
Using Web Services to Build Context-Aware
Applications in Ubiquitous Computing

Gerhard Austaller, Jussi Kangasharju, Max Mühlhäuser

Telecooperation Group
Department of Computer Science

Darmstadt University of Technology
64289 Darmstadt, Germany,

{gerhard,jussi,max}@tk.informatik.tu-darmstadt.de

Abstract. Ubiquitous and mobile web applications are typically very autonomous
in nature, because they rely on additional information about the user’s context. In
this paper we present a general context model for including context information
into ubiquitous and mobile web applications. Our model is based on layers, which
cover the path from context sources to the application level, including all inter-
mediate filtering and context fusion. As an example, we present a context-aware
calendar application built according to our context model.

1 Introduction

The credo of ubiquitous computing is that hardware and software in everyday life
should “disappear”, and be as autonomous as possible. This requirement has large ef-
fects on the system design. Autonomy can be achieved through the use of additional
information about the user’s context. Our definition of context information follows that
of Dey [1] and Schmidt [2], in that any relevant information about the user’s situation
can be considered to be context. In addition to this, we also consider as context infor-
mation sources which are not in the user’s immediate vicinity, but contain information
that is relevant to the user at that time.

In this paper, we develop a general model for including context information into
mobile and ubiquitous applications. Our model has several layers, from the context
sources to the application, which perform all the tasks of context filtering and fusion,
so that the application only receives the relevant information about the user’s context.

As an example application of our model, we implement a context-aware calendar
which keeps track of a user’s appointments and reminds her when she should leave
for her next appointment; this reminder naturally depends on where the user is, where
the next appointment is, etc. In order to be able to exploit as many existing sources of
context, we have decided to built our calendar using web services.

Hence, the contribution of this paper is two-fold. First, we present our general con-
text model for building context-aware applications and services. Second, we present an
implementation of our context model using a web services architecture.

This paper is organized as follows. Section 2 presents the context layers we propose
and section 3 discusses the implementation of the context-aware calendar. We review
related work in Section 4. Finally, Section 5 concludes the paper.



2

Fig. 1.Context Stack

2 Context Model

This section describes to conceptual model of our context stack. By introducing several
layers of abstraction between the actual context source and the application, we allow
programmers to use context information in their applications in an easy and straight-
forward manner. Such layered structures are widely used in programming (e.g., graphics
libraries, TCP/IP network stack), but have only recently been considered by researchers
in context aware computing [1]. Figure 1 shows the layers in our general context model.
The rest of this section discusses the details of each layer.
Context Sensors

The lowest layer is theContext Sensorslayer. This layer contains all the context
sources which are of interest to us. Regardless of the name, we do not limit ourselves
to actual physical sensors as context sources, such as temperature, light intensity, or
noise level sensors. Context information such as calendar appointments or timetables
are typically considered higher-level context information; however, we include them in
this layer as well.

This layer feeds context information to the rest of the stack. It is responsible for
expressing the context information in a suitable format and also adds metadata (e.g., a
timestamp) to the information. This metadata is passed up along the stack so that the
higher layers can decide whether that piece of information is still relevant.
Primary Filter

The next layer is thePrimary Filter layer. Its main purpose is to protect the stack
from being flooded by information. When context information is continuosly delivered
from a source (e.g., a temperature reading), the application may be interested in only a
few values every now and then. This is especially important for context sources which
deliver their information by pushing it, instead of the application pulling it.
Fusion Module

The role of theFusion Moduleis to fusion the context delivered through the Primary
Filter. This fusioning can either make the context information easier to access (for the
higher layers) or to get a higher-level representation of the raw context information.
Some abstracting functionality is also included in the next higher layer, the Context
Filter (see below).

An example of how the Fusion Module can provide easier access to context infor-
mation is a positioning system. Consider a badge-based positioning system which is
able to locate users at the granularity of a room. The Fusion Module can collect in-
formation from all sensors in all rooms and present a view to the higher layers which



3

allows querying users. In this case, the Fusion Module only facilitates access to context
information and does not change any information.
Context Filter

The role of the Context Filter is similar to the Primary Filter in that it filters infor-
mation coming from the Fusion Module. However, the Context Filter acts on a higher
level and is therefore able to perform “intelligent” filtering. For example, a positioning
system may send periodic events indicating which user is in which room. The Context
Filter takes these events and is able to generate higher-order events from them, such as
“person X entered room Y”.
Interpreter

The Context Filter only handles context of one kind while the Interpreter can deal
with different sources of different kinds of context. This is important for higher-level
reasoning and implying events which cannot be measured. An example is a meeting
taking place in a room. In this case, there are many people in the room, the noise level
indicates people speaking, and the lights are turned on. None of the individual con-
text “readings” alone is sufficient to infer a meeting taking place, but put together, the
Interpreter can deliver us this result.
Application

At the top of the stack are the applications using context. There are many possibili-
ties to use context in applications. Context awareness is an enabling technology for new
kinds of applications. It helps increase autonomy of applications, including adaption of
behaviour and user interface.

3 Implementation of a Context-Aware Calendar

Our goal in implementing the context-aware calendar was to validate our context model,
test the usability of such a calendar in everyday life, and to evaluate the suitability of
web services for ubiquitous applications. Web services provide an open architecture
where all service providers can freely compete. We believe this gives them a significant
advantage over intergrated solutions where one provider is responsible for providing
all services, with no major incentive to innovate. Good examples of the successes of
open architectures are the Internet and the Web, as well as the iMode-service from
NTT DoCoMo (as compared to the European WAP services, which represent more the
integrated model).
Overview of the Calendar Application

The Coordinator is the core of the context-aware calendar. It runs the algorithms
for service discovery, planning the notifications, and sending notifications. Planning
is done by gathering information from several sources, the appointments database, a
public transport timetable, and a positioning system. When the user should leave for
her next appointment, the coordinator sends a notification to the user as a text message.
Appointments

The source for the actual calendar appointments was the Microsoft Exchange server
for our group. The rather limited reminder possibilities offered by the Exchange server
are replaced by our context-aware calendar. (The limited reminders in Exchange were



4

Fig. 2.Coordinator and its functionality.

actually a strong motivating factor for us choosing to implement a calendar as an exam-
ple of our context model.)
Public Transport Timetable

We wrote a Java wrapper for accessing the information from the public transport
timetables. The wrapper realizes a web service for querying any kind of timetables by
separating the web service specific code from the HTML parser. Our wrapper presents
an interface, specified in a WSDL document, which allows queries for getting from
place A to place B. The interface returns the means of transport to take, how and where
to change, and the total time of traveling.
Positioning System

For determining the current location of the user, we use the “O2 Handy Finder”
provided by the operatorO2The “Handy Finder” website returns a map as an image on
which the user’s location is plotted. The website also returns the coordinates as text in
an HTTP-header. The coordinates express the longitude and latitude of the base station
under which the user’s mobile phone is currently located.
Coordinator

The core of the context aware calendar is the coordinator. The coordinator discovers
the feasible services, coordinates the message exchange, and implements the planning
algorithm. The coordinator is illustrated in Figure 2. The planning algorithm is at the
heart of the coordinator. This algorithm is responsible for keeping the context informa-
tion up-to-date and deciding when to send out the notification to the user.
Notification to the User

We use the standard text messaging (SMS) of GSM mobile phones for sending
notifications to the user. The main advantages of SMS are two-fold. First, mobile phones
are ubiquitous, hence most users already possess a device for receiving the notifications.
Second, SMS is a push-based technology which is required of a notification service.
Feedback from the phone back to the calendar is part of our future work.

4 Related Work

There has been lot of work in the area of context-aware computing. First applications
include the phone forwarding application built on top of the Active Badge Location



5

System [4] and the GUIDE project [3]. With the upcoming mobility of devices, work
such as [7] explored the efficient distribution of notifications to clients. Dey [1] intro-
duced the separation of concerns and reusage in the design process of context aware
systems. Later models include [2] and [8]. Recent work has studied automatic building
of context models [9] or predicting context [10].

In contrast to the previous work, our context model explicitly formalizes the dif-
ferent layers between the context sources and the application. Formalizing the context
model in layers gives us the advantage that we can use existing modules for each layer
and plug in the appropriate modules or layers on-demand. Furthermore, our layered
model, based on ubiquitous services, is very scalable, and can handle a large number of
context sources, filter, and context consumers (applications) concurrently.

5 Conclusion

In this paper we presented a general context model for including context information
into ubiquitous and mobile web applications. Our model contains 5 layers: context sen-
sors, primary filter, fusion module, context filter, and interpreter. As an example, we
presented a context-aware calendar application built according to our context model.
We have built our calendar using web services, in order to take advantage of the many
context sources on the Web, and because it makes our application open and easily ex-
tensible. We also discussed the usefulness of web services in ubiquitous and mobile
web applications.

References

1. Dey, A.K.: Providing Architectural Support for Building Context-Aware Applications. PhD
thesis, Georgia Institute of Technology (2000)

2. Schmidt, A., Gellersen, H.W.: Modell, Architektur und Plattform für Informationssysteme
mit Kontextbezug. Informatik Forschung und Entwicklung16 (2001)

3. Davies, N., Mitchell, K., Cheverst, K., Blair, G.: Developing a context sensitive tourist guide.
In: First Workshop on Human Computer Interaction for Mobile Devices. (1998)

4. Want, R., Hopper, A., Falcão, V., Gibbons, J.: The Active Badge Location System. ACM
Transactions on Information Systems10 (1992) 91–102

5. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Achieving scalability and expressiveness in an
internet-scale event notification service. In: ACM Symposium on Principles of Distributed
Computing, Portland, OR (2000)

6. Kügler, D., Vogt, H.: Marking: A privacy protecting approach against blackmailing. In:
Public Key Cryptography PKC 2001, Cheju Island, Korea (2001)

7. Schilit, W.N.: A System Architecture for Context-Aware Mobile Computing. PhD thesis,
Columbia University, New York, NY, US (1995)

8. Großmann, M., Leonhardi, A., Mitschang, B., Rothermel, K.: A world model for location-
aware systems. Informatik8 (2001) 22–25

9. Takada, T., Kurihara, S., Hirotsu, T., Sugawara, T.: Proximity mining: Finding proximity
using sensor data history. In: IEEE Workshop on Mobile Computing Systems and Applica-
tions, Monterey, CA (2003)

10. Petzold, J., Bagci, F., Trumler, W., Ungerer, T.: The state predictor method for context
prediction. In: UbiComp 2003: Adjunct Proceedings. (2003)


