTT can only be used
between the high level tasks T1 and T2. Thus, in the CTT
model, T1.1 cannot exchange information with T2.2.

Our input and output ports extend the information exchange
possibilities and allow the communication between T1.1 and
T2.2 to take place.

Input Port Semantics
Input ports indicate that a task or one of its subtasks is able
to consume a specific piece of information. An input port is
defined within the task that actually consumes the informati-
on. However, since the information exchange might happen
at another (higher) level in the model, input ports are inhe-
rited by all ancestors of the task that has the input port. In
our example, an input port A defined for T2.2 would be in-
herited by T2 because a subtask of T2 consumes this piece
of information.

At runtime, tasks that receive information on an input port
need to make sure that it reaches all descendants that can
consume the information. Therefore information arriving on
port A of T2 would also be transmitted to port A on T2.2. In
a more complex hierarchy, all intermediate tasks would have
to keep track of the input ports of their descendants in the
task model.

Output Port Semantics

2

TAMODIA 2005 | PAPERS 26-27 September | Gdansk, Poland

120

An output port indicates, that the task can provide some pie-
ce of information. Output ports are inherited in the same way
as input ports. For example, if a port is defined on T1.1, T1
inherits that output port.

At runtime, output ports are stateful variables which carry
the last value assigned to that port. If an output port is set
on a task, this information is also transmitted to all parent
tasks, making sure that all ancestors are able to provide the
information. As a consequence, if several subtasks of a com-
posite task provide the same information (i.e., have the same
output port), only the last information provided any of the
subtasks is stored.

How the information is transferred to related input ports de-
pends on the operator being used:

• A [] >> B (enabling with info exchange): When A finis-
hes, the values of its output ports are transmitted to the
respective input ports of B. Output ports without a mat-
ching input port are ignored.

• A |[]| B (concurrency with info exchange): Whenever a
new value is stored for an output port in A, that value is
immediately transmitted to B. The same is also true if an
output port changes in B, since this operator works in both
directions.

Correctness and Completeness
A CTT model is only complete and correct if all tasks with
input ports are guaranteed to receive the desired information
through a corresponding output port on a related task. But
as tasks can be skipped during execution, special care has to
be taken. For a composite task B, the model checker needs
to make sure, that every possible activation path through the
subtasks of B includes at least one task with the appropriate
output port.

IMPLEMENTATION
We have implemented a prototype executable task model in
Java. Our goal in the implementation was to separate the ap-
plication logic from the underlying model semantics using
a model/view/controller-like pattern. Therefore, each task is
separated into two objects. A BasicTask node handles the
CTT model semantics (the model) and an object implemen-
ting the TaskFunctionality interface performs the ac-
tual work of the tasks (controller).

The BasicTask nodes contain all information necessary
to execute the task model correctly. This includes the task’s
name, its temporal operator, the current state, as well as the
input and output ports. Changes to the model are commu-
nicated to the respective TaskFunctionality through
events.

Classes implementing the TaskFunctionality inter-
face handle events thrown by the underlying BasicTask.
These events are: task enabled, task activated, task finished,
task suspended, task resumed, task disabled, new value on
input port and new value on output port.

Figure 3. Simplified ward round task model.

A single application therefore consists of several com-
ponents: a task model that is loaded from an XML file, app-
lication specific TaskFunctionality’s, a mapping bet-
ween tasks and specific implementations. Optionally the ap-
plication might require other components like backend sy-
stems and UI components.

APPLICATION
An executable task model does not create intelligent appli-
cations by itself. The application still needs to interpret and
use the information conveyed by the task model. We used our
executable task model architecture to develop a simple pro-
totype for a system accessing a task model updated at runti-
me. The prototype semi-automatically generates a user inter-
face from an underlying task model using pre-programmed
UI blocks. The scenario we use is a medical ward round sce-
nario with context awareness.

Scenario description: When the doctor approaches a patient,
the system detects the patient and automatically displays re-
levant information. The doctor can then choose to view spe-
cific reports or order examinations and lab analyses. As soon
as the patient is no longer nearby, the system aborts all cur-
rent activities and goes back to the initial state (see figure
3).

There are two particular challenges in this scenario. First,
the workflow is heavily customized to a specific doctor and
therefore it is necessary that the application can be easily
reconfigured for different ward round styles. Second, the ap-
plication also has to be very flexible during the ward round
because doctors possibly perform several tasks at the same
time.

User Interface
The user interface is constructed dynamically from the cur-
rent state of the task model. The application recognizes three
different cases:

• Active tasks: The user interface is implemented as a stack
of pre-defined GUI panels. Each GUI task is represented
by one panel. As long as a task is active, this panel is dy-
namically added to the GUI stack (figure 4).

• Enabled interaction tasks: Tasks in this state are rendered
as a button on the bottom of the stack. By clicking a speci-
fic button, the user indicates that he wants to activate that
particular task (figure 4).

3

TAMODIA 2005 | PAPERS 26-27 September | Gdansk, Poland

121

Figure 4. Automatically generated GUI stack before (top)
and after activating the task “Start Lab Entry” (bottom).

• Enabled application tasks: These tasks require no user in-
terface since the application has full control. One example
is the patient detection task that is activated and immedia-
tely finished as soon as a patient is detected.

The application task “Detect Patient Nearby” demonstrates
the use of information exchange. An identification number
of the detected patient is transmitted to various tasks belon-
ging to “Process Patient”. These use the information to dis-
play patient-specific data (figure 4).

The application is also easily reconfigurable with regards to
the temporal structure. If another doctor does not want the
report he is reading to disappear when he starts lab entry, the
operator between “View Information” and “Lab Entry” can
be changed from disabling to concurrency.

CONCLUSION
In this paper we have extended the CTT notation and se-
mantics to allow us to keep an instance of the task model in

memory, such that we can update the model in real-time. Our
extensions include the active task state for leaf tasks which
allows them to be non-atomic. Also we have extended the in-
formation exchange operators by defining input and output
ports, as well as rules to check for model consistency and
completeness.

We have further shown how an application can utilize such
an executable task model to dynamically assemble a user
interface from available blocks, according to the status of the
task model. Our example automatically inherits the correct
temporal behavior according to the underlying model.

The example application used in this work is simple and mo-
re complex schemes for the assembly of the UI can be en-
visioned. We are currently investigating schemes that do not
rely on the availability of pre-programmed UI blocks.

Our research on using task models at runtime is still in pro-
gress. The executable model is meant as a prototype that fur-
ther research can be based upon. We plan to increase the
amount of information associated with each task and will
investigate how this information can be used effectively to
enhance dynamic applications.

REFERENCES
1. Abrams, M., Phanouriou, C., Batongbacal, A., Williams,

S., Shuster, J. UIML: An Appliance-Independent XML
User Interface Language, In Proceedings of the 8th
WWW conference, 1999.

2. Barbosa, S.D.J., Greco de Paula, M., Pereira de Lucena,
C.J., Adopting a Communication-Centered Design
Approach to Support Interdisciplinary Design Teams. In
SE-HCI workshop at ICSE 2004, Edinburgh

3. Furtado, E., Furtado, V., Sousa K.S., Vanderdonckt, J.,
Limbourg, Q. KnowiXML: A Knowledge/Based System
Generating Multiple Abstract User Interfaces in
USIXML. In Proc. TAMODIA 2004, Prague, 121–128

4. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon,
L., Florins, M., Trevisan, D., UsiXML: A User Interface
Description Language for Context-Sensitive User
Interfaces, In Proc. of the ACM AVI’2004 Workshop

5. Mori, G., Paternò, F., Santoro, C. CTTE: Support for
Developing and Analyzing Task Models for Interactive
System Design. In IEEE Transactions on Software
Engineering, 2002, Vol. 28, No. 9

6. Mori, G., Paternò, F., Santoro, S. Tool Support for
Designing Nomadic Applications. In Proc. of IUI 2003,
Miami, 141–148

4

TAMODIA 2005 | PAPERS 26-27 September | Gdansk, Poland

122

